

LHC limits on gluinos and squarks in the minimal Dirac gaugino model.

Humberto Reyes-González LPSC, Grenoble.

Work in collaboration with: G. Chalons, M. Goodsell, S. Kraml and S. Williamson. JHEP 1904 (2019) 113

IRN Terascale, May 20, 2019, Annecy, France.

Introduction.

- In the MSSM gauginos (superpartners of the gauge bosons) are majorana particles described by Weyl fermions.
- To have Dirac gaugino masses, new chiral supermultiplets are added. Suggesting an enriched phenomenology.

Some nice features of Dirac gaugino models:

- Dirac gauginos were originally proposed by Fayet (1978) to allow massive gluinos.
- Increased naturalness: supersoft masses do not lead to large correction of the stop mass.
- Enhanced tree level Higgs mass.

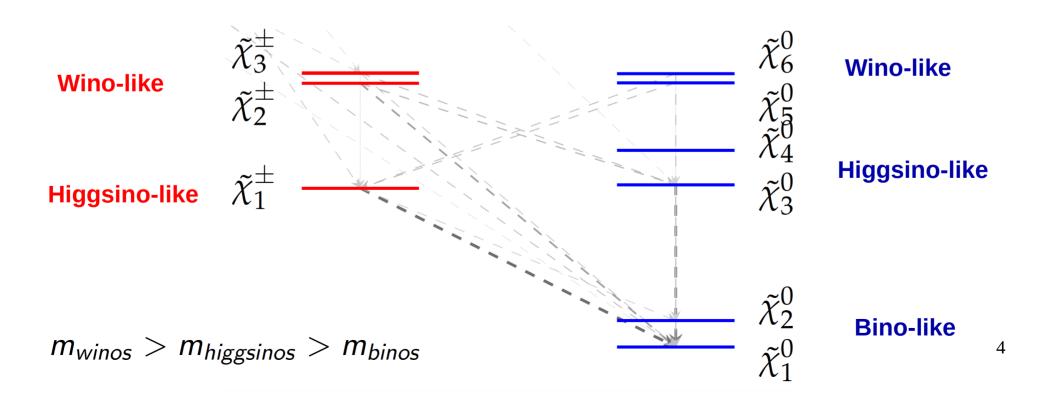
Motivation:

- Most of SUSY searches at the LHC are optimised for the MSSM (Minimal SuperSymmetric Model)
- A difference in limits from LHC results is expected as compared to the MSSM when observing gluino and squark production.

We'll set limits on the gluinos and squarks of a MDGSSM, by reinterpreting LHC results.

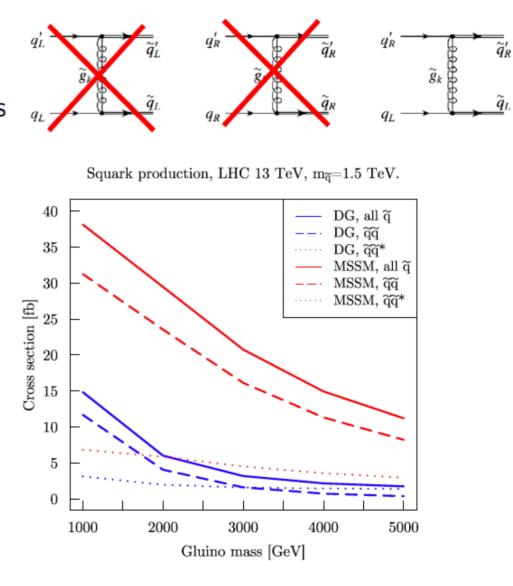
Particle content of the MDGSSM.

Names		Spin 0	Spin 1/2	Spin 1	SU(3), SU(2), U(1) _Y		
Quarks	Q u ^c	$ ilde{Q} = (ilde{u}_L, ilde{d}_L)$			(3 , 2 , 1/6) (3 , 1 , -2/3)		
(imes 3 families)	-	\tilde{d}_L^c	u _L u _L		$(\mathbf{\overline{3}}, 1, -2/3)$ $(\mathbf{\overline{3}}, 1, 1/3)$		
Leptons (×3 families)	L e ^c	$(ilde{ u}_{eL}, ilde{e}_{L})$ $ ilde{e}_{L}^{c}$	$(u_{eL}, e_L) e_L^c$		(1 , 2 , -1/2) (1 , 1 , 1)		
Higgs	Hu	(H_{u}^{+}, H_{u}^{0})	$(\tilde{H}^+_u, \tilde{H}^0_u)$		(1 , 2 , 1/2)	MSSM	
	H _d	(H_d^0, H_d^-)	$(\tilde{H}_d^0, \tilde{H}_d^-)$		(1 , 2 , -1/2)	ž	~
Gluons	$W_{3\alpha}$		$ ilde{ extbf{g}}_lpha$	g	(8 , 1 , 0)		SN
W	$W_{2\alpha}$		$ ilde{W}^{\pm}, ilde{W}^{0}$	W^{\pm}, W^{0}	(1 , 3 , 0)		MDGSSM
В	W_{1lpha}		Ĩ	В	(1 , 1 , 0)		
DG-octet	Og	0 _g	ĝ′		(8 , 1 , 0)		L_
DG-triplet	т	$\{T^0, T^{\pm}\}$	$\{\tilde{W}^{\prime\pm},\tilde{W}^{\prime0}\}$		(1 , 3 , 0)		
DG-singlet	S	S	Β̈́′		(1, 1, 0)		
Chiral and gauge multiplet fields in the model							


Electroweakino sector.

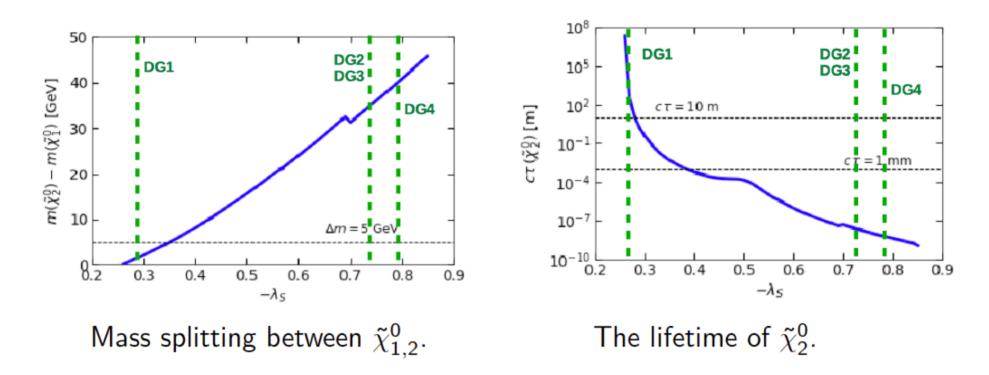
New Higgs superpotential couplings between the singlet and triplet DG-adjoint fermions and the Higgs higgsino fields:

 $W_{\text{Higgs}} = \mu \, \mathbf{H}_{\mathbf{u}} \cdot \mathbf{H}_{\mathbf{d}} + \lambda_{S} \mathbf{S} \, \mathbf{H}_{\mathbf{u}} \cdot \mathbf{H}_{\mathbf{d}} + 2\lambda_{T} \, \mathbf{H}_{\mathbf{d}} \cdot \mathbf{T} \mathbf{H}_{\mathbf{u}}.$


In the MDGGSM, gauginos are purely Dirac, i.e. $M_1=M'_1=M_2=M'_2=0$. m_{1D} and m_{2D} are the bino and wino Dirac masses.

$$\mathcal{L} \supset -\frac{1}{2}M_i\lambda_i\lambda_i + h.c.$$

 $\mathcal{L} \supset -m_{iD}\chi_i\lambda_i + h.c.$


Gluino and squark production (comparison with MSSM).

- ► Squark pair production. t-channel exchange of the Dirac gluino forbids final states with squarks of the same helicity, reducing squark production cross section. →
- Gluino pair production. Cross section enhanced because there are more gluino-degrees of freedom.
- Gluino-squark production. This is identical to the Majorana case.

arXiv:1111.4322

Lifetime and mass splitting of binos: motivation of benchmark choices.

Constraints for four benchmark scenarios will be shown:

- One with small $\tilde{\chi}^0_{1,2}$ mass spliting/long $\tilde{\chi}^0_2$ lifetime: DG1 where $\lambda_S{=}{-}0.27$.
- Three with a large $\tilde{\chi}_{1,2}^0$ mass spliting/short $\tilde{\chi}_2^0$ lifetime: DG2,DG3 with $\lambda_s = -0.74$ and DG4 with $\lambda_s = -0.79$.

Benchmark scenarios.

				Masses					
Parameters						DG1	DG2	DG3	DG4
					$\tilde{\chi}_1^0$	201.35	182.1	181.8	182.4
	DG1	DG2	DG3	DG4	$\tilde{\chi}_2^0$	201.72	218.0	216.6	213.2
m_{1D}	200	200	200	200					
m_{2D}	500	500	500	1175	$ ilde{\chi}_3^0$	403	400	396	408
μ	400	400	400	400	$\tilde{\chi}_4^0$	419	445	441	437
$\tan \beta$	2	2	2	2	$ ilde{\chi}_5^0$	537	536	535	1226
$-\lambda_S$	0.27	0.74	0.74	0.79	$ ilde{\chi}_6^0$	548	548	546	1227
$\sqrt{2}\lambda_T$	0.14	0.14	0.14	-0.26	$\tilde{\chi}_1^{\pm}$	400	395	391	398
	1.25e7	6.5e6	2.26e6	8.26e6	$\tilde{\chi}_{2 }^{\pm}$	536	536	534	1224
$m_{\tilde{Q}_3}^2$	1.2001	0.000	2.2000	0.2000	$\tilde{\chi}_3^{\pm}$	549	548	547	1229
$m^2_{\tilde{Q}_1}$	6.25e6	6.25e6	6.25e6	6.25e6	$\begin{array}{c c} \lambda_3 \\ ilde{t}_1 \end{array}$	3604	2607	1590	2894
	1750	1750	1750	1750	~				
m_{3D}	1100	1100	1100	1100	t_2	3613	2637	1613	2927
					h_1	124.0	125.0	125.3	125.2

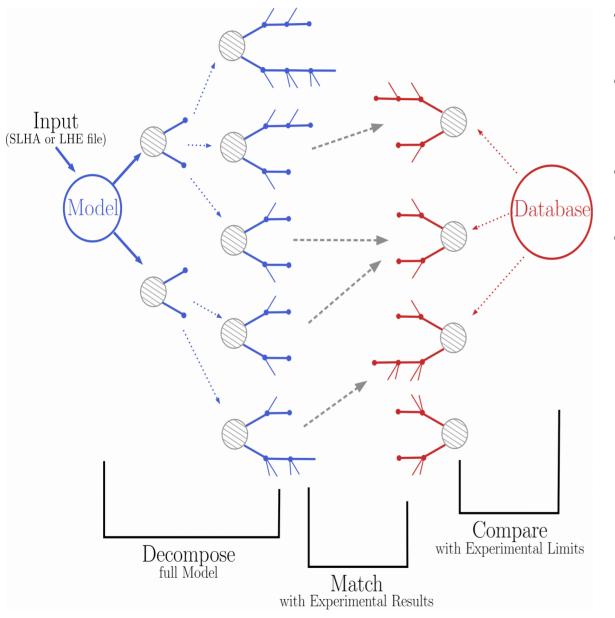
Small bino mass splitting. Large bino mass splitting. Light winos. Heavy winos.

We scanned over the gluino and squark mass spectrum.

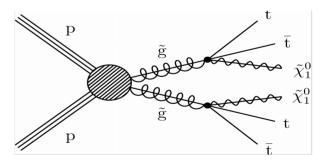
Constraining with two approaches: SMS and Recasting.

Simplified Model Spectrum results

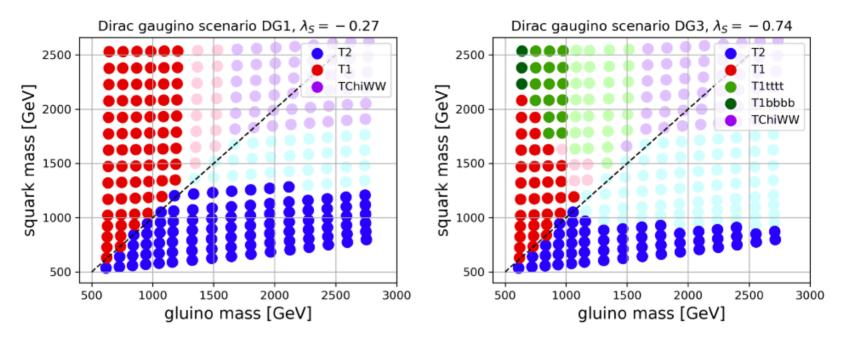
 SModelS: Based on the general procedure to decompose BSM collider signatures presenting a Z2 symmetry into Simplified Model Spectrum (SMS) topologies. (arXiv:1811.10624)


Full recasting.

- Based on MC event simulation, performed with a Madgraph-Pythia8-Delphes pipeline.
- Recasting and analysis performed with MadAnalysis



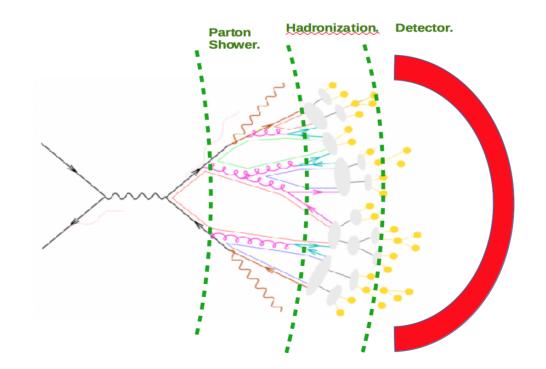
SMS approach with SModelS.



- Decomposition of BSM into SMS topologies.
- Matches experimental results for different SMS topologies with the decomposed topologies
- Interface between decomposition and experimental results.
- Output: Cross section comparison with upper limits and more...

https://smodels.github.io/

Results from SModelS.


Gluino vs squark masses map of the SModelS limits. Hard coloured points means exclusion.

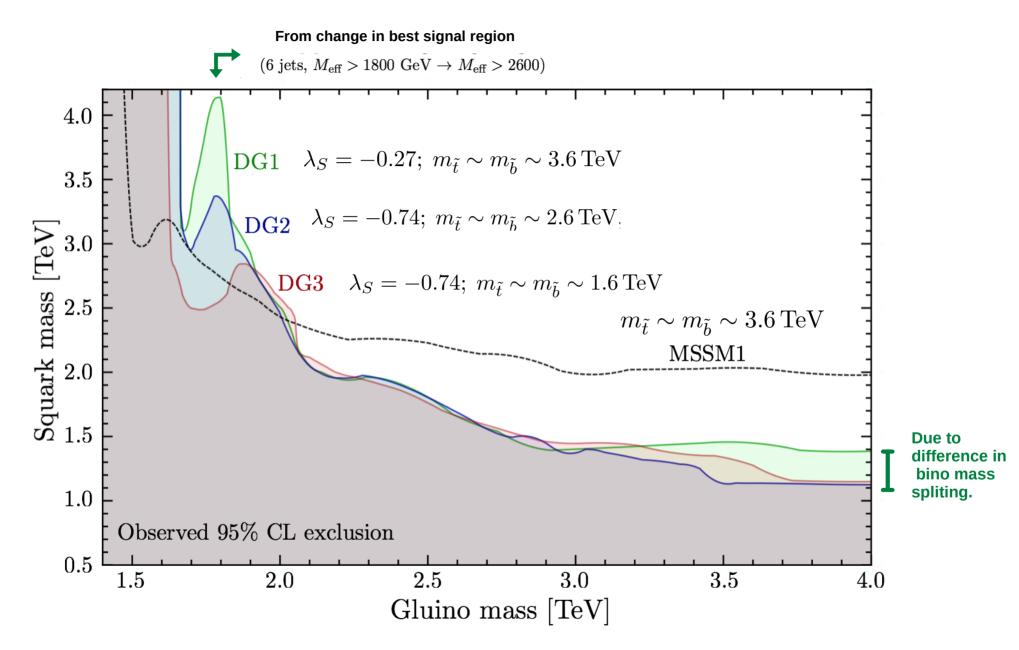
T1:
$$pp \rightarrow \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$$
; T1tttt: $pp \rightarrow \tilde{g}\tilde{g}, \ t\bar{t}\tilde{\chi}_{1}^{0}$; T2:
 $pp \rightarrow \tilde{q}\tilde{q}^{(*)}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$; TChiWW: $pp \rightarrow \tilde{\chi}_{i}^{\pm}\tilde{\chi}_{i}^{\pm}, \ \tilde{\chi}_{i}^{\pm} \rightarrow W^{\pm}\tilde{\chi}_{1}^{0}$

Due to the complexity of the model, constraints from SMS are weaker. E.g. The effective cross section from the T1 topology above is roughly 1% of the total.

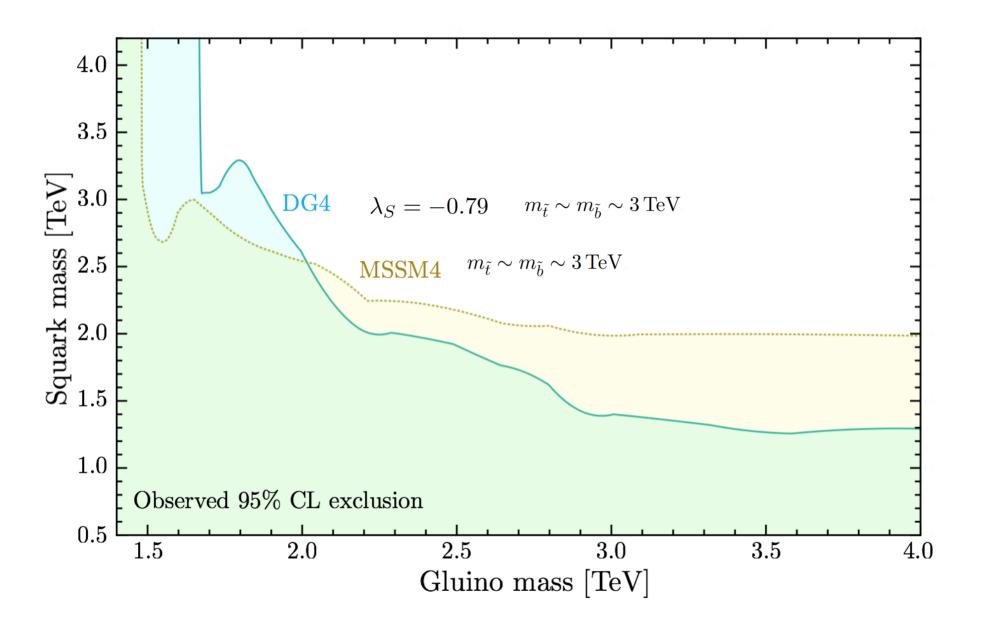
Recasting approach with MadAnalysis.

- Involves full chain event simulation: parton level events, showering, detector simulation and signal selection.
- A constantly growing database of implemented (and) validated analyses. For this, experimentalists provide benchmark points with event counts after each cut in the cut-flow (used for background cleaning).
- Comparison between simulated events of a certain model/scenario/region with adequate implemented analyses.
- Setting 95% CL limits on the spectrum of the tested model/scenario/region.

ATLAS SUSY 2016-07: The recasted analysis.


Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb⁻¹ of $\sqrt{s} = 13$ TeV *pp* collision data with the ATLAS detector

ATLAS analyses, 13 TeV

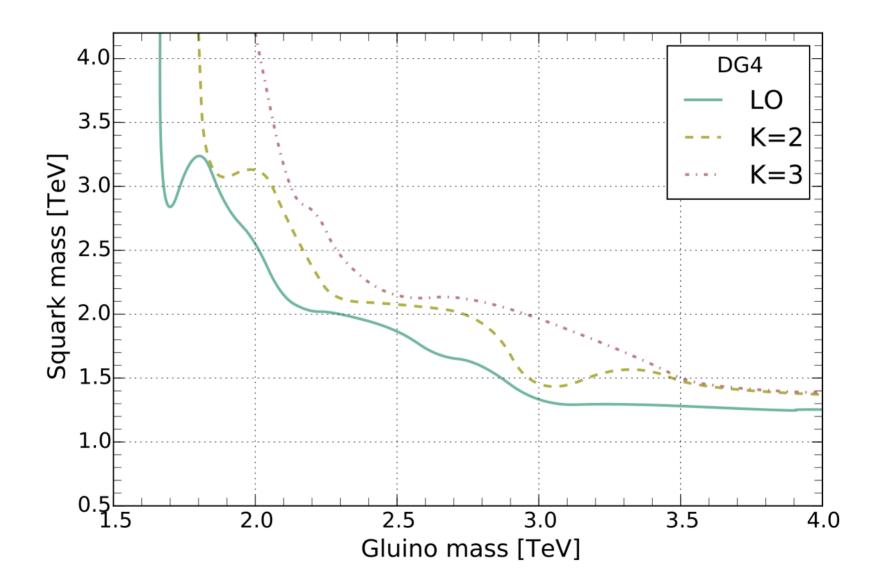

Analysis	Short Description	Implemented by	Code	Validation note	Version
ATLAS-SUSY-2015-06	Multijet + missing transverse momentum	S. Banerjee, B. Fuks, B. Zaldivar	⊡ Inspire	G+ PDF	v1.3/Delphes3
ATLAS-SUSY-2016-07	Multijet + missing transverse momentum (36.1 fb-1)	G. Chalons, H. Reyes- Gonzalez	G⇒ Inspire	⇔ PDF ⇔ Pythia files	v1.7/Delphes3
ATLAS-EXOT-2015-03	Monojet (3.2 fb-1)	D. Sengupta	⊡ Inspire	G→ PDF	v1.3/Delphes3
ATLAS-EXOT-2016-25	Mono-Higgs (36.1 fb-1)	S. Jeon, Y. Kang, G. Lee, C. Yu	⊡ Inspire	G→ PDF	v1.6/Delphes3
➡ATLAS-EXOT-2016-27	Monojet (36.2 fb-1)	D. Sengupta	⊡ Inspire	G→ PDF	v1.6/Delphes3
⇔ATLAS-EXOT-2016-32	Monophoton (36.1 fb-1)	S. Baek, T.H. Jung	⇔ Inspire	G→ PDF	v1.6/Delphes3
⇔ATLAS- CONF-2016-086	b-pair + missing transverse momentum	B. Fuks & M. Zumbihl	G⇒ Inspire	G→ PDF	v1.6/Delphes3

http://madanalysis.irmp.ucl.ac.be/wiki/PublicAnalysisDatabase

Results from Recasting : DG1-3 vs MSSM1 (light winos).

Results from Recasting : DG4 vs MSSM4 (heavy winos).

Conclusions.

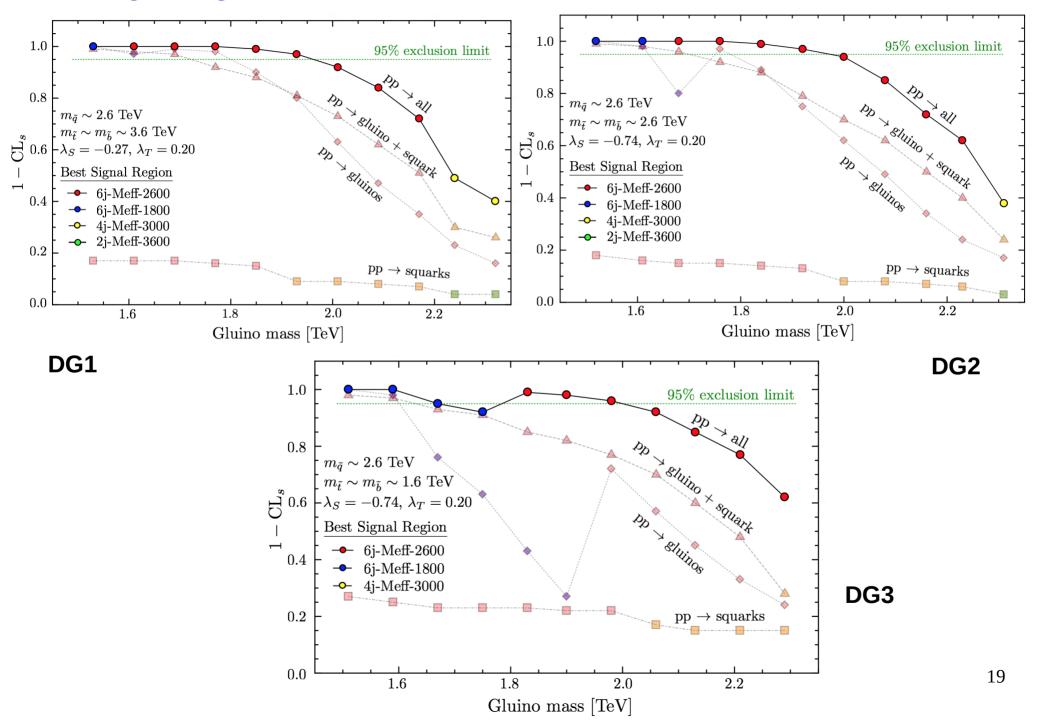

- Bounds on squarks and gluinos were found for 4 benchmark scenaros of the MDGSSM and compared with equivalent MSSM scenarios.
- Results were as expected from the differences between MDGSSM and MSSM regarding gluino and squark production.
- We observed relaxed contstraints in the scenarios with large bino mass-splitting due to extra steps in the decay chain.

Outlook.

- Study limits on the electroweak sector.
- Look for scenarios where the LSP (dark matter candidate) has a relic density equal or below the one measured by Planck.
- Study scenarios with small bino mass splitting in the light of Long Lived Particle searches.

Thank you!

CLs for DG4 with k-factors


Electroweakino mass matrices in the MDGSSM.

$$\mathcal{M}_{N} = \begin{pmatrix} 0 & m_{1D} & 0 & 0 & \frac{\sqrt{2}\lambda_{S}}{g'}m_{Z}s_{W}s_{\beta} & \frac{\sqrt{2}\lambda_{S}}{g'}m_{Z}s_{W}c_{\beta} \\ m_{1D} & 0 & 0 & 0 & -m_{Z}s_{W}c_{\beta} & m_{Z}s_{W}s_{\beta} \\ 0 & 0 & 0 & m_{2D} & -\frac{\sqrt{2}\lambda_{T}}{g}m_{Z}c_{W}s_{\beta} & -\frac{\sqrt{2}\lambda_{T}}{g}m_{Z}c_{W}c_{\beta} \\ 0 & 0 & m_{2D} & 0 & m_{Z}c_{W}c_{\beta} & -m_{Z}c_{W}s_{\beta} \\ \frac{\sqrt{2}\lambda_{S}}{g'}m_{Z}s_{W}s_{\beta} & -m_{Z}s_{W}c_{\beta} & -\frac{\sqrt{2}\lambda_{T}}{g}m_{Z}c_{W}s_{\beta} & m_{Z}c_{W}c_{\beta} & 0 & -\mu \\ \frac{\sqrt{2}\lambda_{S}}{g'}m_{Z}s_{W}c_{\beta} & m_{Z}s_{W}s_{\beta} & -\frac{\sqrt{2}\lambda_{T}}{g}m_{Z}c_{W}c_{\beta} & -m_{Z}c_{W}s_{\beta} & -\mu & 0 \end{pmatrix}$$

$$\mathcal{M}_{\mathcal{C}} = \begin{pmatrix} 0 & m_{2D} & \frac{2\lambda_T}{g} m_W c_\beta \\ m_{2D} & 0 & \sqrt{2}m_W s_\beta \\ -\frac{2\lambda_T}{g} m_W s_\beta & \sqrt{2}m_W c_\beta & \mu \end{pmatrix}$$

Binos, Winos, Higgsinos.

Best signal region evolution.

