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Neural networks � the meta-math-tool for everything?

Example: "Fast Cosmic Web Simulations with GAN networks" (internally
a Nash equilibrium type minimax optimization problem)

[Rodriguez et al., ETH Zürich, arXiv:1801.09070, orders of magnitude
speed improvement in 2D slices]
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Learn the tool: play with GAN in your browser!
https://poloclub.github.io/ganlab

[Kahng et al., Georgia Tech/Google brain, arXiv:1809.01587]
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https://arxiv.org/abs/1809.01587


Example: Neural networks meet holography in "AdS/CFT as a
deep Boltzmann machine" (Boltzmann net is Ising model like net)

data ' boundary scalar �eld theory generating functional, hidden
network weights ' bulk spacetime metric (geometry), the deepest
layer ' the black-hole horizon

[Hashimoto, Osaka University, arXiv:1903.04951]
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https://arxiv.org/abs/1903.04951


Now this work

[MM, DeepE�ciency, arXiv:1809.06101]

A new way implementing detector �ducial e�ciency
corrections in higher phase space dimensions, towards
optimal measurements
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Talk 15 min, so accurate details you can �nd in the
Tensor�ow framework based code at

<github.com/mieskolainen>, MIT open source

Try it out, make it better
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https://www.tensorflow.org/
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Basic HEP Measurement

Cross section (di�erential)

σ =
N − 〈B〉
E × A× L

- Events: N, number of measured events after trigger & selection cuts

- Background: 〈B〉, expected number of background events

- Integrated luminosity: L, van der Meer scan calibration + online tech.

- Acceptance (Geometric): A→ 1⇔ �ducial measurement,
A→ 0, highly non-�ducial (extrapolating)

- E�ciency: E ≡ number of selected / number of generated within
�ducial phase space ∈ [0, 1]
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In this work, we reformulate the detector e�ciency term E

evaluation as a problem of learning a probabilistic function

E : RD → [0, 1]

Fully di�erential �nal state event

kinematics in, probability out.
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Before DeepE�ciency
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Histograms used in Bills of Mortality (1662)
by John Graunt

Figure: Histograms
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So I expect histogram bin-by-bin `counting e�ciency
corrections' of measurements have been used for
centuries.

This is obvious and quite solid1, but only if your
observable is truly low-dimensional. However, in
HEP, observables (di�erential distributions) are
constructed as a function of multidimensional �nal
state kinematics.

1Your problem may extend to include heavy unfolding/deconvolution type of
corrections of detector resolution/bias, algorithmically since 1970's.
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Main Problem and

Solution
The usual way of doing e�ciency corrections is to rely on the
MC event generator + detector simulation (GEANT). We use
GEANT too, but minimize (even get rid of) the event
generator dependence by using fully di�erential �nal state
kinematics.

MC theory dependence: Bias2 can (will) propagate from the event
generator (dynamics) if no fully di�erential treatment, whenever the
process ' scattering amplitudes + rest cannot be well simulated. For
example: transverse momentum low-pt parametrizations, system high-pt

ISR shower (MC resummation) uncertainties, QCD color coherence,
non-perturbative spin polarization ∼ decay angle (θ, ϕ) dependence e.g.
in QCD spectroscopy...

2
Usually handled by dumping into systematics by varying the event generators (even if they use in

essence the same model...).
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What people have done to handle this
problem?

- Multidimensional histograms, bin over di�erential kinematics
(e.g. system mass, rapidity, transverse momentum), approx
D = 3 practical maximum

- Histograms + Spherical Harmonic Expansions3 on top of
them � for the angular dependence

- These do not scale to higher dimensions, exponential
statistics requirement for histogram hypercells � think about
exponential number of binary combinations = 2D as a function
of D, then change binary (2) to some large integer (# bins)
approximating real line, much worse

3You �nd this expansion algorithm in my GRANIITTI engine,
<github.com/mieskolainen/graniitti>
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https://github.com/mieskolainen/graniitti
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DeepE�ciency
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Universal Approximator

So, we assume that a wide and deep enough fully connected
feed-forward network will work as a universal function
approximator and that modern neural network optimization
tools can optimize4 the network, based on (stochastic)
gradient search, with the underlying technique being Reverse
Mode Automatic Di�erentiation (backpropagation as a special
case)

Original RMAD: Seppo Linnainmaa, MSc thesis, Helsinki, 1970

For the universal approximator theorems:

Wikipedia, Universal approximation theorem

See also the classic Stone-Weierstrass theorem

4Di�cult non-convex optimization problem
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https://en.wikipedia.org/wiki/Seppo_Linnainmaa
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Stone-Weierstrass_theorem


Figure: Types of neural nets, [Fjodor van Veen], we use the top right ↑
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http://www.asimovinstitute.org/neural-network-zoo/


Network for Probabilities

To train for probabilities, we need to train (minimize) using
cross entropy cost 5

L = − 1

|S|
∑
i∈S

[Ri ln Ei + (1− Ri) ln(1− Ei)],

where Ri is simulated selection (0=lost,1=selected) for the
i -th event in the sample S and Ei the network output. We
found hyperbolic tangent to work �ne as the activation
function with 5 hidden layers and ∼ 100 neurons per layer.
Also, we use sigmoid f (x) = 1/(1 + e−x) as the �nal layer
function to get output values in [0, 1].

5Basically, this is an extension of Logistic Regression, both well known in
machine learning.
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How to use

Arbitrary e�ciency corrected distributions (1D, 2D, pro�le...)
of observables O can be constructed with6.

dN

dO
= hO({~p})� [E({~p})]−1,

where hO is a probability distribution estimator operator, such
as a (bin width ∆O normalized) histogram. The point-wise
operator � is de�ned as an integral (sum) over the event
sample, event weight E({~p}) from the trained network.

In ROOT ∼ for ( i over data event sample ) {
weight_i = network(kinematics_i);
histObsA->Fill( observableA(kinematics_i), 1.0/weight_i );
histObsB->Fill( observableB(kinematics_i), 1.0/weight_i ); ...

}

6Inverse weighting known as Horvitz-Thompson estimator in statistics.
Efron's bootstrap re-sampling may be used for statistical uncertainties.

18 / 28

https://en.wikipedia.org/wiki/Horvitz%E2%80%93Thompson_estimator
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Figure: Non-linear detector visible in 6D-network event weights E (= w)
versus pion track pseudorapidity η. Setup described in the paper.
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Figure: 6D-Network output weight E (= w) statistics example.
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Figure: [GENERATED, RECONSTRUCTED, INVERTED]: 6D-Network
inversion in terms of single pion track (η, φ). Stripes propagate from the
inactive regimes of the inner most silicon detector layer. Train sample
size < 10 million events. Quite solid inversion of sharp discontinuities.
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Figure: 6D-Network inversion of low-mass K+K− exclusive QCD
di�raction events with χ2 / bin = 1.2. Train sample size < 10 million
events. Fiducial domain: kaon pt > 0.15 GeV, |η| < 0.9.
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Figure: 6D-Network inversion of low-mass π+π− exclusive QCD
di�raction events with χ2 / bin = 0.8. Train sample size < 10 million
events. Seemingly easy case, di�erentially �at observable within selected
�ducial domain: pion pt > 0.15 GeV, |η| < 0.9.
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POSITIVE FEATURES

♠ Maximally MC event generator independent e�ciency corrections due
to high dimensional inversion ⇒ can use even pure phase space generator
(to illustrate the point, in practise not smart/possible always)
♠ Can take highly complicated experimental correlations into account,
such as complex trigger etc.
♠ Arbitrary observables can be e�ciency corrected

NEGATIVE FEATURES

� Practical performance is limited, of course, by the MC sample sizes,
network structure etc.
� Pure acceptance holes inside the �ducial domain need to taken into
account with an additional algorithm, cannot divide null by 0

UNIVERSAL

� Bias-Variance tradeo� theorem; no free lunch (in general)

Bias: over/undershooting the e�ciency correction di�erentially

Variance: anomalous �uctuations in the e�ciency correction weights give
�uctuations in observables
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After DeepE�ciency
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Unsolved Neural Theory
(Riemannian geometry, statistical mechanics, information
theory, topology, new math needed?)

- There is no really deep (useful) theory of generic deep neural
networks � thus, the optimality claims here are formal, of
course � relying on the universal approximator lemma &
`neural engineering'

- Depth vs width (series vs parallel), type of non-linearity,
architecture (feed-forward, convolution, recursive loops ...),
gradient descent methods

- How to use Vapnik-Chervonenkis dimension: `the theoretical
capacity of a statistical learning algorithm' in practise?
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Unsolved Algorithms for Theory
and Experiment
- Detector bias/resolution unfolding in higher dimensions
RD → RD (quite di�cult), related to super-resolution etc.

- E�cient high dimensional Monte Carlo integration and event
generation, beyond VEGAS, multichanneling and
hand-engineered Jacobians. For work towards solving this, see:
Bendavid, arXiv:1707.00028; better in Müller et al,
arXiv:1808.03856

- Neural Scattering Amplitudes (think about GAN-like
generator networks). Use for probing theory landscapes
beyond Lagrangian descriptions and perturbation theory �
more powerful re-visit of the 1960's S-matrix era?
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Conclusions

A new e�ciency inversion algorithm for precision �ducial
measurements using fully di�erential (multidimensional) �nal
state kinematics

⇒ can be used also with likelihood analyses such as the matrix
element method, (fast) simulations, replacing other e�ciency
parametrizations

Full code at <github.com/mieskolainen>
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