Data recorded: Wed May 23 21:03:32 2018 CEST Run/Event: 316766 / 2911811990 Lumi section: 2092 Orbit/Crossing: 548313212 / 2608

Cnrs

→ ZZ→μ⁺μ⁻μ⁺μ

deux infinis

ÉCOLE POLYTECHNIQUE UNIVERSITÉ PARIS-SACLAY

$H \rightarrow ZZ \rightarrow 4$ leptons with full Run II data at CMS

μ

jet

μt

Christophe Ochando (LLR/CNRS/Ecole Polytechnique) on behalf of the CMS Collaboration

(b-)jet

pp→tīH

jet

May 22th 2019 IRN Terascale, Annecy

μ

> $H \rightarrow ZZ(*) \rightarrow 4$ leptons (e, μ):

- Clean experimental signature, large S/B, excellent resolution, full reconstruction of final states
- Allows wide variety of precise measurements: mass, width, couplings (SM-like, BSM, on-shell, off-shell), CP-violation studies, high mass searches, …

- 4 primary isolated leptons (e, μ)
- Narrow resonance (1-2% resolution) over ~flat background
- **BUT:** low signal yields (~7 events / fb)

- Low pT leptons: major experimental challenge
 - Reconstruction/Identification
 - Background rejection & control

H→ZZ→4 leptons Run II: Recent highlights

HIG-16-041, JHEP 1711 (2017) 047

- Inclusive and differential fiducial cross-sections
- 2016 data (35.9 fb⁻¹)
- Most precise LHC measurement of m_H (1.7 per-mille!)
- HIG-18-002, Accepted by PRD:
 - on-shell/off-shell properties.
 - Combination of 2011 to 2017 data
 - Most precise LHC constraints on $\Gamma_{\rm H}$.

Full Run II Analysis Strategy

This talk: measurements will full Run II dataset (2016+2017+2018): 137.1 fb-1 (*)

Select events with 4 primary isolated leptons (**) \succ Main Backgrounds:

- Muons (electrons) down to 5 (7) GeV
- 40<m₇₁<120 GeV, 12<m₇₂<120 GeV
- m₇₇>70 GeV

Extensive usage of Matrix-Element Method (MEM)

- MEM-based kinematic discriminants
 - Separation of Higgs vs background
 - Separation of various Higgs production modes

Measurements:

- Couplings
- Simplified Template Cross-Sections (STXS)
- **Differential cross-sections**

(*) Full analysis of 2018 data + re-categorization of 2017 (HIG-18-001) and 2016 (JHEP 1711 (2017) 047) public results

- Irreducible (qq/gg \rightarrow ZZ) from simulation
- Reducible (Z+jets, ttbar, ...) "Z+X": from data

Simplified Template Cross-Section (STXS), Stage 1.1

(*) https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGFiducialAndSTXS#Stage_1_1

Experimental Categorization (1)

Experimental Categorization (2)

- Second, further split for STXS measurement (22 categories in total)
 - Events split according to mjj, pT(H), N_{-jets}, etc...

Results: m₄₁ distribution (inclusive)

We've come a long way since the discovery...

Expected and Observed events in 118 < m4I < 130 GeV

gg→H	VBF	₩Н	ZH	ttH	bbH	tqH	Total Signal	qq→ZZ	gg→ZZ	Z+X	Total expected	Observed
195,1	17,1	4,9	4,9	2,1	2,1	0,3	226,5	82,4	7,1	36,5	352,6	356

Results: m₄₁ distribution (22 categories)

Expected and Observed number of events in 118 < m4l < 130 GeV range, for each of the 22 categories for STXS measurement

Signal Extraction

Signal extraction in each category: 22 x 3 (4e, 4mu, 2e2mu) 2D fit, m4l vs MEM-based Kinematic Discriminant

$$\mathcal{L}_{2D}(m_{4\ell}, \mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}}) = \mathcal{L}(m_{4\ell})\mathcal{L}(\mathcal{D}_{\mathrm{bkg}}^{\mathrm{kin}}|m_{4\ell}).$$

 D_{bka}^{VH+dec} : VH vs ggH, SM bkg

(decay + production info)

 D_{bkg}^{kin} : **ggH vs qqZZ** (decay information only) for *un-tagged*, *VBF-1 jet*, *VH-leptonic*, *ttH cat*.

Measurement: Signal strength & STXS Stage 1.

STXS Stage 1.1

Signal Strength

11

Measurement: Fiducial Cross-Sections

- Unfold cross-section to truth-level fiducial volume, closely matches reconstruction level (see back-up)
- Experimentally: maximum likelihood fit of the signal and background parameterizations to the observed 4I mass distribution in every bin to measure.
 - No categories used,
 - m_H=125.09 GeV assumed

Fiducial Cross-sections (inclusive)

Fiducial Cross-sections (differential)

- Unfolding performed by including response matrix in the likelihood
- Comparisons to predictions from POWHEG and NNLOPS

First CMS Higgs results with Full Run II statistics.

- > Several measurements reported:
 - Overall signal strength: $\mu = \sigma / \sigma_{SM} = 0.94^{+0.11}_{-0.10}$ (systematics and statistics at the same level) = $0.94^{+0.07}_{-0.07}$ (stat.) $^{+0.08}_{-0.07}$ (syst.)
 - Vector boson and Fermions couplings modifiers:

 $\mu_{\text{ggH, t\bar{t}H,b\bar{b}H,tH}} = 0.96^{+0.11}_{-0.12} \text{ and } \mu_{\text{VBF,VH}} = 0.83^{+0.29}_{-0.35}.$

- First measurement of STXS Stage 1.1
- Fiducial (total) cross-section:
 - In perfect agreement with SM predictions:

 $\sigma_{\rm fid.} = 2.73^{+0.30}_{-0.29} = 2.73^{+0.23}_{-0.22} (\text{stat.})^{+0.24}_{-0.19} (\text{syst.}) \text{ fb}$ $\sigma_{\rm fid.}^{\rm SM} = 2.76 \pm 0.14 \text{ fb.}$

And differential cross-section: pT(H), Y(H), N(jets), pT (leading jet)

Harvest of Run II is just starting:

- Paper in the pipeline with improved reconstruction and calibrations and reduced systematics
- + other measurements to come: mass, width, tensor structure

BACK UP SLIDES

Reminder: Higgs production & decay at colliders

HZZ4I: Selection

ZZ CANDIDATE SELECTION

Z candidate = any OS-SF pair that satisfy $12 < m_{ll(\gamma)} < 120 \text{ GeV}$

Build all possible ZZ candidates, define Z₁ candidate with $m_{ll(\gamma)}$ closest to the PDG m(Z) mass

- m_{Z1} > 40 GeV, p_T(l1) > 20 GeV, p_T(l2) > 10 GeV
- > ΔR >0.02 between each of the four leptons
- m_{II} > 4 GeV for OS pairs (regardless of flavour)
- ▶ reject 4µ and 4e candidates where the alternate pairing Z_aZ_b satisfies $|m(Z_a)-m(Z)| < |m(Z_1)-m(Z)|$ and $m(Z_b) < 12$ GeV

If more than one ZZ candidate is left, choose the one of highest \mathcal{D}_{bkg}^{kin} If \mathcal{D}_{bkg}^{kin} is the same, take the one with Z₁ mass closest to m(Z)

FSR RECOVERY

FSR recovery steps

- Per-lepton FSR recovery
-) γ preselection: $p_T > 2 \text{ GeV}, |\eta| < 2.4$
- photon relPFIso < 1.8</p>
- Electron SC veto by PF reference
- \blacktriangleright Associate γ to the closest loose lepton
- ▶ $\Delta R(\gamma, l) < 0.5$ and $\Delta R(\gamma, l) / E_{T,\gamma^2} < 0.012$, choose photon with lowest $\Delta R(\gamma, l) / E_{T,\gamma^2}$
- Remove selected FSRs from lepton isolation cone for all loose leptons

17

- The VBF-2jet-tagged category requires exactly four leptons. In addition, there must be either two or three jets of which at most one is b tagged, or four or more jets none of which are b-tagged. Finally, D_{2jet} > 0.5 is required.
- The VH-hadronic-tagged category requires exactly four leptons. In addition, there
 must be two or three jets, or four or more jets none of which are b-tagged. D_{VH} ≡
 max(D_{ZH}, D_{WH}) > 0.5 is required.
- The VH-leptonic-tagged category requires no more than three jets and no b-tagged jets in the event, and exactly one additional lepton or one additional pair of OS, same-flavor leptons. This category also includes events with no jets and at least one additional lepton.
- The tt
 The tt
 H-hadronic-tagged category requires at least four jets of which at least one is b tagged and zero additional leptons.
- The tTH-leptonic-tagged category requires at least one additional lepton.
- The VBF-1jet-tagged category requires exactly four leptons, exactly one jet and *D*_{1jet} > 0.5.
- Untagged category consists of the remaining selected events.

Event				Signal				Total	Ba	ickground		Total	Observed
category	ggH	VBF	WH	ZH	ttH	bbH	tqH	signal	$q\bar{q} \to ZZ$	$gg \rightarrow ZZ$	Z + X	expected	
ggH-0j/pT[0,10]	25.3	0.08	0.02	0.02	0.00	0.14	0.00	25.6	26.5	0.97	1.19	54.2	61
ggH-0j/pT[10-200]	86.8	1.69	0.54	0.86	0.00	0.90	0.00	90.8	35.4	3.79	15.5	145	153
ggH-1j/pT[0-60]	26.2	1.43	0.50	0.45	0.01	0.43	0.01	29.1	10.3	1.19	5.54	46.1	40
ggH-1j/pT[60-120]	12.4	1.24	0.45	0.47	0.01	0.10	0.01	14.6	2.76	0.16	3.21	20.8	17
ggH-1j/pT[120-200]	3.31	0.62	0.17	0.26	0.00	0.02	0.00	4.38	0.38	0.00	0.52	5.28	6
ggH-2j/pT[0-60]	3.68	0.29	0.14	0.14	0.06	0.09	0.02	4.42	0.97	0.15	2.07	7.60	9
ggH-2j/pT[60-120]	5.17	0.54	0.22	0.22	0.09	0.04	0.02	6.30	0.84	0.07	1.86	9.06	12
ggH-2j/pT[120-200]	2.90	0.40	0.15	0.17	0.07	0.01	0.02	3.71	0.26	0.00	0.40	4.37	5
ggH/pT>200	2.72	0.65	0.21	0.24	0.06	0.01	0.02	3.91	0.16	0.00	0.21	4.28	2
ggH-2j/mJJ>350	0.82	0.17	0.06	0.05	0.04	0.01	0.01	1.16	0.16	0.02	0.65	1.98	3
VBF-1j	14.2	2.94	0.20	0.18	0.00	0.12	0.01	17.6	2.37	0.43	1.05	21.5	20
VBF-2j/mJJ[350,700]	0.80	1.11	0.01	0.01	0.00	0.01	0.00	1.95	0.08	0.02	0.04	2.09	2
VBF-2j/mJJ>700	0.43	1.80	0.00	0.00	0.00	0.00	0.00	2.25	0.02	0.01	0.03	2.31	2
VBF-3j/mJJ>350	2.43	2.15	0.06	0.07	0.02	0.03	0.05	4.81	0.24	0.06	0.96	6.07	6
VBF-2j/pT>200	0.42	0.76	0.01	0.01	0.01	0.00	0.01	1.22	0.01	0.00	0.03	1.26	0
VBF-rest	2.40	0.87	0.11	0.10	0.03	0.04	0.01	3.56	0.34	0.06	0.74	4.70	2
VH-lep/pTV[0-150]	0.24	0.04	0.71	0.25	0.08	0.02	0.02	1.37	0.82	0.14	0.40	2.72	5
VH-lep/pTV>150	0.02	0.01	0.21	0.08	0.04	0.00	0.01	0.36	0.01	0.00	0.02	0.40	0
VH-had/mJJ[60-120]	4.11	0.25	1.01	1.20	0.11	0.07	0.02	6.77	0.70	0.05	1.36	8.89	8
VH-rest	0.56	0.04	0.08	0.07	0.03	0.00	0.00	0.77	0.08	0.00	0.15	1.01	1
ttH-had	0.19	0.05	0.03	0.06	0.82	0.01	0.03	1.19	0.01	0.00	0.45	1.66	2
ttH-lep	0.02	0.00	0.02	0.02	0.60	0.00	0.03	0.70	0.03	0.00	0.12	0.85	0

Signal Purity

Figure 5: Signal relative purity of the 22 event sub-categories in terms of the STXS Stage 1.1 Bins in a $118 < m_{4\ell} < 130$ GeV mass window.

Fiducial phase space & Acceptance

Requirements for the $\mathrm{H} ightarrow 4\ell$ fiducial phase space					
Lepton kinematics and isolation					
Leading lepton $p_{\rm T}$	$p_{\rm T} > 20 { m GeV}$				
Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10 \mathrm{GeV}$				
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m ~GeV}$				
Pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$				
Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 \cdot p_{\mathrm{T}}$				
Event topology					
Existence of at least two same-flavor OS lepton pairs, where leptons	satisfy criteria above				
Inv. mass of the Z_1 candidate	$40{ m GeV} < m_{Z_1} < 120{ m GeV}$				
Inv. mass of the Z_2 candidate	$12 { m GeV} < m_{Z_2} < 120 { m GeV}$				
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$				
Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-} > 4 \mathrm{GeV}$				
Inv. mass of the selected four leptons	$105\mathrm{GeV} < m_{4\ell} < 140\mathrm{GeV}$				

Signal process	$\mathcal{A}_{ ext{fid}}$	ϵ	$f_{\sf nonfid}$	$(1+f_{\text{nonfid}})\epsilon$	
Inc	n modes				
$gg { ightarrow} H$ (powheg)	0.402 ± 0.001	0.592 ± 0.002	0.053 ± 0.001	0.624 ± 0.002	
VBF (POWHEG)	0.444 ± 0.002	0.605 ± 0.003	0.043 ± 0.001	0.631 ± 0.003	
WH (POWHEG+MINLO)	0.325 ± 0.002	0.588 ± 0.003	0.075 ± 0.002	0.632 ± 0.004	
ZH (POWHEG+MINLO)	0.340 ± 0.003	0.594 ± 0.005	0.081 ± 0.004	0.643 ± 0.006	
ttH (powheg)	0.314 ± 0.003	0.585 ± 0.006	0.169 ± 0.006	0.684 ± 0.007	

Systematic Uncertainties

9 Systematic uncertainties

The experimental uncertainties common to all final states include the uncertainty in the integrated luminosity (from 2.3% to 2.5%, depending on the year of data taking) and the uncertainty in the lepton identification and reconstruction efficiency (ranging from 2.5 to 16.1% on the overall event yield for the 4μ and 4e channels, respectively), which affect both signal and background. Experimental uncertainties in the reducible background estimation, described

The ggH cross section uncertainty scheme has been updated to the one proposed in Ref. [24]. This uncertainty scheme includes 9 nuisance parameters accounting for uncertainties in the cross section prediction for exclusive jet bins (including the migration between the 0 and 1-jet, as well as between the 1 and \geq 2-jet bins), the 2 jet and \geq 3 jet VBF phase spaces, different $p_T(H)$ regions, and the uncertainty in the $p_T(H)$ distribution due to missing higher order finite top quark mass corrections.

All experimental and theoretical uncertainties which account for possible migration of signal and background events between categories are included. The main theoretical sources of uncertainty on the event categorization include the renormalization and the factorization scales, the choice of the PDF set, and the modeling of hadronization and the underlying event. For example, uncertainty on the renormalization and factorization scale for dominant ggH production mode ranges from 0.1 to 6% and for VBF production mode from 0.1 to 12% depending on the event categories with 2 jets, from 1 to 20% in event categories with 1 jet, and from 1 to 15% in event categories with no jets.

The main experimental sources of category migration come from the imprecise knowledge of the jet energy scale and resolution, b-tagging efficiency, and light quarks (u, d, s, c) and gluon jet mistag rate. For example, uncertainty on the jet energy scale ranges from 2 to 50% for VBF production mode in event categories with jets and the uncertainty on b-tagging efficiency ranges from 1 to 2% for tTH production and 1 to 10% for ggH production in the tTH-hadronic-tagged category.

In the combination of the three data taking periods, the theoretical uncertainties as well as the experimental ones related to leptons or jets are treated as correlated while all other ones from experimental sources are taken as uncorrelated.

Signal Strength

	Expected	Observed
$\mu_{ m inclusive}$	$1.00^{+0.08}_{-0.08}(\text{stat.})^{+0.09}_{-0.07}(\text{syst.})$	$0.94^{+0.07}_{-0.07}(\text{stat.})^{+0.08}_{-0.07}(\text{syst.})$
$\mu_{ m ggH}$	$1.00^{+0.10}_{-0.10}(\text{stat.})^{+0.09}_{-0.07}(\text{syst.})$	$0.97^{+0.09}_{-0.09}(\text{stat.})^{+0.09}_{-0.07}(\text{syst.})$
μ_{VBF}	$1.00^{+0.54}_{-0.45}(\text{stat.})^{+0.27}_{-0.14}(\text{syst.})$	$0.64^{+0.45}_{-0.36}(\text{stat.})^{+0.16}_{-0.09}(\text{syst.})$
$\mu_{ m VH}$	$1.00^{+0.91}_{-0.72}(\text{stat.})^{+0.29}_{-0.16}(\text{syst.})$	$1.15^{+0.89}_{-0.72}(\text{stat.})^{+0.26}_{-0.16}(\text{syst.})$
$\mu_{t\bar{t}H,tH}$	$1.00^{+1.16}_{-0.73}(\text{stat.})^{+0.19}_{-0.04}(\text{syst.})$	$0.13^{+0.92}_{-0.13}(\text{stat.})^{+0.11}_{-0.00}(\text{syst.})$

Differential cross-sections (1/2)

Increasing luminosity of Run II now allows precision measurement on differential cross-section.

N(jets)

• Combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ measurements (also boosted $H \rightarrow$ bb for high pT)

pT(H)

2016 (~36 fb-1)

Measurement largely dominated by statistics ! Great improvements to come

Y(H)

HIG-18-001

Table 4: Expected and observed signal-strength modifiers for combined 2016 and 2017 data.

	Inclusive	$\mu_{ m ggH,bar{b}H}$	$\mu_{\rm VBF}$	$\mu_{ m VHhad}$	$\mu_{\rm VHlep}$	$\mu_{t\bar{t}H,tqH}$
Expected	$1.00 \pm 0.10(\text{stat})^{+0.08}_{-0.06}(\text{exp. syst})^{+0.07}_{-0.05}(\text{th. syst})$	$1.00^{+0.17}_{-0.16}$	$1.00\substack{+0.86\\-0.67}$	$1.00^{+2.39}_{-1.00}$	$1.00^{+2.30}_{-1.00}$	$1.00^{+1.80}_{-1.00}$
Observed	$1.06 \pm 0.10(\text{stat})^{+0.08}_{-0.06}(\text{exp. syst})^{+0.07}_{-0.05}(\text{th. syst})$	$1.15\substack{+0.18\\-0.16}$	$0.69^{+0.75}_{-0.57}$	$0.00\substack{+1.16 \\ -0.00}$	$1.25^{+2.46}_{-1.25}$	$0.00\substack{+0.53\\-0.00}$

Differential cross-sections (2/2)

- Higgs pT spectrum very sensitive to modifications of the couplings
 - Can give information on couplings not possible via inclusive measurements

Couplings to b, c & top quarks in k-framework

Results are dependent on the assumptions about Branching Ratios (here, assume BR scaling with couplings)

Higgs width & anomalous couplings (1)

Higgs boson width (4.1 MeV @ 125 GeV) not directly measureable due to limitations from detector resolution (~1 GeV)

Can be probed by analysing on-shell & off-shell distributions:

Anomalous couplings enhance off-shell yield, change m4l & other kinematics

Higgs width & anomalous couplings (2)

Luminosity vs Results

CMS analysis: HVV couplings

$$\begin{split} A(HVV) &\sim \left[a_{1} - e^{i\phi_{\Lambda Q}} \frac{q_{H}^{2}}{\Lambda_{Q}^{2}} - e^{i\phi_{\Lambda 1}^{VV'}} \frac{(\kappa_{1}q_{V1}^{2} + \kappa_{2}q_{V2}^{2})}{\Lambda_{1}^{2}} \right] m_{V}^{2} \epsilon_{V1}^{*} \epsilon_{V2}^{*} + a_{2}f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_{3}f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \end{split}$$

→ Any anomalous coupling can be described with an effective on-shell cross sectional fraction and a phase defined for 2f2f' decay:

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j} \qquad \phi_{ai} = \tan^{-1}(a_i/a_1)$$

- → $f_{\Lambda Q}$ observable only from off-shell. Others can be measured from either on-shell or off-shell.
- → Formalisms used by ATLAS are equivalent with different ways of parameterizing AC couplings

CMS results: $f_{ai} \cos(\phi_{ai})$

Parameter	Observed	Expected
$f_{a3}\cos{(\phi_{a3})}$	$-0.0001^{+0.0005}_{-0.0015}$ [-0.16, 0.09]	$0.0000^{+0.0019}_{-0.0019}$ [-0.082, 0.082]
$f_{a2}\cos\left(\phi_{a2}\right)$	$0.0004^{+0.0026}_{-0.0007} \ [-0.006, 0.025]$	$0.0000^{+0.0030}_{-0.0023}$ [-0.021, 0.035]
$f_{\Lambda 1} \cos{(\phi_{\Lambda 1})}$	$0.0000^{+0.0035}_{-0.0008} \ [-0.21, 0.09]$	$0.0000^{+0.0012}_{-0.0006}$ [-0.059, 0.032]
$f_{\Lambda 1}^{Z\gamma}\cos\left(\phi_{\Lambda 1}^{Z\gamma} ight)$	$0.000^{+0.355}_{-0.009}$ [-0.17, 0.61]	$0.000^{+0.009}_{-0.010}$ [-0.10, 0.34]

On-shell results

On-shell +	off-shell	combination
------------	-----------	-------------

Parameter	Observed	Expected
$f_{a3}\cos\left(\phi_{a3}\right)$	$0.0000^{+0.0005}_{-0.0011} \left[-0.0067, 0.0050 ight]$	$0.0000^{+0.0014}_{-0.0014} \ [-0.0098, 0.0098]$
$f_{a2}\cos\left(\phi_{a2}\right)$	$0.0005^{+0.0025}_{-0.0008}$ [-0.0029, 0.0129]	$0.0000^{+0.0011}_{-0.0017}$ [-0.0100, 0.0117]
$f_{\Lambda 1} \cos{(\phi_{\Lambda 1})}$	$0.0001^{+0.0020}_{-0.0010} \left[-0.0150, 0.0501 ight]$	$0.0000^{+0.0010}_{-0.0010} \ [-0.0152, 0.0158]$

Different HVV couplings

Parameter	Unconstrained Parameter	Observed	Expected
$\Gamma_{\rm H}$ (MeV)	$f_{a3}\cos(\phi_{a3})$	$2.4^{+2.7}_{-1.8}$ [0.02, 8.38]	$4.1^{+5.2}_{-4.1}$ [0.0, 13.9]
$\Gamma_{\rm H}$ (MeV)	$f_{a2}\cos(\phi_{a2})$	$2.5^{+2.9}_{-1.8}$ [0.02, 8.76]	$4.1^{+5.2}_{-4.1}$ [0.0, 13.9]
$\Gamma_{\rm H}$ (MeV)	$f_{\Lambda 1} \cos{(\phi_{\Lambda 1})}$	$2.4^{+2.5}_{-1.6}$ [0.06, 7.84]	$4.1^{+5.2}_{-4.1}$ [0.0, 13.9]

Measurements

Imperial College

London

_ Simplified Template Cross-Sections

YR4 Section III.2

Similarities to fiducial cross-sections:

- measure cross-sections in truth-level phase space regions.
- Separate out regions to :
 - Maximize sensitivity to SM or BSM effects
 - Minimize sensitivity to theory uncert., models

Points of Difference:

- Split production modes/final states
- Partitions the entire phase space into non-overlapping regions
- No strong matching between truth and reco-level selections: compromise between
 - "complicated" reco selections (BDTs, etc.)
 - simple and well-defined theory selections
- \Rightarrow Point of contact between theory and experiment

Complementary to diff. measurements: fully exclusive split along many variables

- No need for statistical correlations
- Coarser binning

Simplified Template Cross-Section

- Results can then be re-interpreted with new theories
- Kinematic regions isolate BSM effects
- And provide coherent framework for combination of channels & experiments
- Simplified Template Cross-section (STXS) framework aims to minimise measurements' dependence on theory

35

Fiducial & Simplified template cross-section

Fiducial and Simplified template cross-section

Fiducial cross-section

- Optimized for maximal theoretical independence
- Fiducial in Higgs decay
- Smallest acceptance corrections
- Simple signal cuts
- "Exact" fiducial volume
- Targeted object definitions
- Agnostic to production mode
- Can be done with single and differential distributions
- Only feasible in HZZ,Hyy,HWW
- Combination not straightforward

Simplified templates cross section

- Target maximum sensitivity, while keeping theoretical dependence as small as possible
- Cross section split by production mode
- Cross section divided in exclusive regions of phase space (bins)
- Larger acceptance corrections
- Abstracted fiducial volumes
- Inclusive in Higgs decay
- Allows complex event selections, categorisation

Common abstracted object definitions Can be done in all decay modes

Explicitly designed for combination

Tools for discovery and measurements (2)

Signal Extraction via Matrix Element Methods (MEM):

Event-by-event discriminator built upon Matrix Elements. Combined with reco level info.

- MEM weights used in ttH \rightarrow multileptons (see later) as input to BDT.
- Matrix Element Likelihood Analysis $(H \rightarrow ZZ \rightarrow 4I)$:
 - Simplified MEM. No integration, no transfer function
 - ME from JHUGen or MCFM
 - Several discriminants (see later) built to separate:
 - ✤ gg vs qq→4 leptons
 - ✤ ggH vs VBF or VH or ttH
 - ✤ Different J^{PC} hypothesis, …

 $\mathcal{D}_{bkg}^{kin} = \left[1 + \frac{\mathcal{P}_{bkg}^{qq}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})}{\mathcal{P}_{sig}^{gg}(\vec{\Omega}^{H \to 4\ell} | m_{4\ell})} \right]^{-1}$

Signal strengths

Most immediate quantity: ratio of observed "rate" with respect to the expected results

Production: ratio of cross-sections

Decay: ratio of branching fractions

Many systematic uncertainties and theory assumptions cancel out in the ratio

- · Easy to interpret
- Deviation from SM immediately visible
- Can decouple production and decay mechanisms
- Only effects modifying the absolute normalisation are visible, no sensitivity to shapes

No immediate relation with the width, each signal strength is independent from each other, but possible reinterpretation in the k-framework

Signal strengths, **µ**

$$\mu_i = \frac{\sigma_i}{\sigma_i^{\rm SM}} \qquad \mu^f = \frac{{\rm BR}^j}{{\rm BR}_{\rm SM}^f}.$$

$$\mu_i^f \equiv \frac{\sigma_i \cdot BR^f}{(\sigma_i \cdot BR^f)_{SM}} = \mu_i \times \mu^f$$