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 For many precision measurements the 
systematic uncertainty is (much) larger 
than the statistical

 E.g. the top quark mass:

172.26 ± 0.07 (stat+JSF) ± 0.61 (syst) GeV

the statistical uncertainty is 8 times smaller 
than the systematic uncertainty

 In an effort to reduce the total uncertainty, 
we can afford to cut some data

Techniques are needed to reduce the systematic 
uncertainty
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Concept behind the ReSyst technique

 Goal: reject those events that make the systematic uncertainty large

 How?

 Systematic uncertainties are typically assessed by varying experimental or theoretical 
(modelling) parameters in the MC simulation

 Define for each event a quantifier related to its impact on the total systematic 
uncertainty → inspired by the “delete one event” Jackknife resampling method

 Correlate this non-observable quantifier (determined on simulation) with observable 
event properties to identify regions of the phase space (classes of events) which 
result in a large systematic uncertainty
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Conceptual demonstration of the ReSyst technique

 Event generation and selection

 Simplified top quark mass estimator

 Proof-of-concept

 Cross-checks

 Extensions/other ideas

arXiv:1809.07700
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Event generation, selection and reweighting

 10M POWHEG v2 pp→tt→bbqq events at 13 TeV with mt = 172.5 GeV

 PYTHIA 8.2 + CUETP8ME2T4 for parton shower, hadronization and decay

 Parameterized default CMS detector simulation using DELPHES v3.4.2pre03 
(“DeepCSV M” b-tagging efficiencies from appendix JINST 13 (2018) P05011)

 Event selection:
 Muon: pT > 25 GeV, ||<2.4

 ≥ 4 jets: pT> 30 GeV, ||<2.4
of which ≥ 2 b-tagged jets

→ selection efficiency of ~15%

 No other tt decays or background

 Events reweighted → other mt masses
(reweight both top and antitop)
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Simplified event-by-event top quark mass estimator:
probability density functions and likelihood 

with fCM~20%

 The three leading pT jets are used to reconstruct the “hadronic top” 

→distribution of the mass mjjj (in range 130 to 200 GeV) is sensitive to mt 
(selection efficiency ~1.2%)

 Construct a likelihood (based on pdf's for correctly & wrongly matched events)

 Pdf's are constructed by fitting Gaussian (3rd order polynomial function) for CM (NM)
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Simplified event-by-event top quark mass estimator:
probability density functions and likelihood 

with fCM~20%

 The three leading pT jets are used to reconstruct the “hadronic top” 

→distribution of the mass mjjj (in range 130 to 200 GeV) is sensitive to mt 
(selection efficiency ~1.2%)

 Construct a likelihood (based on pdf's for correctly & wrongly matched events)

 Minimize negative of logarithm of likelihood to obtain estimation of mt

mt = 172.80 ± 0.16 (stat.) GeV
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Systematic effects considered for the proof-of-concept

 b-tagging efficiency and mistagging probability: The (mis)tagging efficiencies are 
varied by ± 2% for b jets, ± 5% c jets and ± 15% for light-quark jets, independently. 

 Jet energy scale: The jet four-momenta are varied by ± 1% before the event selection.

 Factorization and renormalization scales: The Q2 scales at the matrix element level 
are independently varied by a factor 2 and 0.5 → envelope for the 6 physical variations.

 Matching between the matrix element and parton shower (hdamp): Radiated quarks 
and gluons are damped by a certain factor that includes hdamp, which was tuned to 

(1.581+0.658
-0.585) mt, and is varied by an amount corresponding to the uncertainties.

 Top quark pT: The top quark pT in data is softer than in MC → (anti)top quark pT 
spectra are reweighted. 

 B quark fragmentation: pT(B hadron) / pT (b jet) is varied by ± 2.5%.

The estimation is repeated and the shift in estimated top quark mass is taken as 
the size of the systematic effect.  
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Simplified top quark mass estimator:
systematic uncertainties

 mt = 172.80 ± 0.16 (stat.) +0.96 –0.97 (syst.) GeV

 Size of systematic uncertainties is in the same ball-park as for the “1D approach”
in lepton+jets ideogram method documented in Eur. Phys. J. C (2018) 78

 b quark fragmentation is larger here but different approaches to assess
Note that for the CMS “1D approach” the “b JEC flavor” has an additional systematic 
effect of -0.31 GeV on top of JEC uncertainty in table

CMS 1D
0.01
0.83
0.02

+0.03
-0.06
0.09
1.10
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Identifying classes of events with a large systematic impact
 For each event

quantifier Ri:

 Smaller value of Ri → systematic uncertainty reduced by removing event “i”

Keep these events

Total systematic impact
without event “i”

Total systematic impact
= fixed for all events

 Correlate Ri with event observables and 
keep events with higher <Ri> values

 Here: HT > 220 GeV
→ 31% of the formerly selected events 
are now rejected
→ fCM goes from 20% to 23% 
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Impact of the additional selection requirements

 After the additional selection requirements, the uncertainties are reduced:
before: mt = 172.80 ± 0.16 (stat.) +0.96 –0.97 (syst.) GeV
after: mt = 172.53 ± 0.18 (stat.) + 0.67 – 0.59 (syst.) GeV
→ technique seems to work conceptually (traded stat. precision for 30% lower syst. unc.)

 Note: the effect of these requirements will not be the same in a real analysis because the 
estimator is too simple in this study (statistical uncertainty is 2 times larger compared to 
the CMS ideogram method)

before after
 Remake pdf's and repeat the estimation
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Cross-check: apply cut on observable not correlated with Ri

 Cross-check: apply a requirement on an observable for which <Ri> shows no trend

 Rmax(jet, muon) >3

 The method behaves as expected

 Expected: no effect on systematic uncertainty

 Observed: 36% of the events rejected and no effect 
on systematic uncertainty:

Mt = 173.04 ± 0.28 (stat.) +0.81 –0.94 (syst.) GeV
to be compared with:
mt = 172.80 ± 0.16 (stat.) +0.96 –0.97 (syst.) GeV Keep these

events
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Summary
 ReSyst allows to quantify the systematic impact for each event: quantifier “Ri”

 The quantifier “Ri” can be correlated to observables to identify classes of events 
inducing a large effect, which could then be used to:
→ reject certain classes of events;
→ identify observables to be used to profile uncertainties in a likelihood fit:
relevant for precision measurements and searches (constrain syst. in situ)!

 Limitation: Ri is only defined when using weight-based systematics, i.e. when 
the “nominal” and “systematic” event have a one-to-one connection

 The technique could be extended to also include the statistical impact of 1 event

 Paper is under review by JHEP

 Test technique for a realistic case (e.g. top quark mass measurement at LHC)

The same event “i” 
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Pdf's after HT requirement
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Why the HT cut works

 The effect of varying the JES and b quark fragmentation is largest at small HT values:
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Food for thought:
Should we remove events to reduce the total uncertainty?

 Are we biasing the (top quark mass) measurement by removing events?

→ in principle the top quark mass should be the same in the entire sample, 
i.e. there should be no 'extrapolation' uncertainties

→ check the correlation between the reconstructed observables and the generated top 
quark mass distribution 

→ check the generated top quark mass distribution before/after the selection 
requirements

→ avoid to remove events blindly, but try to understand why certain classes of events 
have a large impact (is it a feature of the modelling in the MC simulation or is it real 
physics?) 

 Potentially we introduce new systematic uncertainties due to additional selection criteria
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