Supersymmetry: Status 2019

Ulrich Ellwanger
Laboratoire de Physique Théorique Univ. Paris-Sud/Paris-Saclay

Supersymmetry can address the following shortcomings of the SM:

- The Hierarchy Problem
- Dark Matter relic density (incl. constraints from spin dependent/independent direct detection experiments)
- Unification of gauge couplings (quarks and leptons fill complete $\operatorname{SU}(5)$ representations, but gauge couplings do not quite unify in the Standard Model without Supersymmetry)
- Possibly:
- The $\sim 3 \sigma$ deviation of the measured anomalous magnetic moment of the muon a_{μ} w.r.t. the Standard Model,
- galactic center gamma ray excess (dark matter interpretation still viable!),
- AMS-02 anti-proton excess,
- ATLAS 2/3 lepton + ISR excess $(\sim 2 / 3 \sigma)$

To do

1) Better not rely on interpretations of limits within simplified models (simplified decay cascades, typically 1 step), but recast limits within realistic versions of the MSSM (pMSSM) or NMSSM, preferably including the dark matter relic density
2) Try to fit at least some of the excesses without violating existing constraints
3) Provide experimentalists with new promising search channels

Recasting limits in the pMSSM:

GAMBIT collaboration (1705.07917), pMSSM7:

- Gaugino mass ratios motivated by GUT: $M_{3} / \alpha_{s}=M_{2} / \alpha_{2}=M_{1} / \alpha_{1}$
- Degenerate soft squark/slepton masses, but free $A_{t} \neq A_{b}$ (the muon anomalous magnetic moment a_{μ} cannot be fitted)
- Free soft Higgs masses $M_{H_{u}}, M_{H_{d}}, \tan \beta\left(\rightarrow \mu, B_{\mu}\right.$ fixed by $\left.M_{Z}, \tan \beta\right)$
- $\Omega h^{2} \lesssim 0.1189$ (smaller Ωh^{2} alleviates constraints from direct DM detection, but requires additional sources of dark matter)

MasterCode (1710.11091), pMSSM11:

- Free gaugino masses
- Different soft squark/slepton masses for the first two/third generations, free $A_{t}=A_{b}$
- Free $\mu, \tan \beta, M_{A}$
- $\Omega h^{2}=0.1186 \pm 0.004$
- With or without fits to the muon anomalous magnetic moment a_{μ}

Limits on sparticle masses

(Within 2σ of the "best fit point" to numerous search signal regions mainly from sparticle searches by ATLAS/CMS)

MasterCode: Some of the parameters of the "best fit points" with or w/o a_{μ} are completely different!

	GAMBIT	MasterCode with a_{μ}	MasterCode w/o a_{μ}
$M_{\chi_{1}^{\circ}}$	$\gtrsim 60 \mathrm{GeV}$ (H'ino)	$90-500 \mathrm{GeV}$ (bino)	$>90 \mathrm{GeV}$ (H'ino)
$M_{\chi_{1}^{ \pm}}$	$\gtrsim 90 \mathrm{GeV}$	$\gtrsim 90 \mathrm{GeV}$	$\gtrsim 90 \mathrm{GeV}$
$M_{\tilde{\varepsilon}}$	$\gtrsim 1,0 \mathrm{TeV}$	$\gtrsim 1,8 \mathrm{TeV}$	$\gtrsim 1,0 \mathrm{TeV}$
$M_{\tilde{q}}$	$\gtrsim 1,2 \mathrm{TeV}$	$\gtrsim 1,9 \mathrm{TeV}$	$\gtrsim 800 \mathrm{GeV}$
$M_{\tilde{L}}$	$\gtrsim 0,5 \mathrm{TeV}$	$\sim 500 \mathrm{GeV} / \gtrsim 1,0 \mathrm{TeV}$	$\gtrsim 500 \mathrm{GeV}$
$M_{\tilde{\tau}}$	$\gtrsim 1,3 \mathrm{TeV}$	$\gtrsim 110 \mathrm{GeV}(\mathrm{LEP})$	$\gtrsim 110 \mathrm{GeV}(\mathrm{LEP})$
$M_{\tilde{\mu}}$	$\gtrsim 1,3 \mathrm{TeV}$	$110-770 \mathrm{GeV}$	$\gtrsim 110 \mathrm{GeV}$
M_{A}	$\gtrsim 500 \mathrm{GeV}$	$\gtrsim 800 \mathrm{GeV}$	$\gtrsim 800 \mathrm{GeV}$

No sign for "dark spots" in the combined signal regions (light sparticles escaping detection)
\rightarrow Limits on squarks/gluinos depend strongly on assumptions (possible decay cascades)

Recast limits in the NMSSM:

- Extra neutral CP-even and CP-odd scalars H_{S}, A_{S} (not degenerate!) on top of the MSSM-like heavy \sim degenerate $\operatorname{SU}(2)$ doublets H / A
- Extra singlino \tilde{S} on top of the MSSM-like charged/neutral bino/wino/higgsinos
- H_{S}, A_{S}, \tilde{S} have small couplings to SM particles/MSSM sparticles, except to the Higgs sector from a coupling $\lambda \widetilde{H}_{u} \widetilde{H}_{d} \widetilde{H}_{S}$ in the superpotential (in terms of superfields)
\rightarrow Small direct production cross sections proportional to mixing angles ${ }^{2} \sim \lambda^{2}$, but singlets can be possible decay products of Higgs bosons or sparticles
\rightarrow Still: H_{S}, A_{S} decay into $S M$ particles like H_{125} due to mixing

Searches for $g g F \rightarrow H_{S} \rightarrow \gamma \gamma$ with $M_{H_{s}}<125 \mathrm{GeV}$

From CMS-HIG-17-013 (13 TeV)

Possible Xsect \times BR in the NMSSM for 13 TeV using limits from 8 TeV , from 1512.04281
\rightarrow Sensitivity to viable cross sections $\times \mathrm{BR}$ in the NMSSM!

Searches for $H_{125} \rightarrow A_{S} A_{S} / H_{S} H_{S}$

Many possible final states, many recent and ongoing searches by ATLAS/CMS

Compilation by R. Aggleton et al., JHEP 1702 (2017) 035:

Light green/blue points: viable in the NMSSM after 2017 LEP/LHC constraints

CMS-PAS-HIG-18-011:

Significant improvement in the $\mu \mu b b$ channel!
\rightarrow Sensitivity to BSM branching fractions of H_{125} allowed by indirect constraints from measured H_{125} couplings!

If the singlino \tilde{S} is the LSP (I)

A good DM candidate: a relic density $\Omega h^{2} \sim 0.119$ is possible even if \tilde{S} is very light (a few GeV) through annihilation via A_{S} funnel ($\neq \mathrm{MSSM}$)
Coloured region: NMSSM points allowed by constraints from LUX/PandaX-II/Xenon (from 1806.09478 with C. Hugonie)

\rightarrow Xsection possibly below the neutrino floor (black curve)!

If the singlino \tilde{S} is the LSP (II)

Every NLSP (neutralino, chargino, slepton, stop...) will decay into

$$
N L S P \rightarrow \tilde{S}+H_{125} / H_{S} / A_{S} / Z, W, \text { lepton, top } \ldots,
$$

the only available decay channels due to R -parity conservation

Notably if \tilde{S} is light (a few GeV) AND $M_{N L S P} \approx M_{\tilde{S}}+M_{X}, X=H_{125} / H_{S} / A_{S} / Z$:
Little energy is given to \tilde{S} in any decay $N L S P_{\text {heavy }} \rightarrow X_{\text {heavy }}+\tilde{S}_{\text {light }}$
\rightarrow Little $E_{T}^{m i s s}$ from \tilde{S} in all Susy searches
\rightarrow Reduced lower limits on sparticle masses (A.Teixeira, U.E., 1406.7221, 1412.6394)

Recast limits from CMS squark search via jets and $E_{T}^{m i s s}$ (1802.02110) (A. Titterton et al., 1807.10672)

MSSM with bino LSP
Assume $\tilde{q} \rightarrow q+$ bino

NMSSM with $\tilde{q} \rightarrow q+$ bino $\rightarrow q+\tilde{S}+H_{125}$

$$
M_{\text {bino }}=M_{\tilde{s}}+M_{H_{125}}+2 \mathrm{GeV}
$$

(red/black curves: expected/observed limits)
\rightarrow strong reduction of the lower limit on $M_{\text {Squark }}$ for small

$$
M_{L S P}=M_{\tilde{S}}!
$$

Recast searches by ATLAS/CMS for trileptons:

At the LHC, neutralinos/charginos can be produced via $W^{ \pm *} \rightarrow \chi_{i}^{0}+\chi_{j}^{ \pm}$ (or $Z^{*} \rightarrow \chi_{i}^{ \pm}+\chi_{j}^{\mp}, \chi_{i}^{0}+\chi_{j}^{0}$):

Results are typically interpreted for wino-like $\chi_{2}^{0}+\chi_{1}^{ \pm}$: Largest cross sections \rightarrow strongest constraints But: Higgsinos have only half the cross section (even adding $\chi_{2}^{0}, \chi_{3}^{0}$) \rightarrow weaker constraints

For limits on the NMSSM singlino-higgsino sector (with C. Hugonie, 1806.09478): Scan the parameter space with singlino LSP, require a viable relic density consistent with constraints from direct DM detection, apply bounds from the CMS trilepton search in 1801.03957 (the strongest ones)

Comparison of limits the in the $M_{\chi_{1}^{0}} / M_{\chi_{1}^{ \pm}} \sim M_{\chi_{2}^{0}}$ plane:

CMS, assuming wino-like χ_{2}^{0} and $\chi_{1}^{ \pm}$:
NMSSM, singlino LSP and higgsino-like $\chi_{2}^{0}, \chi_{3}^{0}$ and $\chi_{1}^{ \pm}$, bino-like χ_{4}^{0} :

Red: Excluded by constraints on DM and by CMS

Blue: Excluded iff the bino mass satisfies $M_{1}>300 \mathrm{GeV}$ as motivated by the GUT relation $M_{1} \approx M_{\text {Gluino }} / 6$ and $M_{\text {Gluino }} \gtrsim 1.8 \mathrm{TeV} \rightarrow$ no bino/higgsino mixing
\rightarrow Substantial reduction of limits!

Allowed regions in the plane $M_{\tilde{\chi}_{1}^{ \pm}}-M_{\tilde{\chi}_{1}^{0}}$ in the constrained NMSSM: universal soft susy breaking terms at the GUT scale, but non-universal soft Higgs mass terms (allows to estimate the necessary amount of finetuning):

\rightarrow Relatively low finetuning for $M_{\tilde{\chi}_{1}^{0}} \sim M_{z} / 2, M_{\tilde{\chi}_{1}^{0}} \sim M_{H 125} / 2$ or $M_{\tilde{\chi}_{1}^{0}} \sim M_{\tilde{\chi}_{1}^{ \pm}}$ where s-channel annihilation or co-annihilation is possible Otherwise: s-channel annihilation via A_{S} with $M_{\tilde{\chi}_{1}^{0}} \sim M_{A_{s}} / 2$ \rightarrow Many regions with relatively low fine-tuning ≈ 100 remain to be tested

Dark Spots for neutralino/chargino searches:

- Mixed bino - higgsino NLSP χ_{2}^{0} : reduces production cross section further
- $\chi_{2,3}^{0}$ cascade decays via light H_{S} or A_{S} (escape searches for H_{125} via $b \bar{b}$)
- Light staus $\tilde{\tau}$ as NLSP: Hardly constrained by the LHC (limits from LEP), \rightarrow less "Trileptons" in the final state

Attempts to fit excesses

Searches for neutralinos/charginos by ATLAS using recursive jigsaw reconstruction (1806.02293), ISR jet, sensitive to small $\chi_{2}^{0}-\chi_{1}^{0}$ mass differences:

Local $2-3 \sigma$ excesses in the signal regions $\mathrm{SR} 2 \ell_{\text {low }}+\mathrm{ISR}$ and $\mathrm{SR} 3 \ell_{\text {low }}+\mathrm{ISR}$
If interpreted in terms of simplified models:
No significant deviations from observed w.r.t. expected limits

Combine 4 ATLAS and 4 CMS electroweakino searches after $39 \mathrm{fb}^{-1}(\approx 10$ signal regions each, up to ~ 40 bins), simulations within a pMSSM electroweakino sector (bino, wino, higgsinos), allowing for cascade decays
\rightarrow local $3,2 \sigma$ excess for $M_{\chi_{1}^{0}} \sim 50 \mathrm{GeV}, M_{\chi_{1}^{ \pm}} \sim 150 \mathrm{GeV}$ via contributions from $\chi_{2}^{0}, \chi_{3}^{0}$ and $\chi_{2}^{ \pm}$multi- W / Z cascade decays ($M_{\chi_{1}^{0}} \sim 8-155 \mathrm{GeV}, M_{\chi_{1}^{ \pm}} \sim 104-259 \mathrm{GeV}$ within $95 \% \mathrm{CL}$)
(Missing covariance matrices for stat. analysis including more search results)

> M. Carena et al., 1809.11082:

Require a viable dark matter relic density and a fit of a_{μ} :
Bino-like χ_{1}^{0}, resonant pair annihilation via $H_{S M}$ funnel (requires some higgsino component for $H_{S M}-\chi_{1}^{0}-\chi_{1}^{0}$ coupling) Large $\tan \beta$ to suppress $H_{S M} \rightarrow \chi_{1}^{0} \chi_{1}^{0}$ decay

Suppress spin independent direct detection cross section via $\mu \cdot M_{1}<0$ But: Assume $\mu \cdot M_{2}>0$ (and large $\tan \beta, M_{\tilde{\nu}_{\mu}}<400 \mathrm{GeV}$) to fit a_{μ}
M. Carena et al., 1905.03768:

Include fit to galactic center gamma ray excess: Need $\chi_{1}^{0} \chi_{1}^{0}$ annihilation (Higgs funnel) via s-wave; then: simultaneous explanation of AMS-02 anti-proton excess from $\chi_{1}^{0} \chi_{1}^{0} \rightarrow b \bar{b}$.
MSSM: M_{1} complex \rightarrow CP-violating $H_{S M}-\chi_{1}^{0}-\chi_{1}^{0}$ coupling allows for annihilation via s-wave; but: constraints from electric dipole moments require heavy sleptons \rightarrow fit of a_{μ} impossible
NMSSM: Relic density from χ_{1}^{0} pair annihilation with a pseudoscalar in the s-channel
\rightarrow NMSSM benchmark point with common fit of ATLAS $3 \ell_{\text {low }}+$ ISR excess, a_{μ}, galactic center and AMS-02 anti-proton excesses!

Supersymmetry: Status 2019

- Due to $M_{\text {Higgs }} \sim 125 \mathrm{GeV}$ the MSSM has a "little" finetuning problem of at least $\mathcal{O}(1 \%)$, of $\mathcal{O}(1 \%$) with (grand) unified soft Supersymmetry breaking terms, somewhat less in the NMSSM
- Of course: even with $M_{\text {Squark }}, M_{G / u i n o}>1-2$ TeV Supersymmetry still solves the "BIG" hierarchy problem
- To derive definite constraints on the high dimensional parameter space is a challenging task, notably in the NMSSM (\rightarrow dark spots), but a MUST for the future
- The dark matter relic density and some (mild) excesses in particle/astroparticle physics can be explained with still viable parameters in the MSSM, notably the NMSSM

