

Laboratoire de Physique Subatomique et de Cosmologie

The effective action for gauge bosons

Selim Touati LPSC Grenoble

IRN Terascale Annecy, May 21st 2019

J. Quevillon, C. Smith and S. Touati, Phys.Rev. D99 (2019) no.1, 013003

Overview

- \clubsuit Introduction: The Euler-Heisenberg Lagrangian
- \clubsuit Photon effective interactions
- ✤ Gluon effective interactions
- \bullet SU(N) effective interactions
- ✤ Mixed effective interactions
- ✤ Conclusion

Overview

 \clubsuit Introduction: The Euler-Heisenberg Lagrangian

- Photon effective interactions
- Gluon effective interactions
- \bullet SU(N) effective interactions
- Mixed effective interactions
- Conclusion

The Euler-Heisenberg Lagrangian

✤ Maxwell Theory: Maxwell's No interactions Classical Superposition equations in between Lagrangian principle electromagnetic waves vacuum $\mathcal{L}_{Maxwell} = -\frac{1}{4}F_{\mu u}F^{\mu u}$ Dirac's Theory: Electrodynamics 2 waves can interact e⁻e⁺ pairs becomes **non-linear** indirectly created in the even in vacuum vacuum

« Consequences of Dirac's Theory of the Positron », W. Heisenberg & H. Euler (1936)

Estimation of non-linear interactions among photons induced by an electron loop in a constant electromagnetic field

Effective Lagrangian:

 $\mathcal{F} = \frac{1}{\Lambda} F_{\mu\nu} F^{\mu\nu} = \frac{1}{2} (\mathbf{B}^2 - \mathbf{E}^2)$

$$\mathcal{L}_{\rm EH} = -\mathcal{F} + \frac{8}{45} \left(\frac{\alpha^2}{m_e^4}\right) \mathcal{F}^2 + \frac{14}{45} \left(\frac{\alpha^2}{m_e^4}\right) \mathcal{G}^2$$

$$Maxwell + Corrections$$

and $\mathcal{G} = \frac{1}{8} \epsilon^{\mu\nu\lambda\rho} F_{\mu\nu} F^{\lambda\rho} = \mathbf{E} \cdot \mathbf{B}$

The Euler-Heisenberg Lagrangian

♦ In modern language \rightarrow archetype of an Effective Field Theory (EFT)

Purpose of the paper:

- Generalize the Euler-Heisenberg result for photons to the gauge bosons of an arbitrary gauge group
- Effective interactions induced by loops of heavy fields in generic representations and of spin 0, $\frac{1}{2}$ or 1

- \clubsuit Introduction: The Euler-Heisenberg Lagrangian
- \clubsuit Photon effective interactions
- Gluon effective interactions
- \bullet SU(N) effective interactions
- Mixed effective interactions
- Conclusion

 \clubsuit QED generating functional:

$$Z_{QED}\left[J^{\mu},\eta,\overline{\eta}\right] = \int DA^{\mu}D\psi D\overline{\psi} \,\exp i\int dx (\mathcal{L}_{QED} + \overline{\eta}\psi + \overline{\psi}\eta + J^{\mu}A_{\mu}) \,\,,$$

✤ Integrate out the fermion field

$$Z_{QED} \left[J^{\mu}, 0, 0 \right] = \int DA^{\mu} \exp i \int dx \left\{ -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + J^{\mu} A_{\mu} \right\} \times \det(i \not\!\!D - m)$$
$$\equiv \int DA^{\mu} \exp i \int dx (\mathcal{L}_{eff} + J^{\mu} A_{\mu})$$

→ QED effective Lagrangian:
$$\mathcal{L}_{eff} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - iTr \ln(i\not\!\!D - m)$$

Perturbative 1/m expansion:

♦ Most general basis up to $\mathcal{O}(m^{-4})$:

$$\begin{split} \mathfrak{L}_{eff} &= -\frac{1}{4} \left\{ 1 + \alpha_0 \frac{e^2}{4!\pi^2} \right\} F_{\mu\nu} F^{\mu\nu} + \alpha_2 \frac{e^2}{5!\pi^2 m^2} \partial^{\mu} F_{\mu\nu} \partial_{\rho} F^{\rho\nu} + \alpha_4 \frac{e^2}{6!\pi^2 m^4} \partial^{\mu} F_{\mu\nu} \Box \partial_{\rho} F^{\rho\nu} \\ &+ \gamma_{4,1} \frac{e^4}{6!\pi^2 m^4} (F_{\mu\nu} F^{\mu\nu})^2 + \gamma_{4,2} \frac{e^4}{6!\pi^2 m^4} (F_{\mu\nu} \tilde{F}^{\mu\nu})^2 + \mathcal{O}(m^{-6}) \end{split}$$

✤ Matching this effective Lagrangian to QED:

$$\mathcal{A}_{UV}|_{m \to \infty} \stackrel{!}{=} \mathcal{A}_{EFT}$$
 (Wilson Coeffs)

What if a scalar or a vector circulates in the loop?

✤ <u>Scalar case:</u>

Scalar one-loop 1PI amplitudes generating the QED effective action up to dim-8 operators

- ♦ <u>Vector case</u>: Integrating out vectors is far more challenging!
 → Problem: the gauge fixing procedure
- In 't Hooft Feynman gauge: Violates QED Ward identities when photons are off-shell!
 4-photons amplitude matches onto effective operators only for on-shell photons
 → usual procedure to construct the effective action breaks down

• In linear R_ξ gauge:
$$\mathfrak{L}_{gauge-fixing}^{R_{\xi},linear} = -\frac{1}{\xi} |\partial^{\mu}W_{\mu}^{+} + \xi M_{W}\phi^{+}|^{2} \longrightarrow$$
 Explicitly breaks U(1)_{QED}

• <u>In unitary gauge</u>:

 $\mathcal{L}_{gauge-fixing}^{Unitary} = -\frac{1}{2} (D_{\mu}W_{\nu}^{+} - D_{\nu}W_{\nu}^{+}) (D^{\mu}W^{-\nu} - D^{\nu}W^{-\mu}) + ieF^{\mu\nu}W_{\mu}^{+}W_{\nu}^{-} + M_{W}^{2}W_{\mu}^{+}W^{-\mu} \longrightarrow \frac{\text{Matching fails}}{\text{again}}$

• Solution \longrightarrow Use a non-linear gauge F. Boudjema, Phys. Lett. B 187 (1987) 362 $\partial^{\mu} \rightarrow D^{\mu}$

$$\mathfrak{L}_{gauge-fixing}^{non-linear} = -\frac{1}{\xi} |(\partial^{\mu} + i\kappa eA^{\mu})W^{+}_{\mu} + \xi M_{W}\phi^{+}|^{2}$$

Either spin 0, ½ or 1 and electric charge Q circulating in the loop

✤ Effective Lagrangian:

$$\begin{aligned} \mathfrak{L}_{eff} &= -\frac{1}{4} \left\{ 1 + \alpha_0 \frac{e^2}{4!\pi^2} \right\} F_{\mu\nu} F^{\mu\nu} + \alpha_2 \frac{e^2}{5!\pi^2 m^2} \partial^{\mu} F_{\mu\nu} \partial_{\rho} F^{\rho\nu} + \alpha_4 \frac{e^2}{6!\pi^2 m^4} \partial^{\mu} F_{\mu\nu} \Box \partial_{\rho} F^{\rho\nu} \\ &+ \underbrace{\gamma_{4,1}}_{6!\pi^2 m^4} \frac{e^4}{(F_{\mu\nu} F^{\mu\nu})^2} + \underbrace{\gamma_{4,2}}_{6!\pi^2 m^4} \frac{e^4}{(F_{\mu\nu} \tilde{F}^{\mu\nu})^2} + \mathcal{O}(m^{-6}) \end{aligned}$$

★ <u>Matching QED at low energy to the EFT for each case</u>:

	$lpha_0$	$lpha_2$	$lpha_4$	$\gamma_{4,1}$	$\gamma_{4,2}$	
Scalar	${1\over 2} D_arepsilon Q^2$	$-rac{1}{8}Q^2$	$rac{3}{56}Q^2$	$rac{7}{32}Q^4$	$rac{1}{32}Q^4$	
Fermion	$2D_{arepsilon}Q^2$	$-Q^2$	$\frac{9}{14}Q^2$	$rac{1}{2}Q^4$	$rac{7}{8}Q^4$	Euler-Heisenberg
Vector	$-\frac{21D_\varepsilon+2}{2}Q^2$	$\frac{37}{8}Q^2$	$-\frac{159}{56}Q^2$	$\frac{261}{32}Q^4$	$\frac{243}{32}Q^4$	

- ✤ Introduction: The Euler-Heisenberg Lagrangian
- Photon effective interactions
- ✤ Gluon effective interactions
- \bullet SU(N) effective interactions
- Mixed effective interactions
- Conclusion

♦ Construct the EFT by integrating out a heavy fermion:

 \succ Non-abelian nature of QCD \rightarrow basis quite different from the QED case

$$D_{\rho}G^{a}_{\mu\nu} = (\partial_{\rho}\delta^{ac} + gf^{abc}G^{b}_{\rho})G^{c}_{\mu\nu}$$

> It blurs the relationship between **number of gluon fields** and **inverse mass dimension**

- ▶ 3-gluons amplitude forbidden kinematically → necessarily off-shell
- \succ 3-gluons and 4-gluons divergences renormalize the same operator

✤ Effective Lagrangian:

$$\begin{split} \mathfrak{L}_{eff}^{(0+2)} &= -\frac{1}{4} \left\{ 1 + \alpha_0 \frac{g_S^2}{4!\pi^2} \right\} G_{\mu\nu}^a G^{a,\mu\nu} \\ &+ \alpha_2 \frac{g_S^2}{5!\pi^2 m^2} D^\nu G_{\nu\mu}^a D_\rho G^{a,\rho\mu} + \alpha_4 \frac{g_S^2}{6!\pi^2 m^4} D^\nu G_{\nu\mu}^a D^2 D_\rho G^{a,\rho\mu} \end{split}$$

✤ Effective Lagrangian:

$$\begin{split} \mathfrak{L}_{eff}^{(0+2)} &= -\frac{1}{4} \left\{ 1 + \alpha_0 \frac{g_S^2}{4!\pi^2} \right\} G_{\mu\nu}^a G^{a,\mu\nu} \\ &+ \alpha_2 \frac{g_S^2}{5!\pi^2 m^2} D^\nu G_{\nu\mu}^a D_\rho G^{a,\rho\mu} + \alpha_4 \frac{g_S^2}{6!\pi^2 m^4} D^\nu G_{\nu\mu}^a D^2 D_\rho G^{a,\rho\mu} \\ \mathfrak{L}_{eff}^{(3)} &= \beta_2 \frac{g_S^3}{5!\pi^2 m^2} f^{abc} G_{\mu}^{a\,\nu} G_{\nu}^{b\,\rho} G_{\rho}^{c\,\mu} \\ &+ \beta_{4,1} \frac{g_S^3}{6!\pi^2 m^4} f^{abc} G^{a,\mu\nu} D^\alpha G_{\mu\nu}^b D^\beta G_{\alpha\beta}^c + \beta_{4,2} \frac{g_S^3}{6!\pi^2 m^4} f^{abc} G^{a,\mu\nu} D^\alpha G_{\alpha\mu}^b D^\beta G_{\beta\nu}^c \end{split}$$

✤ Effective Lagrangian:

$$\begin{split} \mathfrak{L}_{eff}^{(0+2)} &= -\frac{1}{4} \left\{ 1 + \alpha_0 \frac{g_S^2}{4!\pi^2} \right\} G_{\mu\nu}^a G^{a,\mu\nu} \\ &+ \alpha_2 \frac{g_S^2}{5!\pi^2 m^2} D^\nu G_{\nu\mu}^a D_\rho G^{a,\rho\mu} + \alpha_4 \frac{g_S^2}{6!\pi^2 m^4} D^\nu G_{\nu\mu}^a D^2 D_\rho G^{a,\rho\mu} \\ \mathfrak{L}_{eff}^{(3)} &= \beta_2 \frac{g_S^3}{5!\pi^2 m^2} f^{abc} G_{\mu}^{a\,\nu} G_{\nu}^{b\,\rho} G_{\rho}^{c\,\mu} \\ &+ \beta_{4,1} \frac{g_S^3}{6!\pi^2 m^4} f^{abc} G^{a,\mu\nu} D^\alpha G_{\mu\nu}^b D^\beta G_{\alpha\beta}^c + \beta_{4,2} \frac{g_S^3}{6!\pi^2 m^4} f^{abc} G^{a,\mu\nu} D^\alpha G_{\alpha\mu}^b D^\beta G_{\beta\nu}^c \\ \mathfrak{L}_{eff}^{(4)} &= \gamma_{4,1} \frac{g_S^4}{6!\pi^2 m^4} G_{\mu\nu}^a G^{a,\mu\nu} G_{\rho\sigma}^b G^{b,\rho\sigma} + \gamma_{4,2} \frac{g_S^4}{6!\pi^2 m^4} G_{\mu\nu}^a \tilde{G}^{a,\mu\nu} G_{\rho\sigma}^b \tilde{G}^{b,\rho\sigma} \\ &+ \gamma_{4,3} \frac{g_S^4}{6!\pi^2 m^4} G_{\mu\nu}^a G^{b,\mu\nu} G_{\rho\sigma}^a G^{b,\rho\sigma} + \gamma_{4,4} \frac{g_S^4}{6!\pi^2 m^4} G_{\mu\nu}^a \tilde{G}^{b,\mu\nu} G_{\rho\sigma}^a \tilde{G}^{b,\rho\sigma} \\ &+ \gamma_{4,5} \frac{g_S^4}{6!\pi^2 m^4} f^{abe} f^{cde} G_{\mu\nu}^a G^{c,\mu\nu} G_{\rho\sigma}^b G^{d,\rho\sigma} + \gamma_{4,6} \frac{g_S^4}{6!\pi^2 m^4} f^{abe} f^{cde} G_{\mu\nu}^a \tilde{G}^{c,\mu\nu} G_{\rho\sigma}^b \tilde{G}^{d,\rho\sigma} \end{split}$$

- ♦ For fermions and scalars circulating in the loop → rather straightforward
 → Computation done using the SM and MSSM FeynArts models
 - \rightarrow Quarks or squarks in the fundamental representation as representative particles
- ♦ Vectors in the loop \rightarrow calculation far more challenging!
 - 1. We need a consistent model with a massive vector field in the fundamental representation of QCD
 - 2. Unitary gauge does not work!
- Need to generalize the non-linear gauge to preserve QCD symmetry otherwise 1PI off-shell amplitudes cannot be matched onto gauge invariant operators
- $\blacktriangleright \text{ We used a custom minimal SU(5) GUT model quantized using a non-linear gauge} \\ \mathcal{L}_{gf} = -\frac{1}{\xi} |D^{\mu}X^{k+}_{\mu} i\xi M_{XY}H^{k+}_{X}|^2 \frac{1}{\xi} |D^{\mu}Y^{k+}_{\mu} i\xi M_{XY}H^{k+}_{Y}|^2 + \dots$
- ➤ Non-linear gauge drastically reduce the number of diagrams to compute (4-gluons diagrams: 207 → 84)

✤ <u>Matching the EFT to QCD</u>:

J. Quevillon, C. Smith and S.T, Phys.Rev. D99 (2019) no.1, 013003

		$lpha_0$	$lpha_2$	$lpha_4$	eta_2	$eta_{4,1}$	$eta_{4,2}$
 Off-shell gluons → Some Wilson coefficients 	Scalar	$rac{1}{4}D_{arepsilon}$	$-\frac{1}{16}$	$\frac{3}{112}$	$\frac{1}{48}$	$-\frac{1}{28}$	0
are gauge dependent	Fermion	$D_{arepsilon}$	$-rac{1}{2}$	$\frac{9}{28}$	$-rac{1}{24}$	$\frac{1}{14}$	$-rac{3}{4}$
• For a physical 4-gluons process	Vector	$-\frac{21D_{\varepsilon}+2}{4}$	$\frac{37}{16}$	$-\frac{159}{112}$	$rac{1}{16}$	$-rac{3}{28}$	3
\rightarrow Gauge dependent parts		$\gamma_{4,1}$	$\gamma_{4,2}$	$\gamma_{4,3}$	$\gamma_{4,4}$	$\gamma_{4,5}$	$\gamma_{4,6}$
cancels!	Scalar	$\frac{7}{768}$	$\frac{1}{768}$	$\frac{7}{384}$	$\frac{1}{384}$	$\frac{1}{96}$	$\frac{1}{672}$
Checked for gluon-gluon scattering \checkmark	Fermion	$\frac{1}{48}$	$\frac{7}{192}$	$rac{1}{24}$	$\frac{7}{96}$	$\frac{1}{96}$	$\frac{19}{672}$
	Vector	$\frac{87}{256}$	$\frac{81}{256}$	$\frac{87}{128}$	$\frac{81}{128}$	$-\frac{3}{32}$	$-rac{27}{224}$

- \clubsuit Introduction: The Euler-Heisenberg Lagrangian
- Photon effective interactions
- Gluon effective interactions
- \bullet SU(N) effective interactions
- Mixed effective interactions
- Conclusion

◆ Extend the QCD case to arbitrary representations of other Lie groups

 \bullet Wilson coefficients of the effective operators for SU(N) gauge bosons

J. Quevillon, C. Smith and S.T, Phys.Rev. D99 (2019) no.1, 013003

	$lpha_0$	$lpha_2$	$lpha_4$	eta_2	$eta_{4,1}$	$eta_{4,2}$
Scalar	$rac{1}{2}I_2({f R})D_arepsilon$	$-rac{1}{8}I_2({f R})$	$rac{3}{56}I_2(\mathbf{R})$	$rac{1}{24}I_2({f R})$	$-rac{1}{14}I_2(\mathbf{R})$	0
Fermion	$2I_2(\mathbf{R})D_{arepsilon}$	$-I_2(\mathbf{R})$	$\frac{9}{14}I_2({\bf R})$	$-rac{1}{12}I_2({f R})$	$rac{1}{7}I_2({f R})$	$-rac{3}{2}I_2({f R})$
Vector	$-rac{21D_arepsilon+2}{2}I_2({f R})$	$rac{37}{8}I_2(\mathbf{R})$	$-\frac{159}{56}I_2(\mathbf{R})$	$rac{1}{8}I_2({f R})$	$-rac{3}{14}I_2({f R})$	$6I_2({f R})$
	$\gamma_{4,1}=\gamma_{4,3}/2$	$\gamma_{4,2}=\gamma_{4,4}/2$	$\gamma_{4,5}$	$\gamma_{4,6}$	$\gamma_{4,7}$	$\gamma_{4,8}$
Scalar	$\frac{7}{32}\Lambda({\bf R})$	$\frac{1}{32}\Lambda({\bf R})$	$\frac{1}{48}I_2(\mathbf{R})$	$rac{1}{336}I_2({f R})$	$rac{7}{32}I_4(\mathbf{R})$	$rac{1}{32}I_4({f R})$
Fermion	$\frac{1}{2}\Lambda({\bf R})$	$\frac{7}{8}\Lambda({\bf R})$	$rac{1}{48}I_2({f R})$	$\frac{19}{336}I_2(\mathbf{R})$	$rac{1}{2}I_4({f R})$	$rac{7}{8}I_4(\mathbf{R})$
Vector	$\frac{261}{32}\Lambda({\bf R})$	$\frac{243}{32}\Lambda({\bf R})$	$-rac{3}{16}I_2({f R})$	$-rac{27}{112}I_2(\mathbf{R})$	$\frac{261}{32}I_4(\mathbf{R})$	$\frac{243}{32}I_4(\mathbf{R})$
$ \begin{array}{c} \gamma_{4,1}=\frac{1}{2}\gamma_{4,3}\\ \gamma_{4,2}=\frac{1}{2}\gamma_{4,4} \end{array} \text{ No matter the rep. R or spin in the loop} \end{array} $						

SU(N), SO(N) effective interactions

14

✤ <u>Reduction to SM gauge groups:</u>

15

$$\frac{1}{4}S\operatorname{Tr}(T_{\mathbf{R}}^{a}T_{\mathbf{R}}^{b}T_{\mathbf{R}}^{c}T_{\mathbf{R}}^{d}) = 6I_{4}(\mathbf{R})d^{abcd} + 6\Lambda(\mathbf{R})(\delta^{ab}\delta^{cd} + \delta^{ac}\delta^{bd} + \delta^{ad}\delta^{bc})$$

$$S. Okubo, J. Math. Phys 23 (1982) 8$$

$$SU(2) \text{ and } SU(3), d^{abcd} = 0 \qquad \longrightarrow \qquad \Lambda(\mathbf{R}) = \left(\frac{N(\mathbf{A})I_{2}(\mathbf{R})}{N(\mathbf{R})} - \frac{I_{2}(\mathbf{A})}{6}\right)\frac{I_{2}(\mathbf{R})}{2 + N(\mathbf{A})}$$

\diamond Evolution of $\Lambda(\mathbf{R})$ as a function of the dimension $N(\mathbf{R})$ for SU(2) and SU(3)

For

Overview

- \clubsuit Introduction: The Euler-Heisenberg Lagrangian
- Photon effective interactions
- Gluon effective interactions
- \bullet SU(N) effective interactions
- Mixed effective interactions
- Conclusion

Mixed effective interactions

1PI diagrams:

**

 $\mathcal{L}_{eff}^{(4)}(U(1) \otimes SU(N)) = \alpha_1 \frac{g_1^2 g_n^2}{6! \pi^2 m^4} F_{\mu\nu} F^{\mu\nu} G^a_{\rho\sigma} G^{a,\rho\sigma} + \alpha_2 \frac{g_1^2 g_n^2}{6! \pi^2 m^4} F_{\mu\nu} \tilde{F}^{\mu\nu} G^a_{\rho\sigma} \tilde{G}^{a,\rho\sigma}$ Effective Lagrangian: * $+ \alpha_3 \frac{g_1^2 g_n^2}{6! \pi^2 m^4} F_{\mu\nu} G^{a,\mu\nu} F_{\rho\sigma} G^{a,\rho\sigma} + \alpha_4 \frac{g_1^2 g_n^2}{6! \pi^2 m^4} F_{\mu\nu} \tilde{G}^{a,\mu\nu} F_{\rho\sigma} \tilde{G}^{a,\rho\sigma}$ $+\beta_1 \frac{g_1 g_n^3}{6! \pi^2 m^4} d^{abc} F_{\mu\nu} G^{a,\mu\nu} G^b_{\rho\sigma} G^{c,\rho\sigma} +\beta_2 \frac{g_1 g_n^3}{6! \pi^2 m^4} d^{abc} F_{\mu\nu} \tilde{G}^{a,\mu\nu} G^b_{\rho\sigma} \tilde{G}^{c,\rho\sigma}$ $\mathfrak{L}_{eff}^{(4)}(SU(M) \otimes SU(N)) = \alpha_1 \frac{g_m^2 g_n^2}{6! \pi^2 m^4} W_{\mu\nu}^i W^{i,\mu\nu} G_{\rho\sigma}^a G^{a,\rho\sigma} + \alpha_2 \frac{g_m^2 g_n^2}{6! \pi^2 m^4} W_{\mu\nu}^i \tilde{W}^{i,\mu\nu} G_{\rho\sigma}^a \tilde{G}^{a,\rho\sigma}$ $+ \alpha_3 \frac{g_m^2 g_n^2}{6 l \pi^2 m^4} W_{\mu\nu}^i G^{a,\mu\nu} W_{\rho\sigma}^i G^{a,\rho\sigma} + \alpha_4 \frac{g_m^2 g_n^2}{6 l \pi^2 m^4} W_{\mu\nu}^i \tilde{G}^{a,\mu\nu} W_{\rho\sigma}^i \tilde{G}^{a,\rho\sigma}$ Matching:

J. Quevillon, C. Smith and S.T , Phys.Rev. D99 (2019) no.1, 013003						
	$lpha_1=lpha_3/2$	$\alpha_2 = \alpha_4/2$	eta_1	eta_2		
Scalar	$rac{7}{16}Q(\mathbf{R})^2I_2(\mathbf{R})$	$rac{1}{16}Q(\mathbf{R})^2I_2(\mathbf{R})$	$rac{7}{32}Q(\mathbf{R})I_3(\mathbf{R})$	$rac{1}{32}Q(\mathbf{R})I_3(\mathbf{R})$		
Fermion	$Q(\mathbf{R})^2 I_2(\mathbf{R})$	$rac{7}{4}Q(\mathbf{R})^2I_2(\mathbf{R})$	$rac{1}{2}Q(\mathbf{R})I_3(\mathbf{R})$	$rac{7}{8}Q(\mathbf{R})I_{3}(\mathbf{R})$		
Vector	$rac{261}{16}Q(\mathbf{R})^2I_2(\mathbf{R})$	$rac{243}{16}Q({f R})^2 I_2({f R})$	$rac{261}{32}Q(\mathbf{R})I_3(\mathbf{R})$	$rac{243}{32}Q(\mathbf{R})I_3(\mathbf{R})$		

Conclusion

- \clubsuit Using the diagrammatic approach,
 - Construction of **gauge bosons effective interactions** up to **dimension-8** operators
 - Computation of their Wilson coefficients as induced by loops of heavy particles of spin 0, $\frac{1}{2}$ or 1
- $\clubsuit \underline{Photon EFT}:$
 - <u>Spin 0 and $\frac{1}{2}$ </u> \rightarrow straightforward (recover Euler-Heisenberg result)
 - <u>Spin 1</u>: usual procedure to construct effective action **breaks down**
 - Quantize the SM in the non-linear gauge: matching consistent off-shell
- ✤ Generalization to QCD gluons, SU(N), SO(N), U(1)xSU(N) and SU(N)xSU(M) gauge bosons and heavy particle in arbitrary representation:
 - ➤ Quantization of the minimal SU(5) GUT model using a non-linear gauge
 → It works as expected
- At one-loop, some operators are redundant, no matter the representation or spin of the particle circulating in the loop

Thank you for your attention !