Supersymmetry: Status 2019

Ulrich Ellwanger Laboratoire de Physique Théorique Univ. Paris-Sud/Paris-Saclay

Supersymmetry can address the following shortcomings of the SM:

- The Hierarchy Problem
- Dark Matter relic density (incl. constraints from spin dependent/independent direct detection experiments)
- Unification of gauge couplings (quarks and leptons fill complete SU(5) representations, but gauge couplings do not quite unify in the Standard Model without Supersymmetry)
- Possibly:
 - The $\sim 3~\sigma$ deviation of the measured anomalous magnetic moment of the muon a_{μ} w.r.t. the Standard Model,
 - galactic center gamma ray excess (dark matter interpretation still viable!),
 - AMS-02 anti-proton excess,
 - ATLAS 2/3 lepton + ISR excess (\sim 2/3 σ)

To do

- 1) Better not rely on interpretations of limits within simplified models (simplified decay cascades, typically 1 step), but recast limits within realistic versions of the MSSM (pMSSM) or NMSSM, preferably including the dark matter relic density
- 2) Try to fit at least some of the excesses without violating existing constraints
- 3) Provide experimentalists with new promising search channels

Recasting limits in the pMSSM:

GAMBIT collaboration (1705.07917), pMSSM7:

- Gaugino mass ratios motivated by GUT: $M_3/\alpha_s=M_2/\alpha_2=M_1/\alpha_1$
- Degenerate soft squark/slepton masses, but free $A_t \neq A_b$ (the muon anomalous magnetic moment a_u cannot be fitted)
- Free soft Higgs masses M_{H_u} , M_{H_d} , $\tan \beta$ ($\rightarrow \mu$, B_{μ} fixed by M_Z , $\tan \beta$)
- $\Omega h^2 \lesssim 0.1189$ (smaller Ωh^2 alleviates constraints from direct DM detection, but requires additional sources of dark matter)

MasterCode (1710.11091), pMSSM11:

- Free gaugino masses
- Different soft squark/slepton masses for the first two/third generations, free $A_t = A_b$
- Free μ , tan β , M_A
- $\Omega h^2 = 0.1186 \pm 0.004$
- ullet With or without fits to the muon anomalous magnetic moment a_{μ}

Limits on sparticle masses

(Within 2σ of the "best fit point" to numerous search signal regions mainly from sparticle searches by ATLAS/CMS)

MasterCode: Some of the parameters of the "best fit points" with or w/o a_μ are completely different!

	GAMBIT	MasterCode with a_{μ}	MasterCode w/o a_{μ}
$M_{\chi_1^0}$	≳ 60 GeV (H'ino)	90 – 500 GeV (bino)	> 90 GeV (H'ino)
$M_{\chi_{1}^{\pm}}$	$\gtrsim 90 \; \text{GeV}$	$\gtrsim 90\mathrm{GeV}$	$\gtrsim 90 \; \text{GeV}$
$M_{\widetilde{g}}$	$\gtrsim 1,0 {\sf TeV}$	$\gtrsim 1, 8 \text{ TeV}$	$\gtrsim 1,0 { t TeV}$
$M_{\widetilde{q}}$	$\gtrsim 1, 2 \; {\sf TeV}$	$\gtrsim 1,9 \; TeV$	$\gtrsim 800 \; \text{GeV}$
$M_{\tilde{t}}$	$\gtrsim 0,5 {\sf TeV}$	\sim 500 GeV/ \gtrsim 1,0 TeV	$\gtrsim 500~{ m GeV}$
$M_{ ilde{ au}}$	$\gtrsim 1,3 {\sf TeV}$	$\gtrsim 110$ GeV (LEP)	$\gtrsim 110$ GeV (LEP)
$M_{ ilde{\mu}}$	$\gtrsim 1,3 {\sf TeV}$	110 – 770 GeV	$\gtrsim 110\;GeV$
M_A	$\gtrsim 500 \; \text{GeV}$	$\gtrsim 800 \; \text{GeV}$	$\gtrsim 800 \; \text{GeV}$

No sign for "dark spots" in the combined signal regions (light sparticles escaping detection)

→ Limits on squarks/gluinos depend strongly on assumptions (possible decay cascades)

Recast limits in the NMSSM:

- Extra neutral CP-even and CP-odd scalars H_S , A_S (not degenerate!) on top of the MSSM-like heavy \sim degenerate SU(2) doublets H/A
- Extra singlino \tilde{S} on top of the MSSM-like charged/neutral bino/wino/higgsinos
- H_S , A_S , \tilde{S} have small couplings to SM particles/MSSM sparticles, except to the Higgs sector from a coupling $\lambda \tilde{H}_u \tilde{H}_d \tilde{H}_S$ in the superpotential (in terms of superfields)
- \rightarrow Small direct production cross sections proportional to mixing angles² $\sim \lambda^2$, but singlets can be possible decay products of Higgs bosons or sparticles
- \rightarrow Still: H_S , A_S decay into SM particles like H_{125} due to mixing

Searches for $ggF \rightarrow H_S \rightarrow \gamma \gamma$ with $M_{H_S} < 125$ GeV

From CMS-HIG-17-013 (13 TeV)

Possible Xsect \times BR in the NMSSM for 13 TeV using limits from 8 TeV, from 1512.04281

 \rightarrow Sensitivity to viable cross sections \times BR in the NMSSM!

Searches for $H_{125} \rightarrow A_S A_S / H_S H_S$

Many possible final states, many recent and ongoing searches by ATLAS/CMS

Compilation by R. Aggleton et al., JHEP 1702 (2017) 035:

Light green/blue points: viable in the NMSSM after 2017 LEP/LHC constraints

Significant improvement in the $\mu\mu bb$ channel!

 \rightarrow Sensitivity to BSM branching fractions of H_{125} allowed by indirect constraints from measured H_{125} couplings!

If the singlino \tilde{S} is the LSP (I)

A good DM candidate: a relic density $\Omega h^2 \sim 0.119$ is possible even if \tilde{S} is very light (a few GeV) through annihilation via A_S funnel (\neq MSSM)

Coloured region: NMSSM points allowed by constraints from LUX/PandaX-II/Xenon (from 1806.09478 with C. Hugonie)

→Xsection possibly below the neutrino floor (black curve)!

If the singlino \tilde{S} is the LSP (II)

Every NLSP (neutralino, chargino, slepton, stop...) will decay into

$$NLSP \rightarrow \tilde{S} + H_{125}/H_S/A_S/Z, W, lepton, top ...,$$

the only available decay channels due to R-parity conservation

Notably if \tilde{S} is light (a few GeV) AND $M_{NLSP} pprox M_{\tilde{S}} + M_X$, $X = H_{125}/H_S/A_S/Z$:

Little energy is given to \tilde{S} in any decay $NLSP_{heavy} o X_{heavy} + \tilde{S}_{light}$

- \rightarrow Little E_T^{miss} from \tilde{S} in all Susy searches
- → Reduced lower limits on sparticle masses (A.Teixeira, U.E., 1406.7221, 1412.6394)

MSSM with bino LSP Assume $\tilde{q} \rightarrow q + bino$

NMSSM with
$$ilde{q}
ightarrow q + bino
ightarrow q + ilde{S} + H_{125}$$
 $M_{bino} = M_{ ilde{S}} + M_{H_{125}} + 2 \; \text{GeV}$

(red/black curves: expected/observed limits)

 \rightarrow strong reduction of the lower limit on M_{Squark} for small $M_{LSP} = M_{\tilde{S}}!$

Recast searches by ATLAS/CMS for trileptons:

At the LHC, neutralinos/charginos can be produced via $W^{\pm *} \to \chi_i^0 + \chi_j^\pm$ (or $Z^* \to \chi_i^\pm + \chi_j^\mp, \chi_i^0 + \chi_j^0$):

Results are typically interpreted for wino-like $\chi_2^0 + \chi_1^{\pm}$: Largest cross sections \rightarrow strongest constraints

But: Higgsinos have only half the cross section (even adding χ_2^0 , χ_3^0) \rightarrow weaker constraints

For limits on the NMSSM singlino-higgsino sector (with C. Hugonie, 1806.09478): Scan the parameter space with singlino LSP, require a viable relic density consistent with constraints from direct DM detection, apply bounds from the CMS trilepton search in 1801.03957 (the strongest ones)

Comparison of limits the in the $M_{\chi_1^0}/M_{\chi_1^\pm}\sim M_{\chi_2^0}$ plane:

CMS, assuming wino-like χ_2^0 and χ_1^{\pm} : NMSSM, singlino LSP and higgsino-like χ_2^0 , χ_3^0 and χ_1^{\pm} , bino-like χ_4^0 :

Blue: Excluded iff the bino mass satisfies $M_1 > 300$ GeV as motivated by the GUT relation $M_1 \approx M_{Gluino}/6$ and $M_{Gluino} \gtrsim 1.8$ TeV \rightarrow no bino/higgsino mixing

→ Substantial reduction of limits!

Ulrich Ellwanger Supersymmetry 13 / 19

Allowed regions in the plane $M_{\tilde{\chi}_{\bf 1}^\pm}-M_{\tilde{\chi}_{\bf 1}^0}$ in the constrained NMSSM: universal soft susy breaking terms at the GUT scale, but non-universal soft Higgs mass terms (allows to estimate the necessary amount of finetuning):

 \longrightarrow Relatively low finetuning for $M_{\tilde{\chi}^0_1} \sim M_Z/2$, $M_{\tilde{\chi}^0_1} \sim M_{H125}/2$ or $M_{\tilde{\chi}^0_1} \sim M_{\tilde{\chi}^\pm_1}$ where s-channel annihilation or co-annihilation is possible Otherwise: s-channel annihilation via A_S with $M_{\tilde{\chi}^0_1} \sim M_{A_S}/2$

 \longrightarrow Many regions with relatively low fine-tuning $\stackrel{>}{pprox}$ 100 remain to be tested

Dark Spots for neutralino/chargino searches:

- Mixed bino higgsino NLSP χ_2^0 : reduces production cross section further
- $\chi^0_{2.3}$ cascade decays via light H_S or A_S (escape searches for H_{125} via $b\bar{b}$)
- Light staus $\tilde{\tau}$ as NLSP: Hardly constrained by the LHC (limits from LEP), \rightarrow less "Trileptons" in the final state

Attempts to fit excesses

Searches for neutralinos/charginos by ATLAS using recursive jigsaw reconstruction (1806.02293), ISR jet, sensitive to small $\chi_2^0-\chi_1^0$ mass differences:

Local $2-3\sigma$ excesses in the signal regions SR2 ℓ_{low} +ISR and SR3 ℓ_{low} +ISR

If interpreted in terms of simplified models:

No significant deviations from observed w.r.t. expected limits

GAMBIT collaboration, 1809.02097:

Combine 4 ATLAS and 4 CMS electroweakino searches after 39 fb $^{-1}$ (\approx 10 signal regions each, up to \sim 40 bins), simulations within a pMSSM electroweakino sector (bino, wino, higgsinos), allowing for cascade decays

ightarrow local 3,2 σ excess for $M_{\chi_1^0} \sim$ 50 GeV, $M_{\chi_1^\pm} \sim$ 150 GeV via contributions from χ_2^0 , χ_3^0 and χ_2^\pm multi-W/Z cascade decays ($M_{\chi_1^0} \sim 8-155$ GeV, $M_{\chi_1^\pm} \sim 104-259$ GeV within 95% CL)

(Missing covariance matrices for stat. analysis including more search results)

M. Carena et al., 1809.11082:

Require a viable dark matter relic density and a fit of a_{μ} :

Bino-like χ^0_1 , resonant pair annihilation via H_{SM} funnel (requires some higgsino component for $H_{SM}-\chi^0_1-\chi^0_1$ coupling) Large $\tan\beta$ to suppress $H_{SM}\to\chi^0_1\chi^0_1$ decay

Suppress spin independent direct detection cross section via $\mu \cdot M_1 < 0$ But: Assume $\mu \cdot M_2 > 0$ (and large $\tan \beta$, $M_{\tilde{\nu}_{\mu}} < 400$ GeV) to fit a_{μ}

M. Carena et al., 1905.03768:

Include fit to galactic center gamma ray excess: Need $\chi_1^0\chi_1^0$ annihilation (Higgs funnel) via s-wave; then: simultaneous explanation of AMS-02 anti-proton excess from $\chi_1^0\chi_1^0\to b\bar{b}$.

MSSM: M_1 complex \to CP-violating $H_{SM}-\chi_1^0-\chi_1^0$ coupling allows for annihilation via s-wave; but: constraints from electric dipole moments require heavy sleptons \to fit of a_μ impossible

NMSSM: Relic density from χ_1^0 pair annihilation with a pseudoscalar in the s-channel

 \rightarrow NMSSM benchmark point with common fit of ATLAS $3\ell_{low}$ +ISR excess, a_{μ} , galactic center and AMS-02 anti-proton excesses!

Supersymmetry: Status 2019

- Due to $M_{Higgs} \sim 125$ GeV the MSSM has a "little" finetuning problem of at least $\mathcal{O}(1\%)$, of $\mathcal{O}(1\%)$ with (grand) unified soft Supersymmetry breaking terms, somewhat less in the NMSSM
- Of course: even with M_{Squark} , $M_{Gluino} > 1-2$ TeV Supersymmetry still solves the "BIG" hierarchy problem
- ullet To derive definite constraints on the high dimensional parameter space is a challenging task, notably in the NMSSM (o dark spots), but a MUST for the future
- The dark matter relic density and some (mild) excesses in particle/astroparticle physics can be explained with still viable parameters in the MSSM, notably the NMSSM