
TURTLE: a C library for an optimistic
stepping through a topography

V. Niess1

IRN Terascale

21th May 2019

Annecy-le-vieux, France

(pdf) (html)

1 Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France

1 / 16

https://niess.pages.in2p3.fr/slides/turtle/irn/slides.pdf
https://niess.pages.in2p3.fr/slides/turtle/irn/#1

The problematic
Render a detailed topography (~1-10 m) over large scales (~10-100 km), for the
navigation of Monte Carlo particles with any interaction length.

Some use cases

The backward Monte Carlo transport of atmospheric μ, e.g. for
muography computations.

A single μ can have an energy varying from MeV to TeV.

The coupled transport, for -astronomy, e.g. for the GRAND
experiment.

In both cases, efficiently navigating through large scale topography data is a
key issue for the Monte Carlo performances.

A dedicated library was developped for this purpose: TURTLE

− τντ ν

2 / 16

http://grand.cnrs.fr/
https://niess.github.io/turtle-pages

Topography data
Let us consider Topography data as a regular 2D grid of the ground elevation,
stored over 2 bytes (int16_t) per node.

Regular in geographic coordinates, not in the lab frame.

Figure 1: examples of topography data. Left: LIDAR of the Chaîne des Puys area,
France (2.5 m resolution, 40 MB). Right: SRTMGL1 (v3) tiles of the Tian Shan
mountains, China (30 m resolution, 1 GB).

3 / 16

Terrain modelling

For graphic rendering, topography data are typically modelled with a
tesselated surface, using triangular facets.

When visualizing large terrains, the memory usage becomes
excessive. A selective downsampling (Level of Details) is applied.

4 / 16

The ray tracing problem
A Monte Carlo geometry is represented by a hierarchy of volumes and/or
surfaces.

Navigating through the geometry requires intersecting with a line (all)
the bounding surfaces of the current volume, and of its contained
children. This is a ray tracing problem.

When the number of surfaces is large, e.g. in the case of a terrain, a brute
force linear scan is inefficient CPU wise: .

Optimisation techniques are applied. For example a Bounding Volume
Hierarchy (BVH), consisting in sorting the volumes as a binary tree
according to bounding boxes: .

Such techniques however significantly increase the memory usage,
w.r.t. to the topography data, which is problematic for large terrains
(~109 nodes, or more).

O(N)

O(ln N)

5 / 16

But particles ain't no rays
In a HEP Monte Carlo, particles don't follow straight lines, e.g. they scatter.
This is modelled by discrete straight steps where the particle direction
changes.

If the number of MC steps is large, tracing through the full terrain at each
step is inefficient.

Figure 2: illustrative example of a MC trajectory. Each dot corresponds to
the end (start) of a MC step.

6 / 16

Divide and rule
A solution, used e.g. in medical Physics, is to pave the terrain with a
Polyhedral mesh, i.e. with sub-volumes. For non interacting particles, it allows
to traverse the terrain in steps.

A simplified local geometry can be used. Inside a polyhedron, the ray
tracing problem is limited to a few neighbouring nodes.

Figure 3: example of tetrahedral mesh (prisms) built on a terrain
Tessellation. The original triangular facet is the textured one.

O()N
−−√

7 / 16

The optimistic ray tracing algorithm
An alternative approach is to proceed by trials and errors, starting from
an initial guess of the distance to the topography, along the flight
direction.

A simple initial guess is provided by the vertical distance to the ground,
.

This leads to the following optimistic algorithm:

1. Perform a tentative step of length , along the
flight direction.

2. If the end volume differs from the start one, draw a line between both
positions and lookup the topography crossing point in between, using
a binary search.

 and are tunning parameters, to fit depending on the terrain slopes
and the desired accuracy.

= | − |sg z0 zg

max(α| − |,)z0 zg smin

α smin

8 / 16

Figure 4: map of the rock
thickness (km) along various
lines of sight. Left: Col de Ceyssat
view (France). Bottom: Ulastai
view (China).

Benchmark: tracing the rock thickness

9 / 16

Accuracy of the optimistic tracing
Using the optimistic tracing, the average error (7-9 μm) on the rock thickness is
well below the elevation accuracy of topography data (~10 cm).

Figure 5: error on the rock thickness (m) for the Col de Ceyssat view, using the
tuned optimistic algorithm. Left: map of the error. Right: distribution over all
lines of sight.

10 / 16

Impact of the terrain modelling
The terrain modelling can induce large differences on the rock thickness, of
the order of the spacing between grid nodes.

Using triangular facets or a bilinear model, the average difference on the
rock thickness is of 0.1 m (1 m) for the Col de Ceyssat (Ulastai) view.

Figure 6: differences on the rock thickness (m) for the Col de Ceyssat view, using
triangular facets or a bilinear model. Left: map of the difference. Right:
distribution over all lines of sight.

11 / 16

The TURTLE library
Open source (C99) available from GitHub under GNU LGPL-3.0 license.

Depends only on the C89 standard library and (optionally) on libpng
and libtiff for specific data formats.

Object Oriented API allowing to manipulate some topography maps
(turtle_map) as well as globals elevation models (turtle_stack).

The turtle_ecef (turtle_projection) functions provide coordinates
transforms between geocentric and geodetic (cartographic) coordinates.

The turtle_stepper object allows to navigate through topography layers
using geocentric coordinates. The optimistic algorithm is used under the
hood.

Zero memory cost : the geometry is built on the fly from the initial
(int16_t) elevation data, using a bilinear interpolation.

arXiv:1904.03435, submitted to CPC

12 / 16

https://niess.github.io/turtle-pages
https://github.com/niess/turtle
https://niess.github.io/turtle-docs/#HEAD
https://niess.github.io/turtle-docs/#HEAD/group/map
https://niess.github.io/turtle-docs/#HEAD/group/stack
https://niess.github.io/turtle-docs/#HEAD/group/ecef
https://niess.github.io/turtle-docs/#HEAD/group/projection
https://niess.github.io/turtle-docs/#HEAD/group/stepper
https://arxiv.org/abs/1904.03435

TURTLE performances: ray tracing
Using the optimistic tracing, the cpu time for computing the rock thickness
depends strongly on the direction of observation. The average value over
all lines if sight is of ~280 μs.

Figure 7: map of the cpu time (μs) required for computing the rock thickness, as
seen from Ulastai, with the TURTLE library.

13 / 16

https://niess.github.io/turtle-pages

Comparison of performances: ray tracing
The ray tracing performances of TURTLE have been compared to a
tetrahedral grid approach and a BVH one, using the CGAL library.

For a pure ray tracing problem, the BVH should perform the best, provided
that there is enough memory (256 GB for 109 nodes).

Figure 8: cpu time (μs) as function of the number of topography data nodes for
TURTLE, the tetrahedral grid and the BVH. Left: average time per line of sight.
Right: average time per iteration.

14 / 16

https://niess.github.io/turtle-pages
https://www.cgal.org/

TURTLE performances: Monte Carlo
The atmospheric μ flux was computed using PUMAS and TURTLE, for
various locations and lines of sight.

The average slow down due to the topography is only a factor of ~2

Figure 9: slow-down due to the topography resolution when computing the
atmospheric μ flux seen from the Ulastai site.

15 / 16

https://niess.github.io/turtle-pages
https://niess.github.io/pumas-pages
https://niess.github.io/turtle-pages

Summary
TURTLE is a small (<100 kB) C library providing utilities for efficiently
navigating through large sets of topography data, in a Monte Carlo.

TURTLE implements the optimistic algorithm.

It does not guarantee an exact resolution of the terrain model.
However the typical errors are well below the accuracy of topography
measurements.

It is straight forward to represent the topography surface by a higher
level model than triangular facets.

TURTLE implements a bilinear interpolation on the fly, providing
extra accuracy with no extra memory cost.

The traversal time does not depend on the number of data nodes.
Only on the travelled distance and the height w.r.t. the topography.

TURTLE has a preliminary binding for Geant4 and an incomplete one for
Python.

16 / 16

https://niess.github.io/turtle-pages
https://niess.github.io/turtle-pages
https://niess.github.io/turtle-pages
https://niess.github.io/turtle-pages
https://github.com/niess/turtle-geant4
https://github.com/niess/turtle-python

