

HIGGS TO 2 PHOTONS IN CMS: RECENT RESULTS

Julie Malclès

CEA-Saclay, Irfu

On behalf of the CMS collaboration

IRN Terascale, 20-22 May 2019, Annecy

Introduction

After the Higgs discovery during the LHC Run1, the Run2 Higgs analyses aim at measuring precisely its properties: mass, couplings, spin-parity,...

With the increasing statistics, concentrating now:

- on rarer decay or production channels, for example direct measurements of couplings to fermions
- on measurements with increased granularity

Outline

Two recent results including the 2017 dataset:

Higgs Couplings - November 2018

PAS-HIG-18-018

2017: 41.5 fb⁻¹ + comb with 2016

"Measurement of the associated production of a Higgs boson and a pair of top-antitop quarks with the Higgs boson decaying to two photons in proton-proton collisions at $\sqrt{s} = 13$ TeV"

Moriond EWK - March 2019

PAS-HIG-18-029

2016+2017: 77.4 fb⁻¹

"Measurements of Higgs boson production via gluon fusion and vector boson fusion in the diphoton decay channel at $\sqrt{s} = 13$ TeV in the stage 1 simplified template cross-sections framework" Intermediate results towards full run2 legacy ones

General analysis strategy

- Channel with excellent mass resolution (~1%) with 2 well-reconstructed photons
- Fit small signal peak on top of falling background
- Reconstruct photons energies: excellent energy resolution from lead tungstate crystals in ECAL
- Identify vertex and photons using dedicated MVA discriminating variables
- Categorize events to:
 - target different production modes, with additional objects (jets, leptons,...)
 - improve the sensitivity with dedicated discriminating variables reducing the backgrounds in each category
- 4. Perform simultaneous fit to m_{γγ} distribution of each category to determine the signal strengths (background fit to the data)
- Most of systematics uncertainties taken from data/MC comparisons (often using Z)

$$m_{\gamma\gamma} = \sqrt{2E_1 E_2 (1 - \cos \theta)}$$

STXS: introduction

Simplified Template Cross Section (STXS) framework

- STXS framework first outlined in <u>YR4</u> [1], result of a collaboration between ATLAS, CMS and theorists
- Coherent framework for Higgs measurements, aiming to maximise experimental sensitivity whilst minimising theory dependence
- Generator-level kinematic bins based upon the SM production modes are defined, with so-called "stages" increasing in granularity
- Designed to have constant theory uncertainties in each bin, isolating possible BSM effects
- Permits combinations across decay channels and experiments
- The results can be used as inputs to constrain for example EFT parameters

[1] Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, LHC Higgs Cross Section Working Group, Oct 25, 2016. 849 pp.

STXS: introduction

Stage 0: corresponds to the standard SM production processes

Stage 1: further splitting based on kinematic properties, e.g. pT(H), nJets

STXS stage 1: ggH

- Eleven generator-level bin definitions
- Split by pT(H) and number of jets (jet pT required to be > 30 GeV)
- Additional VBF-like region with high m_{jj} (> 400 GeV) and $\Delta\eta$ (> 2.8)

STXS stage 1: ggH

- With the 77.4fb⁻¹ (2016+2017) can measure most of the stage 1 bins
- Exceptions: low & medium pT(H) 2J categories and the VBF-like region very difficult to separate the latter from true VBF production
- Statistically limited, in some cases bins need to be merged
- 2 merging scenarios used: (1) 5 ggH parameters

STXS stage 1: ggH

- With the 77.4fb⁻¹ (2016+2017) can measure most of the stage 1 bins
- Exceptions: low & medium pT(H) 2J categories and the VBF-like region very difficult to separate the latter from true VBF production
- Statistically limited, in some cases bins need to be merged
- 2 merging scenarios used: (2) 10 ggH parameters

STXS stage 1: VBF

- Two bins defined as the VBF-like bins in the ggH phase space, split into 2J-like and 3J-like with cut on pT(Hjj) (m_{ij} > 400 GeV and $\Delta\eta$ > 2.8)
- A BSM bin where lead jet has pT > 200 GeV
- VH bin with $60 < m_{ii} < 120 \text{ GeV}$
- Everything else in "Rest" bin; corresponds to over 60% of signal
- 2 merging scenarios: (1) 1 single parameter for the 5 bins

STXS stage 1: VBF

- Two bins defined as the VBF-like bins in the ggH phase space, split into 2J-like and 3J-like with cut on pT(Hjj) (m_{ij} > 400 GeV and $\Delta\eta$ > 2.8)
- A BSM bin where lead jet has pT > 200 GeV
- VH bin with $60 < m_{ii} < 120 \text{ GeV}$
- Everything else in "Rest" bin; corresponds to over 60% of signal

2 merging scenarios: (2) 3 parameters

STXS: analysis strategy

- Analysis targeting the ggH and VBF phase space regions
- No sensitivity to the stage 1 VH bins, and ttH is not split at stage 1, therefore do not include ttH or VH dedicated categories
- Method:
 - define categories targeting the bins, with cuts on the equivalent reconstructed quantities of the defining generator level variables
 - reject background using BDTs, with several categories (called "tags")
- ggH categories:
 - background rejection using the "diphoton BDT" based on photon kinematics & photon ID BDT
- VBF categorisation:
 - final categories defined using cuts on "diphoton BDT" and "dijet BDT"
 based on jet kinematics (jets pT, m_{jj}, Δη_{jj}, Δφ_{jj},...)
 - New: dijet BDT trained on data for backgrounds with non-prompt photons in control regions normalized with appropriate fake factors

Event category

STXS: final categories

Composition of each analysis category in terms of stage 1 bins Each row sums to 100%

CMS Simulation Preliminary H→γγ

13 TeV (2016)

13

Event category

STXS: final categories

Composition of each analysis category in terms of stage 1 bins Each row sums to 100%

14

STXS: invariant mass distribution

15

Diphoton invariant mass fit:

- Simultaneous fit to all categories to determine the free parameters
- Background fit to the data
- Here: all categories included weighted by signal purity
- Very clear peak

STXS: systematics

16

- 2 dominant sources of experimental systematics are:
 - Jet energy scale
 - Photon ID systematics
- Theory systematics:
 - do not include uncertainty on the cross-section itself, considered as an uncertainty on the SM prediction
 - this differentiates the STXS measurement from a signal strength measurement
 - the effect on the analysis efficiency × acceptance is however included

STXS: results

Inclusive σ/σ_{SM} ggH: 1.15 ± 0.15

VBF: 0.8 +0.4 _{-0.3}

- First scenario: 7 parameter fit
- Good agreement with SM prediction, including in BSM bins
- Large statistical uncertainties

STXS: results

Inclusive σ/σ_{SM} ggH: 1.15 ± 0.15 VBF: 0.8 +0.4 -0.3

- Second scenario: 13 parameter fit
- Good agreement with SM prediction, including in BSM bins
- Very large statistical uncertainties

ttH: introduction

- Since its discovery in 2012: major effort is to study the newly discovered Higgs boson
 - Couplings are one of the fundamental parameters
 - In the SM, Higgs boson's couplings are unambiguously predicted
 - Until recently, only indirect access to Hff couplings
- Coupling y_t to top quark is important
 - Top quark has the strongest SM coupling (y_t~1)
 - Can be inferred from contribution to loops in ggH and Hγγ, but deviations from the SM can be masked by other new phenomena
 - Direct ttH production provides direct measurement
- ttH production discovery reported by ATLAS and CMS in June 2018. Without 2017 data for the diphoton channel in CMS.
- 2017 diphoton result reported today

ttH: analysis strategy

20

- Analysis strategy very similar to STXS one
 - H identified selecting two high pT isolated photons
 - tops identified with decay products
- Exclusive categories depending on N_{leptons}
 - Hadronic categories: 0 lepton (e or μ)
 - Leptonic categories: more than 0 lepton
- Background rejected using dedicated BDTs
- Simultaneous fit of mass distributions to determine ttH signal strength
- Combination with existing 2016 result

ttH: improvements

Changes and improvements with regard to 2016 analysis:

- Preselections applied to train in the regions of interest
- Reweighting procedure to improve data/simulation agreement for backgrounds before to train
- MVA hyper-parameters optimized with regard to the expected sensitivity
- Number of categories determined to have improvement at least of a few percents on the sensitivity by adding a category
- More categories: 3 hadronic and 2 leptonic (compared to 1 and 1 respectively in 2016)
- ttH hadronic: more discriminating variables added (~30 versus 4)
- ttH leptonic: uses now a BDT (cut-based before)

Overall the improvement in sensitivity with regard to the 2016 result is **about 40%**

ttH: discriminating variables

Discriminating variables: BDTs including informations from photons, jets, and leptons kinematics, b-tagging information and missing E_T

ttH Hadronic:

- $n_{lepton} = 0$, photon ID > -0.2, $n_{Jets} > 1$
- The following variables are used for the MVA training:
 - Photon variables:
 - $p_T/m_{\gamma\gamma}$ of two photons,
 - $|\eta|$ and ϕ of two photons,
 - photon-ID of two photons,
 - pixel seed veto decision of two photons,
 - $p_T/m_{\gamma\gamma}$ of diphoton,
 - the rapidity of diphoton.
 - Jet variables:
 - · number of jets,
 - p_T , $|\eta|$, and ϕ of four leading jets,
 - Нт.
 - b-tagged jet variables:
 - b-tag value of the highest three b tag scored jets,
 - b-tag value of four leading jets.
 - · Missing p_T .

ttH Leptonic:

- $n_{lepton} > 0$, photon ID > -0.2, $n_{Jets} > 0$ ($n_{b Jets} > 0$)
- The following variables are used for the MVA training:
 - Photon variables:
 - $p_T/m_{\gamma\gamma}$ of two photons,
 - $|\eta|$ of two photons
 - $\Delta \phi$ between two photons,
 - photon-ID of two photons,
 - pixel seed veto decision of two photons,
 - Lepton variables:
 - p_T and $|\eta|$ of the highest p_T lepton
 - Jet variables:
 - number of jets,
 - p_T , $|\eta|$, and ϕ of three leading jets,
 - b-tagged jet variables:
 - b-tag value of the highest two b tag scored jets,
 - number of b tagged jets.
 - Missing p_T.

ttH: categorisation

23

Preselection:

N_{jets}≥ 2 with b-tagging≥0, N_{leptons}= 0, photonIDs>-0.2

Preselection:

N_{jets}≥ 1 with b-tagging≥0, N_{leptons}≥ 1, photonIDs>-0.2

- These discriminating variables are used to define optimal categories
- Boundaries chosen to maximize the expected sensitivity to the ttH production
- Categories driving sensitivity: ttH hadronic 0 and ttH leptonic 0

ttH: results on 2017 dataset

- A handful of events
- Categories driving sensitivity: ttH hadronic 0 and ttH leptonic 0
- Rather pure categories with regard to other production modes
- Large uncertainties dominated by statistical uncertainties
- Good agreement with the SM

ttH: results on 2017 dataset

 Likelihood scan for the ttH signal strength where the mass is constrained to the combined run I value (125.09 ± 0.24 GeV)

$$\mu_{ttH} = 1.3^{+0.7}_{-0.5} = 1.3^{+0.6}_{-0.5} (\text{stat.})^{+0.3}_{-0.1} (\text{syst.})$$

• Expected significance: 2.2σ , observed significance: 3.1σ

ttH: combination with 2016

 Likelihood scan for the ttH signal strength where the mass is constrained to the combined run I value (125.09 ± 0.24 GeV)

$$\mu_{ttH} = 1.7^{+0.6}_{-0.5}$$

• Expected significance: 2.7σ , observed significance: 4.1σ

Conclusion

- Intermediate results on 2017 dataset:
 - First CMS result within the STXS stage 1 framework in the diphoton channel
 - Largely improved sensitivity to the ttH production with regard to 2016 results
 - Both results largely statistically limited
- Towards full run2 legacy results:
 - 2018 data analysis on-going
 - Re-analysis of 2016+17 data with several improvements (calibration, strategy)
 - Move to stage 1.1 for the STXS results

Stay tuned!

Backups

Trigger efficiencies

- Diphoton HLT trigger with asymmetric pT thresholds is used
- Trigger efficiency calculated using the tag & probe method on Z→ee events

Preselection

- Standard loose selection which is slightly tighter than HLT: photon pair with 100 < m $\gamma\gamma$ < 180 GeV where photons are within ECAL acceptance and not in the gap
- electron veto applied
- absolute and scaled pT cuts also applied
 - 2016: pT > 30 (25) GeV and pT/mγγ > 1/3 (1/4)
 - 2017: pT > 35 (25) GeV and pT/mγγ > 1/3 (1/4)
- along with shower shape and isolation:

	R_9	H/E	$\sigma_{\eta\eta}$	$\mathcal{I}_{\mathrm{ph}}$ (GeV)	$\mathcal{I}_{\mathrm{tk}}$ (GeV)
Barrel	> 0.85	< 0.08	-	-	-
	[0.50, 0.85]	< 0.08	< 0.015	< 4.0	< 6.0
Endcaps	> 0.90	< 0.08	-	-	-
	[0.80, 0.90]	< 0.08	< 0.035	< 4.0	< 6.0

Photon energy

- Corrected for the imperfect containment of the shower and the energy losses from converted photons (MVA regression)
- Data energy scale corrected to match Z peak, in bins of η and R9
- Simulation smearing adjusted to match data using Z

Vertex identification

- In absence of tracks, the vertex is unknown
- Important for maintaining the mass resolution, particularly for ggH events
- If chosen vertex within ~1cm of the true vertex, negligible impact on resolution
- MVAs to identify the diphoton vertex using recoiling tracks and their balance with the Higgs boson \textbf{p}_{T}
- Efficiency to choose the vertex within 1cm ~ 80%
- Validated with Z→μμ events where tracks are removed to mimic a diphoton

Photon identification

- Photon identification: BDT using shower shape, isolation and kinematic variables to distinguish between prompt and fake photons from neutral hadrons
- Validated in data Z→ee and Z→μμγ events
- Systematics assigned to cover the observed discrepancies

STXS: diphoton BDT

- Reject background using photon kinematics & photon ID BDTs
- Classifier uses exact same inputs as in published 2016 result
- Z→ee events used for validation
- Systematics uncertainties related to photon ID and per event energy resolution estimates covers observed discrepancies

STXS: dijet BDT

- To discriminate between ggH and VBF
- Inputs mostly related to jet kinematics (jets pT, m_{jj}, Δη_{jj}, Δφ_{jj},...)
- New: training on MC (for diphoton background) and data for backgrounds with non-prompt photons in control regions normalized with appropriate fake factors (to increase the statistics for non-prompt backgrounds)
- Validation also performed with Z→ee+jets events
- Agreement is good in both years (JES/JER uncertainties included here)

Diphoton BDT inputs

- the transverse momenta for both photons, rescaled for the diphoton mass, $p_{\rm T}^{1,(2)}/m_{\gamma\gamma}$;
- the pseudorapidities of both photons, $\eta^{1(2)}$;
- the cosine of the angle between the two photons in the transverse plane, $\cos(\Delta\phi)$;
- the identification BDT score for both photons;
- the per-event relative mass resolution estimate, under the hypothesis that the mass has been reconstructed using the correct primary vertex (σ_{rv});
- the per-event relative mass resolution estimate, under the hypothesis that the mass has been reconstructed using an incorrect primary vertex (σ_{wv});
- the per-event probability estimate that the correct primary vertex has been used to reconstruct the mass, based on the event-level vertex selection MVA as described in Section in [7] (p_{vtx}).

Dijet BDT inputs

- the transverse momenta of the leading and subleading photons divided by the invariant mass of the diphoton candidate: $p_T^{\gamma_1}/m_{\gamma\gamma}$ and $p_T^{\gamma_2}/m_{\gamma\gamma}$
- ullet the transverse momenta of the leading and subleading jets: $p_{
 m T}^{j_1}$ and $p_{
 m T}^{j_2}$
- the dijet invariant mass, m_{j1j2}
- the difference in pseudo-rapidity between the two jets, $\Delta \eta_{j_1 j_2}$
- the difference in azimuthal angle between the dijet and the diphoton, $\Delta \phi_{(j_1 j_2, \gamma \gamma)}$.
- centrality variable defined as,

$$C_{\gamma\gamma} = \exp\left(-\frac{4}{(\eta_1 - \eta_2)^2} \left(\eta_{\gamma\gamma} - \frac{\eta_1 + \eta_2}{2}\right)^2\right) \tag{7}$$

where η_1 , η_2 , and $\eta_{\gamma\gamma}$ are the pseudo-rapidities of the two jets, and the diphoton.

- the difference in azimuthal angle between the two leading jets $\Delta \phi_{jj}$
- the minimum distance between a leading or subleading jet and leading or subleading photon min ΔR(γ, jet).

Samples

38

- Signal simulation at mH = 120, 125, 130 GeV
 - aMC@NLO dominant processes are ggH, VBF, ttH and VH also include tH, bbH, and ggZH
 - powheg used for MVA training
- Background simulation:
 - Diphoton from Sherpa
 - GJet and QCD from Pythia with EM filter
 - DY to leptons with aMC@NLO for Z→ee validation

STXS stage 1: ggH

Region	Definition	Fraction	Cross section (pb)
OJ	Exactly zero jets, any p_{T}^{H}	60.0%	26.49
1J low	Exactly one jet, $p_{\rm T}^H < 60~{ m GeV}$	15.4%	6.79
1J med	Exactly one jet, 60 GeV $< p_{\mathrm{T}}^{H} <$ 120 GeV	10.4%	4.61
1J high	Exactly one jet, $120 \text{ GeV} < p_{\text{T}}^H < 200 \text{ GeV}$	1.7%	0.76
1J BSM	Exactly one jet, $p_{\rm T}^H > 200~{ m GeV}$	0.4%	0.16
2J low	\geq two jets, $p_{\mathrm{T}}^{H} < 60 \mathrm{GeV}$	2.9%	1.26
2J med	\geq two jets, 60 GeV $< p_{\mathrm{T}}^{H} <$ 120 GeV	4.5%	2.00
2J high	\geq two jets, 120 GeV $< p_{\mathrm{T}}^{H} <$ 200 GeV	2.3%	1.00
2J BSM	\geq two jets, $p_{\mathrm{T}}^{H} > 200~\mathrm{GeV}$	1.0%	0.43
VBF-like 2J	\geq two jets, $p_{\mathrm{T}}^{H} < 200~\mathrm{GeV}$, $ \Delta\eta > 2.8$, $m_{jj} > 400~\mathrm{GeV}$, $p_{\mathrm{T}}^{Hjj} < 25~\mathrm{GeV}$	0.6%	0.27
VBF-like 3J	\geq two jets, $p_{\mathrm{T}}^{H} < 200 \mathrm{GeV}$, $ \Delta \eta > 2.8$, $m_{jj} > 400 \mathrm{GeV}$, $p_{\mathrm{T}}^{Hjj} > 25 \mathrm{GeV}$	0.9%	0.38

- We have sensitivity to most bins individually; higher pT(H) typically has lower cross-section but similarly lower background
- Exceptions are the low & medium pT(H) 2J categories and the VBF-like region very difficult to separate the latter from true VBF production

STXS stage 1: VBF

Region	Definition	VBF fraction	VH fraction	Cross section (pb)
BSM	Leading jet $p_{\rm T} > 200{\rm GeV}$	4.6%	5.4%	0.23
2J-like	\geq two jets, $ \Delta\eta > 2.8$, $m_{jj} > 400$ GeV, $p_{\mathrm{T}}^{Hjj} < 25$ GeV	25.8%	0.4%	0.91
3J-like	\geq two jets, $ \Delta \eta > 2.8$, $m_{jj} > 400$ GeV, $p_{\mathrm{T}}^{Hjj} > 25$ GeV	9.0%	1.7%	0.34
VH-like	\geq two jets, $60 < m_{jj} < 120 \text{GeV}$	2.3%	34.5%	0.55
Rest	All other VBF events	59.2%	57.9%	2.86

- Two main bins defined in the same way as the VBF-like bins in the ggH phase space, split into 2J-like and 3J-like with cut on pT(H_{jj}) (dijet present with m_{ii} > 400 GeV and $\Delta\eta$ > 2.8)
- A BSM bin where lead jet has pT > 200 GeV
- VH bin with $60 < m_{ii} < 120 \text{ GeV}$
- Everything else in "Rest" bin; corresponds to over 60% of signal

STXS: Dijet BDT data-driven

- Fake factors and QCD fraction estimated from MC
 - binned in p_T and η for each photon
- These are applied to data in the control regions, which then replaces the MC in training

$$f(\eta^{\gamma}, p_T^{\gamma}) = \left(\frac{N^{SR}(\eta^{\gamma}, p_T^{\gamma})}{N^{CR}(\eta^{\gamma}, p_T^{\gamma})}\right)_{MC}$$

$$p_{QCD}(\eta^{\gamma}, p_T^{\gamma}) = \left(\frac{N_{j\gamma}^{CR} + N_{jj}^{CR}}{N_{\gamma\gamma}^{CR} + N_{j\gamma}^{CR} + N_{jj}^{CR}}\right)$$

STXS: signal model

Signal model:

- Parametric signal model with shape parameters linear functions of m_H obtained
 - from simultaneous fit to 120, 125, and 130 GeV mass points including all data/
 MC corrections to properly reproduce the resolution
 - for each process × category × right/wrong vertex treated separately
- Resolution 10-15% worse in 2017 (calibration issue, will be fixed in re-reco)

Background model: choice of background function being treated as a discrete nuisance parameter

STXS: yields

Event Categories	SM 125 GeV Higgs boson expected signal									Bkg	S/(S+B)					
Event Categories	Total	ggH	VBF	ttH	tHq	tHW	bbH	ggZH	WH lep	WH had	ZH lep	ZH had	σ_{eff}	σ_{HM}	(GeV^{-1})	
0J Tag 0	401.1	91.8 %	4.4 %	<0.05 %	<0.05 %	< 0.05 %	1.4 %	0.1 %	1.0 %	0.4 %	0.6 %	0.2 %	1.94	1.79	870.3	0.07
0J Tag 1	552.3	93.7 %	3.1 %	<0.05 %	<0.05 %	<0.05 %	1.3 %	<0.05 %	0.7 %	0.4 %	0.4 %	0.2 %	2.42	2.06	2121.9	0.04
0J Tag 2	347.3	95.0 %	2.2 %	<0.05 %	<0.05 %	<0.05 %	1.3 %	<0.05 %	0.5 %	0.4 %	0.3 %	0.2 %	2.72	2.41	3035.8	0.01
1J Low Tag 0	130.8	89.5 %	5.9 %	0.1 %	<0.05 %	<0.05 %	1.1 %	<0.05 %	0.5 %	1.7 %	0.2 %	0.9 %	1.91	1.71	360.2	0.06
1J Low Tag 1	111.5	89.2 %	6.1 %	0.1 %	<0.05 %	<0.05 %	1.1 %	<0.05 %	0.5 %	1.8 %	0.2 %	1.0 %	2.47	2.22	689.4	0.02
1J Medium Tag 0	71.4	81.5 %	12.4 %	0.2 %	0.1 %	<0.05 %	0.5 %	0.2 %	0.9 %	2.5 %	0.4 %	1.3 %	1.85	1.67	110.8	0.11
1J Medium Tag 1	91.1	82.7 %	11.4 %	0.2 %	0.1 %	<0.05 %	0.5 %	0.2 %	0.8 %	2.3 %	0.4 %	1.4 %	2.13	1.91	342.2	0.04
1J High Tag 0	14.7	71.7 %	19.4 %	0.3 %	0.2 %	<0.05 %	0.3 %	1.0 %	2.3 %	2.5 %	1.0 %	1.5 %	1.54	1.51	8.7	0.27
1J High Tag 1	28.2	72.4 %	18.4 %	0.4 %	0.2 %	<0.05 %	0.3 %	0.8 %	2.2 %	2.8 %	0.9 %	1.7 %	1.76	1.77	47.7	0.10
1J BSM	15.5	66.9 %	20.9 %	0.4 %	0.3 %	0.1 %	0.1 %	1.0 %	4.0 %	3.0 %	1.6 %	1.8 %	1.76	1.71	17.5	0.15
2J Low Tag 0	10.9	80.2 %	7.0 %	1.7 %	0.4 %	<0.05 %	1.0 %	0.3 %	0.7 %	4.8 %	0.3 %	3.4 %	1.55	1.52	35.1	0.06
2J Low Tag 1	40.8	77.6 %	8.1 %	3.0 %	0.5 %	<0.05 %	0.8 %	0.3 %	0.7 %	5.4 %	0.3 %	3.1 %	2.06	1.94	249.0	0.03
2J Medium Tag 0	16.8	76.6 %	8.1 %	1.9 %	0.5 %	0.1 %	0.3 %	1.0 %	0.7 %	7.0 %	0.4 %	3.4 %	1.60	1.46	28.9	0.11
2J Medium Tag 1	49.7	74.6 %	9.1 %	3.4 %	0.6 %	0.1 %	0.4 %	0.8 %	0.9 %	6.1 %	0.4 %	3.6 %	2.12	1.86	228.8	0.03
2J High Tag 0	14.0	71.1 %	9.2 %	1.7 %	0.6 %	0.1 %	0.2 %	2.7 %	1.0 %	8.2 %	0.7 %	4.6 %	1.54	1.52	14.2	0.18
2J High Tag 1	24.4	69.1 %	9.4 %	3.7 %	0.8 %	0.2 %	0.2 %	2.3 %	1.1 %	8.2 %	0.5 %	4.7 %	1.42	1.31	64.4	0.08
2J BSM Tag 0	15.8	66.4 %	9.4 %	2.6 %	0.9 %	0.4 %	0.1 %	2.7 %	1.9 %	9.3 %	0.9 %	5.4 %	1.67	1.63	11.1	0.22
2J BSM Tag 1	5.7	60.4 %	9.5 %	9.2 %	1.4 %	0.7 %	0.1 %	2.7 %	1.4 %	9.0 %	1.0 %	4.7 %	1.89	1.82	24.3	0.04
VBF 2J-like Tag 0	13.5	24.8 %	74.4 %	0.1 %	0.1 %	<0.05 %	0.1 %	0.1 %	<0.05 %	0.2 %	<0.05 %	0.2 %	1.90	1.73	5.7	0.30
VBF 2J-like Tag 1	4.8	41.7 %	56.5 %	0.2 %	0.2 %	<0.05 %	0.2 %	0.2 %	0.2 %	0.5 %	<0.05 %	0.3 %	2.28	1.94	9.3	0.07
VBF 3J-like Tag 0	12.7	36.8 %	60.6 %	0.4 %	0.5 %	<0.05 %	0.1 %	0.4~%	0.2 %	0.5 %	0.1 %	0.2 %	1.90	1.69	7.8	0.23
VBF 3J-like Tag 1	7.6	56.0 %	37.8 %	0.8 %	0.9 %	<0.05 %	0.2 %	0.8 %	0.5 %	1.6 %	0.2 %	1.0 %	1.86	1.79	11.1	0.11
VBF Rest	12.9	63.4 %	29.9 %	1.0 %	0.6 %	0.1 %	0.4 %	0.8 %	0.6 %	2.0 %	0.3 %	1.1 %	1.80	1.71	21.3	0.10
VBF BSM	6.5	44.7 %	47.8 %	1.0 %	0.5 %	0.3 %	0.1 %	1.4 %	0.7 %	2.1 %	0.4 %	1.0 %	1.75	1.45	4.5	0.22
Total	1999.8	88.2 %	6.7 %	0.4 %	0.1 %	<0.05 %	1.1 %	0.2 %	0.8 %	1.4 %	0.4 %	0.8 %	2.22	1.98	8320.2	0.04

STXS: results

Signal parameter	Cross se	ection (fb)	σ/σ	Uncertainty on $\sigma/\sigma_{\rm SM}$					
Signal parameter	SM pred.	Measured	$\sigma/\sigma_{\rm SM}$	Total	Stat.	Exp.	Theo.		
ggH 0J	61	72	1.17	$+0.20 \\ -0.20$	$+0.18 \\ -0.18$	$+0.08 \\ -0.07$	$^{+0.06}_{-0.04}$		
ggH 1J low	15	24	1.5	$+0.7 \\ -0.6$	$^{+0.6}_{-0.5}$	$+0.2 \\ -0.1$	$+0.2 \\ -0.1$		
ggH 1J med	10	5.1	0.5	$+0.5 \\ -0.4$	$^{+0.4}_{-0.4}$	$+0.1 \\ -0.1$	$+0.1 \\ -0.0$		
ggH 1J high	1.7	3.4	2.0	$+1.0 \\ -0.7$	$+0.8 \\ -0.7$	$+0.3 \\ -0.1$	$^{+0.4}_{-0.2}$		
ggH 1J BSM	0.4	0.6	1.8	$+1.7 \\ -1.5$	$+1.5 \\ -1.4$	$^{+0.3}_{-0.2}$	$^{+0.4}_{-0.1}$		
ggH 2J low	2.9	0.8	0.3	$+1.5 \\ -0.3$	$+1.4 \\ -0.3$	$+0.3 \\ -0.1$	$^{+0.3}_{-0.0}$		
ggH 2J med	4.6	12	2.6	$+1.1 \\ -1.1$	$+1.0 \\ -1.0$	$^{+0.3}_{-0.2}$	$^{+0.4}_{-0.3}$		
ggH 2J high	2.3	1.3	0.6	$^{+0.8}_{-0.6}$	$+0.7 \\ -0.6$	$+0.2 \\ -0.1$	$^{+0.3}_{-0.0}$		
ggH 2J BSM	1.0	2.7	2.8	$+1.1 \\ -1.2$	$^{+0.8}_{-1.0}$	$^{+0.3}_{-0.3}$	$+0.5 \\ -0.4$		
ggH VBF-like	1.5	0	0.0	$+0.5 \\ -0.0$	$^{+0.5}_{-0.0}$	$^{+0.2}_{-0.0}$	$^{+0.1}_{-0.0}$		
qqH 2J-like	2.1	2.6	1.3	$^{+0.6}_{-0.5}$	$^{+0.4}_{-0.4}$	$^{+0.4}_{-0.3}$	$+0.1 \\ -0.1$		
qqH 3J-like	0.8	0	0.0	$+0.7 \\ -0.0$	$^{+0.6}_{-0.0}$	$^{+0.2}_{-0.0}$	$^{+0.0}_{-0.0}$		
qqH other	8.2	0	0.0	$+1.7 \\ -0.0$	$+1.6 \\ -0.0$	$+0.6 \\ -0.0$	$+0.2 \\ -0.0$		

STXS: results

Signal parameter	Cross se	ction (fb)	σ/σ	Uncertainty on $\sigma/\sigma_{\rm SM}$					
Signal parameter	SM pred.	Measured	$\sigma/\sigma_{\rm SM}$	Total	Stat.	Exp.	Theo.		
ggH 0J	61	72	1.18	$+0.20 \\ -0.20$	$+0.18 \\ -0.18$	$^{+0.10}_{-0.08}$	$+0.06 \\ -0.05$		
ggH 1J low	15	21	1.3	$+0.6 \\ -0.5$	$+0.6 \\ -0.5$	$+0.2 \\ -0.2$	$^{+0.2}_{-0.1}$		
ggH 1J med	10	7.6	0.7	$+0.4 \\ -0.4$	$^{+0.4}_{-0.4}$	$+0.1 \\ -0.1$	$^{+0.1}_{-0.0}$		
ggH 1J high	1.7	2.9	1.7	$+1.0 \\ -0.7$	$^{+0.8}_{-0.6}$	$+0.3 \\ -0.2$	$^{+0.2}_{-0.1}$		
ggH 2J	11	8.4	0.8	$+0.6 \\ -0.5$	$+0.5 \\ -0.5$	$+0.1 \\ -0.1$	$+0.3 \\ -0.1$		
ggH BSM	1.3	2.9	2.2	$^{+0.8}_{-0.8}$	$^{+0.6}_{-0.6}$	$+0.4 \\ -0.3$	$^{+0.3}_{-0.2}$		
qqH	11	9.1	0.8	$^{+0.4}_{-0.3}$	$^{+0.4}_{-0.3}$	$+0.2 \\ -0.1$	$^{+0.1}_{-0.0}$		

STXS: comparison with ATLAS

46

STXS categorisation

- ggH categorisation:
 - Use diphoton BDT to reject background in the categories targeting each ggH stage 1 bin
 - The category definition is a two-step process:
 - first a target bin is assigned based on the reconstructed pT(H) and nJets
 - then the diphoton BDT boundaries are chosen independently for each bin
 - Limit the maximum number of categories for each bin to three, third category only required for the high stats ggH 0J bin
- VBF categorisation:
 - Six categories are constructed in total:
 - 1. A single category for the VBF BSM bin, with pT of the leading jet > 200 GeV
 - 2. Two categories for each pT(Hjj) bin in the "VBF-like" region require the VBF cuts of mjj > 400 GeV and $\Delta \eta$ > 2.8 then split at the pT(Hjj) = 25 GeV boundary
 - 3. A single category for the VBF rest bin, with 120 < mjj < 400 GeV
 - Optimized cuts on both the dijet and diphoton BDTs in each category

STXS: systematics

- Jet energy scale is very important for this analysis
- Previously, was implemented as multiple nuisances representing migrations between Untagged and VBF tags, and within VBF tags
- "conservative" approach inherited from Run 1
- However jets are now also used in the ggH phase space
 - Single nuisance is standard implementation → try this first checked that these are not highly constrained in the fit
- The other leading experimental systematic is the photon IDMVA
- Theory systematics: do not include uncertainty on the cross-section itself this differentiates the STXS measurement from a signal strength the effect on the analysis efficiency × acceptance is however included

STXS: correlation matrix

CMS Supplementary H→γγ

77.4 fb⁻¹ (13 TeV)

Essential for theory reinterpretations

STXS: correlation matrix

CMS	Supplementary	Н⊸γγ
-----	---------------	------

77.4 fb⁻¹ (13 TeV)

Essential for theory reinterpretations

ttH: signal model

ttH: objects definition

52

- Jets are reconstructed using anti-k_T algorithm with a radius parameter of 0.4.
 - Jets are selected by requiring tight jetID and $p_T > 25$ GeV in $|\eta| < 2.4$.
- b-jets are tagged using the centrally defined DeepCSV algorithm,
 - medium working point is chosen to quantify the b-jet multiplicity.
- Electrons are identified using the ID provided by e/gamma POG with $p_T > 10$ GeV and $|\eta| < 2.5$, muons are required to have $p_T > 10$ GeV and $|\eta| < 2.4$.
- All leptons are required not to overlap with photons by imposing a $\Delta R > 0.2$. Jets are also required not to overlap with photons and leptons by imposing $\Delta R > 0.4$.
- All scale factors are applied following the POG recommendations.

ttH: yields table

		SM 125 GeV Higgs boson expected signal											Bkg	
Event categories	Total	ttH	bbH	tHq	tHW	ggH	VBF	WH lep	ZH lep	WH had	ZH had	σ_{eff}	FWHM	(GeV^{-1})
ttH Hadronic 0	2.4	86.7 %	< 0.05 %	5.0 %	2.8 %	2.6 %	0.1 %	0.1 %	0.1 %	0.7 %	1.8 %	1.66	1.61	0.2
ttH Hadronic 1	3.3	79.2 %	0.2 %	5.6 %	2.4 %	7.5 %	0.2 %	0.4 %	0.1 %	1.0 %	3.3 %	1.79	1.62	1.1
ttH Hadronic 2	5.2	62.9 %	0.2 %	5.9 %	1.9 %	18.4 %	1.3 %	0.6 %	0.4 %	3.2 %	5.1 %	2.02	1.72	3.8
ttH Leptonic 0	2.7	88.5 %	<0.05 %	5.2 %	4.4 %	0.2 %	<0.05 %	1.2 %	0.2 %	< 0.05 %	0.1 %	1.79	1.66	0.3
ttH Leptonic 1	1.2	87.6 %	<0.05 %	5.5 %	1.8 %	2.0 %	0.2 %	1.9 %	0.8 %	< 0.05 %	0.2 %	1.88	1.59	0.3
Total	14.8	77.2 %	0.1 %	5.5 %	2.6 %	8.7 %	0.5 %	0.7 %	0.3 %	1.5 %	2.8 %	1.84	1.65	5.6

Table 2: The expected number of signal events per category and the percentage breakdown per production mode in that category. The σ_{eff} , computed as the smallest interval containing 68.3% of the invariant mass distribution, and FWHM, computed as the width of the distribution at half of its highest point divided by 2.35 are also shown as an estimate of the $m_{\gamma\gamma}$ resolution in that category. The expected number of background events per GeV around 125 GeV is also listed.

ttH:

ttH: systematics

- The dominant theoretical uncertainties:
 - · QCD scale: 9%
 - PDF: 5%
 - Strong coupling constant: 3%
 - $H \rightarrow \gamma \gamma$ branching fraction: 2%
 - ggH contamination: 2%
- The dominant experimental uncertainties
 - Photon identification: 6%
 - Jet energy scale resolution: 4%
 - Shape of the b discriminant: 3%
 - Integrated luminosity: 2.3%