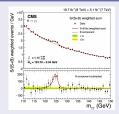
Gravitational Waves from Dark Matter

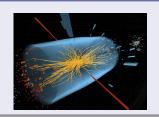
lason Baldes
In collaboration with Camilo Garcia-Cely
Accepted for publication in JHEP
arXiv:1809.01198

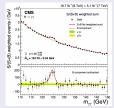
IRN Terascale@Annecy Meeting 20 May 2019

2012. Discovery of the Brout Englert Higgs boson

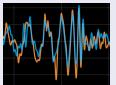


2012. Discovery of the Brout Englert Higgs boson

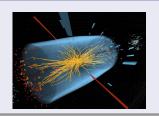


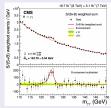


2016. Direct Detection of Gravitational Waves

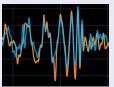


2012. Discovery of the Brout Englert Higgs boson





2016. Direct Detection of Gravitational Waves

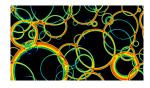


Let us merge the two ideas.

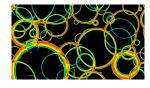


Actually already done by Witten '84, Hogan '86, ... PHYSICAL REVIEW D VOLUME 30, NUMBER 2 15 JULY 1984 Cosmic separation of phases Edward Witten* Institute for Advanced Study, Princeton, New Jersey 08540 (Received 9 April 1984)

- Symmetry is typically restored at high T.
- Violent events (e.g. cosmological phase transitions) produce gravitational waves.



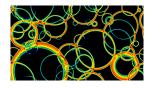
From a simulation by Weir et. al.



From a simulation by Weir et. al.

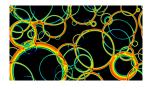
Since then

Detected Higgs and GWs.



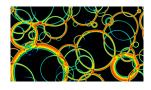
From a simulation by Weir et. al.

- Detected Higgs and GWs.
- Quantitative understanding of the predicted GW spectra has improved.



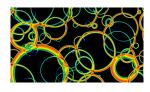
From a simulation by Weir et. al.

- Detected Higgs and GWs.
- Quantitative understanding of the predicted GW spectra has improved.
- USA pathfinder has successfully flown.



From a simulation by Weir et. al.

- Detected Higgs and GWs.
- Quantitative understanding of the predicted GW spectra has improved.
- USA pathfinder has successfully flown.
- Concrete future proposals such as LISA have been developed.

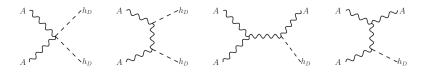


From a simulation by Weir et. al.

Since then

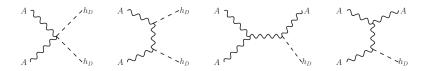
- Detected Higgs and GWs.
- Quantitative understanding of the predicted GW spectra has improved.
- 3 LISA pathfinder has successfully flown.
- Concrete future proposals such as LISA have been developed.

The idea here is to explore a simple case study as to the feasibility of using GWs to detect SSB in a dark sector. $_{4/16}$



The Model:
$$SU(3)_C \times SU(2)_L \times U(1)_Y \times SU(2)_D$$

$$\mathcal{L} \supset -\frac{1}{4} F_D \cdot F_D + (\mathcal{D}H_D)^{\dagger} (\mathcal{D}H_D) - \mu_2^2 H_D^{\dagger} H_D - \lambda_{\eta} (H_D^{\dagger} H_D)^2 - \lambda_{h\eta} H_D^{\dagger} H_D H^{\dagger} H$$

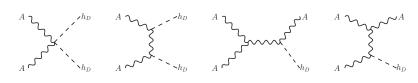


The Model:
$$SU(3)_C \times SU(2)_L \times U(1)_Y \times SU(2)_D$$

$$\mathcal{L} \supset -\frac{1}{4} F_D \cdot F_D + (\mathcal{D}H_D)^{\dagger} (\mathcal{D}H_D) - \mu_2^2 H_D^{\dagger} H_D - \lambda_{\eta} (H_D^{\dagger} H_D)^2 - \lambda_{h\eta} H_D^{\dagger} H_D H^{\dagger} H$$

Custodial SO(3) symmetry

Dark gauge bosons, A, are stable and form the DM!



The Model: $SU(3)_C \times SU(2)_L \times U(1)_Y \times SU(2)_D$

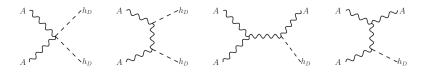
$$\mathcal{L} \supset -\frac{1}{4} F_D \cdot F_D + (\mathcal{D}H_D)^{\dagger} (\mathcal{D}H_D) - \mu_2^2 H_D^{\dagger} H_D - \lambda_{\eta} (H_D^{\dagger} H_D)^2 - \lambda_{h\eta} H_D^{\dagger} H_D H^{\dagger} H$$

Custodial SO(3) symmetry

Dark gauge bosons, A, are stable and form the DM!

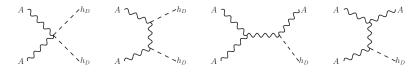
Potential possibilities

- Standard Potential with Mass terms Hambye 0811.0172
- Classically Scale Invariant
 - Hambye, Strumia 1306.2329, Hambye, Strumia, Teresi 1805.01473



Relic abundance for
$$m_A\gg m_{h_D}$$

$$g_D \approx 0.9 \times \sqrt{\frac{m_A}{1 \text{ TeV}}}$$

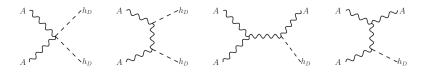


Relic abundance for
$$m_A\gg m_{h_D}$$

$$g_D \approx 0.9 \times \sqrt{\frac{m_A}{1 \text{ TeV}}}$$

Direct Detection

Need $\theta \lesssim 0.2$. (For $m_A > 100$ GeV).



Relic abundance for
$$m_A\gg m_{h_D}$$

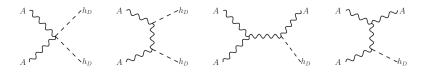
$$g_D pprox 0.9 imes \sqrt{rac{m_A}{1~{
m TeV}}}$$

Direct Detection

Need $\theta \lesssim$ 0.2. (For $m_A > 100$ GeV).

LHC Higgs signal strength

Need $\theta \lesssim \mathcal{O}(0.1)$.



Relic abundance for
$$m_A\gg m_{h_D}$$

$$g_D pprox 0.9 imes \sqrt{rac{m_A}{1 {
m TeV}}}$$

Direct Detection

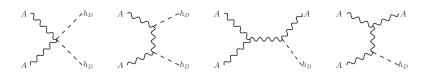
Need $\theta \lesssim$ 0.2. (For $m_A > 100$ GeV).

LHC Higgs signal strength

Need $\theta \lesssim \mathcal{O}(0.1)$.

Gauge coupling g_D

- Determines relic abundance.
- Generates a thermal barrier \rightarrow first order PT.



Relic abundance for
$$m_A \gg m_{h_D}$$

$$g_D \approx 0.9 \times \sqrt{\frac{m_A}{1 \text{ TeV}}}$$

Direct Detection

Need $\theta \lesssim$ 0.2. (For $m_A > 100$ GeV).

LHC Higgs signal strength

Need $\theta \lesssim \mathcal{O}(0.1)$.

Gauge coupling g_D

- Determines relic abundance.
- Generates a thermal barrier \rightarrow first order PT.

Relic abundance for
$$m_A \gg m_{h_D}$$

$$g_D pprox 0.9 imes \sqrt{rac{m_A}{1~{
m TeV}}}$$

Direct Detection

Need $heta \lesssim$ 0.2. (For $m_A > 100$ GeV).

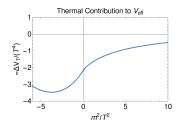
LHC Higgs signal strength

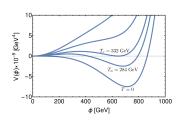
Need $\theta \lesssim \mathcal{O}(0.1)$.

Gauge coupling g_D

- Determines relic abundance.
- Generates a thermal barrier \rightarrow first order PT.

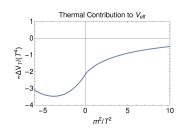
Finite temperature effective potential

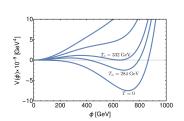




$$V_{\mathrm{eff}} = V_{\mathrm{tree}}(\phi) + V_{1}^{0}(\phi) + V_{1}^{T}(\phi, T) + V_{\mathrm{Daisy}}(\phi, T)$$

Finite temperature effective potential





$$V_{\mathrm{eff}} = V_{\mathrm{tree}}(\phi) + V_1^0(\phi) + V_1^T(\phi, T) + V_{\mathrm{Daisv}}(\phi, T)$$

Thermal Contribution

$$\frac{2\pi^2}{T^4} V_1^T(\phi, T) = \int_0^\infty y^2 \operatorname{Log}\left(1 - e^{-\sqrt{y^2 + m_i^2(\phi)/T^2}}\right) dy$$
$$\approx -\frac{\pi^4}{45} + \frac{\pi^2 m^2}{12T^2} - \frac{\pi m^3}{6T^3} - \frac{m^4}{32T^4} \operatorname{Ln}\left(\frac{m^2}{220T^2}\right)$$

Euclidean Action

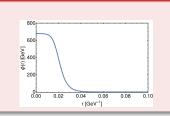
$$S_3 = 4\pi \int r^2 \left(\frac{1}{2} \left(\frac{d\phi_i}{dr} \right)^2 + \Delta V(\phi, \eta, T) \right) dr$$

Nucleation when $\Gamma/V \sim T^4 e^{-S_3/T} \sim H^4$.

Euclidean Action

$$S_3 = 4\pi \int r^2 \left(\frac{1}{2} \left(\frac{d\phi_i}{dr} \right)^2 + \Delta V(\phi, \eta, T) \right) dr$$

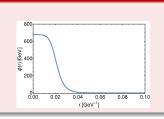
Nucleation when $\Gamma/V \sim T^4 e^{-S_3/T} \sim H^4$.



Euclidean Action

$$S_3 = 4\pi \int r^2 \left(\frac{1}{2} \left(\frac{d\phi_i}{dr} \right)^2 + \Delta V(\phi, \eta, T) \right) dr$$

Nucleation when $\Gamma/V \sim T^4 e^{-S_3/T} \sim H^4$.



Find the latent heat and timescale of the PT

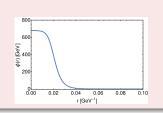
$$\alpha = \frac{1}{\rho_{\text{rad}}} \left(1 - T \frac{\partial}{\partial T} \right) \left(V[\phi_0, \eta_0] - V[\phi_n, \eta_n] \right) \Big|_{T_n}$$

$$\beta = -\frac{d}{dt} \left(\frac{S_3}{T} \right) = H T_n \frac{d}{dT} \left(\frac{S_3}{T} \right) \Big|_{T_n}$$

Euclidean Action

$$S_3 = 4\pi \int r^2 \left(\frac{1}{2} \left(\frac{d\phi_i}{dr} \right)^2 + \Delta V(\phi, \eta, T) \right) dr$$

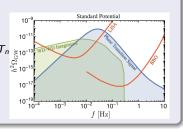
Nucleation when $\Gamma/V \sim T^4 e^{-S_3/T} \sim H^4$.



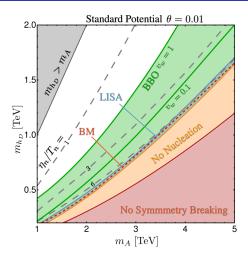
Find the latent heat and timescale of the PT

$$\alpha = \frac{1}{\rho_{\text{rad}}} \left(1 - T \frac{\partial}{\partial T} \right) \left(V[\phi_0, \eta_0] - V[\phi_n, \eta_n] \right) \Big|_{T_n} \int_{0.15}^{10^{-3}} d\rho \left(S_n \right) d\rho \left(S_n \right) d\rho$$

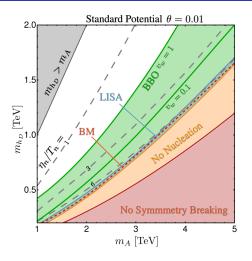
$$\beta = -\frac{d}{dt} \left(\frac{S_3}{T} \right) = H T_n \frac{d}{dT} \left(\frac{S_3}{T} \right) \bigg|_{T_n}$$



Results



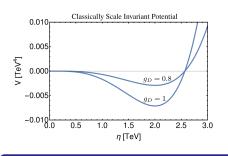
Results

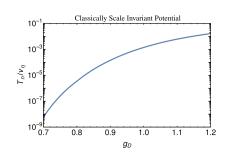


LISA can test only limited parameter space of standard, polynomial type, potentials. BBO can do somewhat better. But we are really after a scenario which generically returns a lot of supercooling.

Classically Scale Invariant Potential

- Hambye, Strumia 1306.2329





Potential at T=0

$$V_1^0(\eta) \simeq rac{9g_D^4\eta^4}{512\pi^2} \left(\operatorname{Ln}\left[rac{\eta}{v_\eta}
ight] - rac{1}{4}
ight)$$

The thermal contribution of the gauge bosons is added to this. Universe generically becomes vacuum dominated before PT.

For $T_n < \Lambda_{\rm QCD}$ need to add effects of QCD

- Iso, Serpico, Shimada 1704.04955

DM relic density

DM relic density

DM and PT possibilities

• Regime (i): standard freeze-out.

(ia).
$$T_n > \Lambda_{\rm QCD}$$
.

(ib). $\mathcal{T}_n < \Lambda_{\mathrm{QCD}}.$ (QCD effects break the scale invariance)

DM relic density

DM and PT possibilities

- Regime (i): standard freeze-out.
 - (ia). $T_n > \Lambda_{\rm QCD}$.
 - (ib). $T_n < \Lambda_{\rm QCD}$. (QCD effects break the scale invariance)
- Regime (ii): super-cool DM.
 - (iia). $T_n > \Lambda_{\rm QCD}$.
 - (iib). $T_n < \Lambda_{\rm QCD}$. (QCD effects break the scale invariance)

Super-cool DM - Hambye, Strumia, Teresi 1805.01473

$$|Y_{
m DM}|_{
m super-cool} = |Y_{
m DM}^{
m eq} rac{T_{
m RH}}{T_{
m infl}} \left(rac{T_{
m end}}{T_{
m infl}}
ight)^3$$

DM relic density

DM and PT possibilities

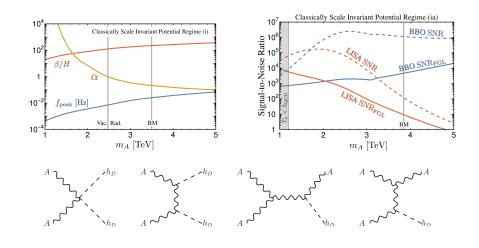
- Regime (i): standard freeze-out.
 - (ia). $T_n > \Lambda_{\rm QCD}$.
 - (ib). $T_n < \Lambda_{\rm QCD}$. (QCD effects break the scale invariance)
- Regime (ii): super-cool DM.
 - (iia). $T_n > \Lambda_{\rm QCD}$.
 - (iib). $T_n < \Lambda_{\rm QCD}$. (QCD effects break the scale invariance)

Super-cool DM - Hambye, Strumia, Teresi 1805.01473

$$|Y_{
m DM}|_{
m super-cool} = |Y_{
m DM}^{
m eq} rac{T_{
m RH}}{T_{
m infl}} \left(rac{T_{
m end}}{T_{
m infl}}
ight)^3$$

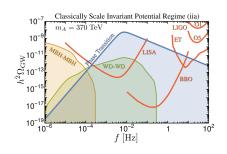
Regime (ia) and (iia) are ameable for testing using GWs!

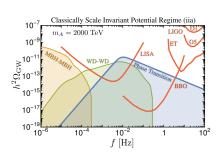
GW signal Regime (ia) - Freezeout



$$g_D pprox 0.9 imes \sqrt{rac{m_A}{1~{
m TeV}}}$$

GW signal Regime (iia) - Super-cool DM



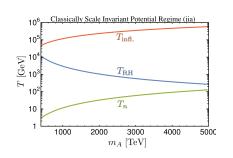


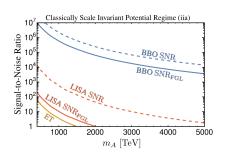
Super-cool DM

$$|Y_{
m DM}|_{
m super-cool} = |Y_{
m DM}^{
m eq} rac{T_{
m RH}}{T_{
m infl}} \left(rac{T_{
m end}}{T_{
m infl}}
ight)^3$$

Here $g_D \simeq 1$ and $m_A \gtrsim 370$ TeV.

GW signal Regime (iia) - Super-cool DM

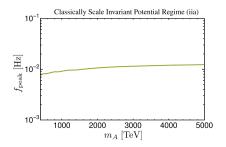




We correct for the period of matter domination after the PT.

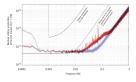
$$f_{
m peak}
ightarrow \left(rac{T_{
m RH}}{T_{
m infl}}
ight)^{1/3} f_{
m peak} ~~ \Omega_{
m GW}
ightarrow \left(rac{T_{
m RH}}{T_{
m infl}}
ight)^{4/3} \Omega_{
m GW}$$

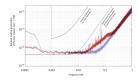
Peak Frequency Regime (iia) - Super-cool DM



Key prediction of the model

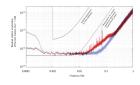
We find the peak frequency here is $\sim 10^{-2}$ Hz almost independent of m_A .



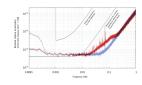


Summary

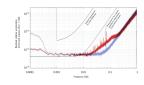
• Extensively studied the PTs for spin-one DM.



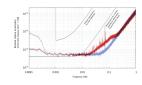
- Extensively studied the PTs for spin-one DM.
- Case study for sensitivity of future GW observatories to DM models.



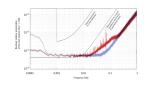
- Extensively studied the PTs for spin-one DM.
- Case study for sensitivity of future GW observatories to DM models.
- LISA, which will launch in 2034, will test scenarios with significant supercooling.



- Extensively studied the PTs for spin-one DM.
- Case study for sensitivity of future GW observatories to DM models.
- LISA, which will launch in 2034, will test scenarios with significant supercooling.
- More advanced instruments needed for polynomial potentials.



- Extensively studied the PTs for spin-one DM.
- Case study for sensitivity of future GW observatories to DM models.
- LISA, which will launch in 2034, will test scenarios with significant supercooling.
- More advanced instruments needed for polynomial potentials.
- Phase transitions: another pheno avenue to explore in your favourite models.



- Extensively studied the PTs for spin-one DM.
- Case study for sensitivity of future GW observatories to DM models.
- LISA, which will launch in 2034, will test scenarios with significant supercooling.
- More advanced instruments needed for polynomial potentials.
- Phase transitions: another pheno avenue to explore in your favourite models.
- ullet Much work still needed o exciting times ahead.

Backup

The terms of the one-loop effective potential

Effective Potential

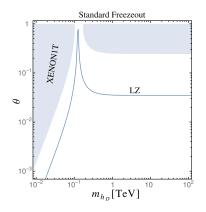
$$V_{\text{eff}} = V_{\text{tree}}(\phi) + V_1^0(\phi) + V_1^T(\phi, T) + V_{\text{Daisy}}(\phi, T)$$

$$V_1^0(\phi) = \sum_i \frac{g_i(-1)^F}{64\pi^2} \left\{ m_i^4(\phi) \left(\text{Log}\left[\frac{m_i^2(\phi)}{m_i^2(v)} \right] - \frac{3}{2} \right) + 2m_i^2(\phi) m_i^2(v) \right\}$$

$$V_1^T(\phi, T) = \sum_i \frac{g_i(-1)^F T^4}{2\pi^2} \times \int_0^\infty y^2 \operatorname{Log}\left(1 - (-1)^F e^{-\sqrt{y^2 + m_i^2(\phi)/T^2}}\right) dy$$

$$V_{\mathrm{Daisy}}^{\phi}(\phi,T) = rac{T}{12\pi} \Big\{ m_{\phi}^3(\phi) - \left[m_{\phi}^2(\phi) + \Pi_{\phi}(\phi,T)
ight]^{3/2} \Big\}$$

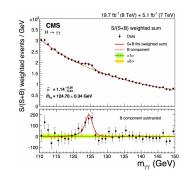
Direct Detection - Limit on Mixing

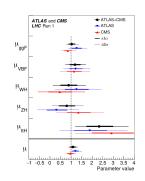


$$\sigma_{\mathrm{SI}} = rac{g_D^4 f^2 m_N^4 v_\eta^2}{64\pi (m_N + m_A)^2 v_\phi^2} \left(rac{1}{m_h^2} - rac{1}{m_{h_D}^2}
ight)^2 \sin^2 2 heta$$

For $m_A \gtrsim \mathcal{O}(100)$ GeV, need $\theta \lesssim 0.2$.

LHC constraints - Limit on Mixing





$$\mu=1.09\pm0.11$$

 $\mu = 1.10 \pm 0.06$

LHC Run 1 7 + 8 TeV

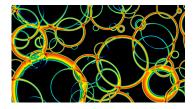
LHC Run 2

13 TeV

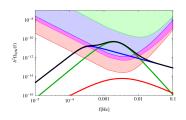
1606.02266 1810.02521

$$\theta \lesssim \mathcal{O}(0.1)$$

Predicted GW spectra



From a simulation by Weir et. al.



LISA working group 1512.06239

$$h^2\Omega_{\mathrm{GW}}(f)\equiv h^2rac{f}{
ho_c}rac{d
ho_{\mathrm{GW}}}{df}$$

Three contributions

- Scalar field contribution
- Sound waves in the plasma
- Magnetohydrodynamic Turbulence.

Predicted GW spectra

The spectra depend on the macroscopic properties

- Latent heat α
- Timescale of the transition β^{-1}
- The Hubble scale (or almost equivalently T_n)
- The wall velocity v_w

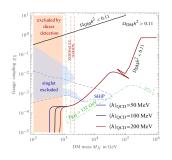
These are all calculable from microphysics (although v_w is technically challenging).

We can calculate these quantities and then match onto results from simulations/semi-analytic studies.

If enough of a plasma is present - Bodeker, Moore 1703.08215

- ullet Runaway wall is prevented by $P_{
 m LO}\sim T^2\Delta M^2$ or $P_{
 m NLO}\sim \gamma g^2T^3\Delta M$
- Scalar field contribution is suppressed.

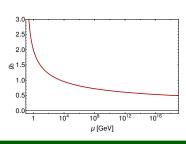
Super-cool DM relic density



Super-cool DM - Hambye, Strumia, Teresi 1805.01473

$$\begin{split} Y_{\rm DM}|_{\rm super-cool} &= Y_{\rm DM}^{\rm eq} \frac{T_{\rm RH}}{T_{\rm infl}} \left(\frac{T_{\rm n}}{T_{\rm infl}}\right)^3 \\ Y_{\rm DM}|_{\rm sub-thermal} &= M_{\rm Pl} M_{\rm DM} \langle \sigma_{\rm ann} v_{\rm rel} \rangle \sqrt{\frac{\pi g_*}{45}} \int_{z_{\rm RH}}^{\infty} \frac{dz}{z^2} Y_{\rm eq}^2 \end{split}$$

Taking into account QCD



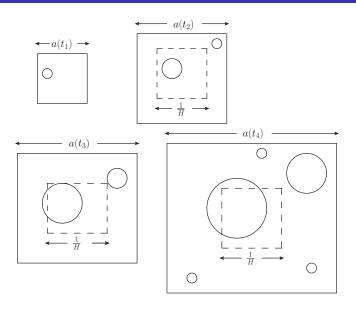
If $T_n \lesssim \Lambda_{\rm QCD}$, QCD confinement must be taken into account.

- When QCD confines a mass scale enters the potential.
- EW Symmetry is broken by the quark condensate.
- The Higgs gets a VEV $\langle h \rangle \sim \Lambda_{\rm QCD}$ induced by $y_t h \langle \overline{t_L} t_R \rangle$.
 - Witten '81
- This gives a mass term $V_{\rm eff} \supset -\lambda_{h\eta} \Lambda_{QCD}^2 \eta^2$.
- The thermal barrier disappears at $T \sim m_h \Lambda_{QCD}/m_A$.
 - Iso, Serpico, Shimada 1704.04955

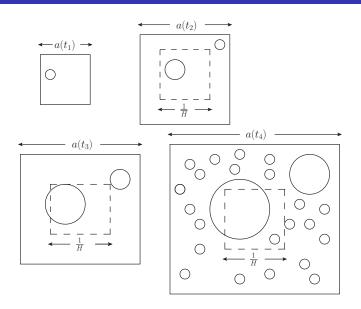
Why is the signal suppressed for $T_n < \Lambda_{QCD}$?

- With massless quarks QCD PT is first order at $T \sim \Lambda_{QCD}$: GW signal Helmboldt, Kubo, van der Woude 1904.07891
- However inflation continues until $T \sim m_h \Lambda_{QCD}/m_A$ \rightarrow suppresses signal.
- $SU(2)_D$ PT is also first order.
- But due to mass term $V_{\rm eff} \supset -\lambda_{h\eta}\Lambda_{QCD}^2\eta^2$ signal is weak.

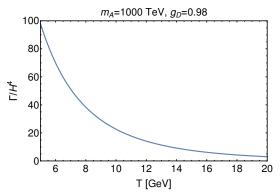
So we focus on $\overline{T}_n > \Lambda_{\rm QCD}$ instead.



If nucleation rate is low, we can form bubbles which never meet.

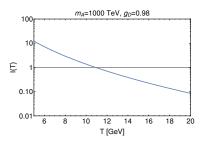


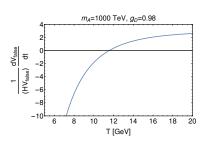
If nucleation grows enough, sufficient bubbles to meet will nucleate.



In the classically scale invariant potential we have a slow transition but an exponentially growing nucleation rate.

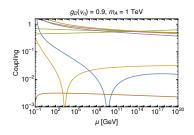
We can explicitly check the volume of false vacuum decreases and the bubbles will percolate.





$$\begin{split} P(T) &\equiv e^{-I(T)} \lesssim 1/e \implies I(T) = \frac{4\pi}{3} \int_{t_c}^t dt' \Gamma(t') \mathsf{a}(t')^3 r(t,t')^3 \gtrsim 1 \\ &\frac{1}{H\mathcal{V}_{\mathrm{false}}} \frac{d\mathcal{V}_{\mathrm{false}}}{dt} = 3 + T \frac{dI}{dT} \lesssim -1. \end{split}$$

Radiative Symmetry Breaking



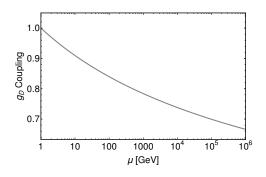
We start with a classically scale invariant theory

• The dark gauge coupling drives the exotic quartic negative in the IR

$$\beta_{\lambda_\eta} = \frac{1}{(4\pi)^2} \left(\frac{9}{8} g_D^4 - 9 g_D^2 \lambda_\eta + 2 \lambda_{h\eta}^2 + 24 \lambda_\eta^2 \right)$$

- This signals radiative symmetry breaking Coleman, E. Weinberg '73
- The potential is approximated in the flat direction in field space
 - Gildener, S. Weinberg '76

Dark Running



$$\frac{dg_D}{d\ln(\mu)} = \frac{g_D^3}{(4\pi)^2} \left(-\frac{22}{3} + \frac{1}{6} \right)$$