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Introduction

I modern Machine Learning (Deep Learning) successfully applied
to LHC physics such as jet tagging1

⇒ improved discrimination power compared to multi-variate
analyses of high-level observables

I what about uncertainties?

⇒ Bayesian neural networks provide framework for capturing
uncertainties

1G. Kasieczka et al, The Machine Learning Landscape of Top Taggers
(2019) [arXiv:1902.09914 [hep-ph]]

https://arxiv.org/abs/1902.09914


Neural networks

I neural networks can approximate arbitrary functions
I minimizing loss function ⇔ maximum likelihood fit
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Bayesian neural networks

I replace maximum likelihood fit with Bayesian treatment
⇒ distributions over weights
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Top tagging

I MC data of pp-collisions at 14TeV
I signal: boosted top jets: t → qq′b → fat jet
I background: QCD dijets
I input: low level observables (jet images or 4-momenta of

constituents)

G. Kasieczka et al., The Machine Learning Landscape of Top Taggers
(2019) [arXiv:1902.09914 [hep-ph]]



Performance

=⇒ Bayesian neural networks reach the same performance



Statistical uncertainties

I uncertainty from finite training data
I train network several times with different training size
I histogram of σpred for 200k top jets (test sample)



Statistical uncertainties

classification: constrained output interval [0, 1]

I correlation between µpred and σpred

I full picture in [µpred, σpred]-plane

=⇒ BNNs capture uncertainty from finite training data!



Comparison to frequentist approach

I train deterministic network N times on statistically
independent data
⇒ N trained neural networks

I calculating µpred and σpred from N predictions



Systematic uncertainties

I introducing systematic uncertainty in test sample:

I jet energy smearing (→ paper)

I pile up (technically not sys. unc.)

I sys. uncertainty not included in training sample

I pile up : several interactions per bunch crossing



Pile up: Impact on performance

1/εQCD for reference efficiency εt = 0.3



Pile up: LoLa



Pile up: CNN

=⇒ no increased standard deviation, but correlation curve gives us
hint about instability!



Summary

Bayesian neural networks:

I reach same performance

I capture uncertainty from limited data (statistical uncertainty)

I give us additional information about stability (pile up)

I frequentist interpretation possible

I require more time for training and testing compared to single
deterministic tagger



Architectures:

I CNN2 (Convolutional neural network): Image based

I LoLa (Lorentz Layer)3 4-momenta based

2S. Macaluso and D. Shih, JHEP 1810, 121 (2018)
doi:10.1007/JHEP10(2018)121 [arXiv:1803.00107 [hep-ph]].

3Anja Butter et al, SciPost Phys. 5, 028 (2018), DOI:
10.21468/SciPostPhys.5.3.028, [ arXiv:1707.08966 [hep-ph]]



Dataset and pile up

dataset:
I 14tev, hadronic tops, qcd diets with pythia

I Delphes Atlas card for detector simulation

I anti-kT 0.8 jets in pT range [550,650]

I |ηjet| < 2

I available: here

pile up events:
I min-bias events generated with pythia
I added to signal and background jets and reclustered



Statistical uncertainty



Bayesian neural networks

I Bayes theorem:

p(ω|C ) =
p(C |ω) p(ω)

p(C )
⇒ p(c∗|C ) =

∫
dω p(c∗|ω) p(ω|C )

I variational interference: p(ω|C ) ≈ qθ(ω) (Gauss)

−→ minimize KL(qθ(ω), p(ω|C ))

I approximate via Monte Carlo:

µpred =
1
N

N∑
i=1

p(c∗|ωi ) σ2
pred =

1
N

N∑
i=1

(p(c∗|ωi )− µpred)2

ωi ∈ qθ(ω)
N: number of Monte Carlo samples
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