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Hierarchy versus triviality



The hierarchy problem:

Why is the Weak Scale so much lower than the Planck Scale - and how is it protected?

More precisely perturbation theory with a higgs scalar is suspect: very “massive states”
dominate any perturbative calculation to do with higgs physics.

Actually don’t even need a heavy resonance: this can be true for some other rapid change

(in e.g. beta functions) at a high scale. e.g. at one-loop ... suppose some physics comes in
at a scale Agry to complete the theory: then
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The hierarchy problem:

This integral might be small if there are some symmetries:

© Higgs is a Goldstone mode of some broken global symmetry (like the pions in chiral A

symmetry breaking) with breaking scale of a few TeV: Smj, ~ A2X
Uv

o Supersymmetry - relates boson to fermions. Divergences cancel level by level.
Phenomenology requires soft (a.k.a. dimensionful) breaking.

© Scaling symmetry - Higgs is the Goldstone mode of a broken scale invariance (a.k.a.
dilaton) (a trivial perturbative example of this is the Standard Model with vanishing higgs
mass, but it can occur in nonperturbative models based on AdS/CFT).

© Misaligned Supersymmetry - even non-supersymmetric non-tachyonic strings are finite.

(stringy symmetry when you sum over entire tower of states) (Dienes, Moshe, Myers (90’s),
SAA+Dienes+Mavroudi)




The triviality problem:

Scalars lead to Landau poles: => the theory is UV incomplete

But trying to UV complete it results in the hierarchy problem back again (The longer | leave
it the larger A sy is by the time | have fixed the problem)



Hints from QCD about UV completness

QCD is (unlike SUSY) a UV complete theory. Why?

1. There is no hierarchy problem: quark masses are protected by chiral symmetry

2. There is no triviality problem: QCD is asymptotically free

Oy = —Ba?

Oy ]

Note the philosophy of QCD: we do not mind masses running because they do not upset the
Gaussian UV fixed point. We simply measure them and let them run. Or to put it another way:
they are “relevant” operators that are effectively zero in the UV. They do not need to run to
zero in the UV! (We also don’t care too much about couplings blowing up in the IR.)



Asymptotic safety in 4D QFT

Philosophy: can we UV complete the SM?




Gastmans et al '78
Weinberg '79

The Basic idea of Asymptotic Safety Reuteﬁff,'vilerich

Gawedski, Kupiainen
Kawai et al,
de Calan et al’,
Litim

Weinberg et als proposal for UV completing theories Morris

IR n 0AY

Gaussian IR fixed point => perturbative

Interacting UV fixed point => finite anomalous dimensions
In a field theory replace 1/€ with 1/ => some divergences of marginal

operators (which affect the fixed point), are cured and they stop running



Divide up the content of a theory as follows:

Irrelevant operators: like <l>6 would disrupt the fixed point - therefore asymptotically safe

theories have to emanate precisely from UV fixed point where they are zero (exactly
renormalizable trajectory)

Marginal operators: can be involved in determining the UV fixed point where they become
exactly marginal. Or can be marginally relevant (asymptotically free) or irrelevant.

Relevant operators: become “irrelevant” in the UV but may determine the IR fixed point.
Dangerously irrelevant operators: grow in both the UV and IR (common in e.g. SUSY)
Harmless relevant operators: shrink in both the UV and IR

Note relevant or marginally relevant operators still have “infinities” at the FP - just as

quark masses, they still run at the FP just like any other relevant operator: but being
relevant they do not affect the FP. (By definition they become unimportant at in the UV.)



UV. v. LR. EP.

Simple example of flow - normal QCD:

87504 — _BCV2 t = log i/ 1o

This theory has unstable fixed point at a = 0. Asymptotically free if B>0
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Caswell-Banks-Zaks fixed point: (Famously in Seiberg duality)

Take QCD with SU(N¢) and Np fermions but very large numbers of colours+flavours

Ny 11
O,a = —Ba? + Ca’ Boce— b
N 2
Turns out C>0, B>0: theory has stable IR fixed point at & = B/C and unstable oneinUV a=0
87504

U/C o

Note perturbativity: — B|<& (
requires many fields (Veneziano limit) with Np =~ 11N¢ /2

Familiar from weakly coupled supersymmetry where N < 3N in N = lcase



Cartoon of a would-be Interacting UV FP:

Again would have ... Orx = — Ba? + Ca’

But requires C<0, B<0, this theory has stable IR fixed point at & = 0 and unstable UV one at a = B/C

87504

At t -> infinity the coupling ends up here (and fields have finite anomalous dimensions)

/

Again perturbativity would require NF AN 11NC/2

Implementing Asymptotic Safety either requires strong coupling or
many degrees of freedom



Asymptotic safety in 4D QFT (Example)



Real situation requires several couplings to realise

Litim & Sannino ’14

Need to add scalars and Yukawa couplings:

L =T P Ey + T (@i Q) +yTr (QHQ) +Te (9,H' 0 H)

—uTr [(H'H)?| — v (Tr [HTH))?,

H is an Nr x Np scalar

Initially have U(Ng)r X U(Npg)g flavour symmetry



Effect of Yukawa ....
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Four 't Hooft-like couplings - flow could in principle be four dimensional

N :g2NC N :yQNC N :uNF 0 - v N2
T (m2 Y (dm2 T b (dr)?

(47)>

but ...




Four 't Hooft-like couplings - flow could in principle be four dimensional

N :gQNC N :y2NC N :uNF 0 - v N2
P Y (dm T (@m2t Y (4n)?

but ...

UV fixed point

1D exactly renormalisable trajectory! =

0.020 (04 h

Gaussian IR fixed point



Along the critical-curve/exact-trajectory can parameterise the flow in terms of Qg (t)

anlt) = 30y (1)

3/20 + 623 — 61/23
a,(t) = o ag(t

0.020 a,’h



Quiver diagram for this model:

SU(NFp)L

SU(N¢) || SUWNg)L | SU(Ng)r | Spin
Qa; O O 1 1/2
Q" N 1 ] 1/2
H! 1 O O 0

SU(NF)R




Towards radiative symmetry breaking



Towards radiative symmetry breaking

No Coleman-Weinberg mechanism



Recap of the idea

© The SM is “classically” scale invariant - tree level Lagrangian has no mass

~ Coleman Weinberg mechanism leads to spontaneous breaking at a scale
because the scale invariance is anomalous. (Huge amount of interest since 2012)

© Compute effective potential and renormalize it

; ~ ) : ) ‘ |¢| T ———
2 og -2y Vo TV
1 Ver 4!‘¢‘ i 647r2‘¢‘ o2 0 6 0¢? =0 dp* o= 1

jWe imposed by hand no generation of mass terms!
tMinimization leads to dimensional transmutation

11 4m2X
9g4




o Heuristically seems unlikely to work from a UV fixed point: CW is all about IR scale

invariance where z=0 - which is why it is a strange starting point for solving the problems
of large UV thresholds.

~ Proof (already shown numerically by Litim, Mojaza, Sannino but can see it analytically):
for example choose the real trace direction ...
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o Effectively

> Also define

3
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< Ef'fectively A= 327‘.2@ (Oéh _|—CVU>
F

. 1
© Also define K = SQWQW (Sah + av)
F

Corrections all of order aA, so no perturbative minimum without a mass-squared for ¢

(N2 ) (267)" (1og 2 - 2 BNz AN A 3
A YA (e 1 _ 2 - log 6 _ 2
T oz \29) 8T m T3 ) Tz \6? 672 T




Adding relevant operators (e.g.mass-squareds)



Adding relevant operators (e.g.mass-squareds)

The non-predictive free parameters




Solve Callan Symanzik eqn for them as usual =>

© warm-up; first restrict ourselves to the diagonal direction where mass-squared term
looks like the following operator:

2

e )2
V34NF (Tr(H + H'))

Anomalous dimension of fields

t-dependence in one-loop calculation of V



Solve Callan Symanzik eqn for them as usual =>

For mass-squareds, by dimensions have contributions from cross-terms only ...

2
Mo 19 At
— 1

Voo 2 ¢ ( +167T2>

Using the solutions along the separatrix:

A
_ 2

1 6
— Bz = 20, + —(a, + ap)
mZ " Y NZ

= Jog, (f: E[H 5 ( 20+6\/2_3—1—\/2_3>])

IN2

i.e. mass-squared scales with the gauge coupling like all the marginal couplings ...



in the end ...

We find multiplicative renormalisation ...

o T e
mo(t) = m; (—9 — 1) af= 0.4561¢€
(87
g

3f
In principle ... m; =m;(0) (a}/ag(0) —1)* but you should just think of it as an RG invariant
that defines this particular trajectory. (Every relevant operator will have an associated invariant.)

It has the same status as the chiral quark masses.

Trajectories all correspond to different clhoice of RG invariant:
they cannot be determined BY|DEFINITION




Radiative symmetry breaking by mass terms



Critique of that example...

~ Purely multiplicative: Hence the mass-squared has to be negative along the whole trajectory

- We cheated: in the sense that we ignored all the orthogonal directions!! These also get
contributions at one-loop even though their masses were zero at tree-level



Critique of that example...

~ Purely multiplicative: Hence the mass-squared has to be negative along the whole trajectory

- We cheated: in the sense that we ignored all the orthogonal directions!! These also get
contributions at one-loop even though their masses were zero at tree-level

Instead organize everything interms of the U(Np) x U(Np) flavour symmetry that
we break with the mass-squareds (operators must be closed under RG):

(ho + ipo) .
H — :[L X ha, a Ta
N NexNp + (ha + 1D4)
Nz -1
Lsope = —mp Tr [HTH|] = > ATy [HT®] Tr [HT

a=1



Non-trivial simple example...

Consider the case where the trace component has a slightly smaller mass-squared:

class

Ve, = maTe(HYH) + 24 " Tr(T,HY)Tr(T,H)

mQ
2 —mia:mga:mg+A2
A{—mQ _m2 _m2
ho — """po — "'°0




Non-trivial simple example...

After some work find the following answer in terms of two RG invariants, one for
2
each independent (non-predicted) relevant operator  (wherev =(1- 1/Nf )):

3fm0 BfA
o (% " 2 g o
mg = Mg\ — — - A* v T ’
Qg %
3fm0 3FA

fmo > fa T *\

Dies away quickly in the IR Dies away slowly in the IR



Starting values get relatively closer in UV (note the masses are all shrinking in absolute terms in

1

v

o

the IR) - full flavour symmetry restored precisely at fixed point

m2

The sum of the mass-squareds quickly dies to zero in IR




Induces radiative breaking...

2, 2
mo /m*
0.010}
0.005}
7 7 ~20 g t=log(u/po)
—o00st e
-0.010} e—0 1 «
X g min 7 =
) g
2 ~ 2
mO,min m.,

Pause to reflect: No different from radiative breaking in SUSY (the masses have the same
status as the quark masses of QCD). We do not need to protect them from anything — they
just are what they are on this trajectory. (However we cannot do any GUT-ting or similar)



The story with general flavour structure ...

This gets complicated because we need to find the beta function for a set of
operators that is closed under RG: useful to use a definition in terms of “hierarchical”
nested SU(n) flavour factors :

H;; = \/L§ (hzj + szy) heg + i1pg = \/§le(th + ipij)

(o \

T =1
7 2n(n — 1) L —n

n

and define trace over SU(n) block of generators ~ Tr,,(0;;) = Z O;i

1=1



Then we have the usual dimensionless flavour symmetric Lagrangian (slight
renaming) ...

Lover D Lxw + %Tr [(QH ) - Q] + %Tr [qH'q) —uyTx [H'H]" — uyTr [H'H H'H]

and consider adding all possible flavour breaking in the dimensionful operators ...

Nrp—1

2 2 2 2
2) _ Mp 2, 2 Z m,, | (Trph)” + (Try,p)

Ty (h2 +p2) . (Trnh)2 + (Tfnp)z

AS
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n=2
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Now we need to figure out the beta functions. This is big mess, but in the end you find ...

coupl’g Operator Coefficient in 16729,V
4u
mg Try,. (b + p?) md {2u1 [N} +1] + 4uzNr} + A%, (201 + §2) (NE — 1)
+ SNF 2wy (m2 + A2 (0~ 1))
Tr h 2-|— Tr 2
A?VF Trnp (b2 +p?) — (Ton >NF< ve?) 2u1A?\7F
2 2
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Then we find

Nrp—1

2 2 2 2
2) _ Mo 2, 2 Z m;, | (Trnh)” 4+ (Tr,p)
Nfp 2 2
Z A2 Tr,h)° + (Try,
n=2

* —3/4e
Interms of  Q(t) = (& - ) which goes to zero in the IR, we have
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Generally in IR find flavour hierarchies grow ...

V — Z A2 [Trn (h2 +p2) —n ((Trnh)2 + (Trnp)Q)}

n>1
/ These bitS a" ﬂOW to zero faSter

~ f Y, i

m% = (%) m QOfatrfn
2 _ i 2 Ofa 2 A+ fn
An o n2 pn*Q + 0,82
1 ® ® . . .

ms, = ) (pi*(l —n?)Qf> + Ji*Qf“f”) : Also you could consider hierarchies generated

by the €2’s themselves



Tetrad Model for the ASSM...



Tetrad Model for the ASSM...
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© Tetrad Model - focus on breaking SU(Nc) to SU(3) colour with new scalars ...
c.f. Gies, Jaeckel, Wetterich ‘04; Bond,

Litim; Bond, Hiller, Kowalska, Litim; Gies,
Rechenberger, Scherer, Zambelli;
Pelaggi, Plascencia, Salvio, Sannino,

Smirnov; Molinaro, Sannino, Wang;
Mann, Meffe, Sannino, Steele, Wang,

SU2)r = [SU(2), @ SU(2)s]diag Zhang,
SU(Nr)L D SU(Nr)r D SU(Ng) = i
SU(N¢) spin
SU(2)L ® SU(ng)L SU(2)r ® SU(ng)r SU(N¢ — 4)s @ SU(2)s
Qui 0 0o @0 I I 1/2
Q" O 1 0> G0 L 1/2
_ 1 02 (O,0) EE)EE) 1 0
Sa,r=1..Ng ] 1 1 (I =[Ne—a DLk 0
i L 02> G.0) L O=0ne-4®[k || 1/2
q; 1 1 02 (0,0 (= Onve—4 B Lk 1/2
Extension of Pati-Salam - breaks to SU(3) if we choose Ng = No — 2
N¢
NS NF 21 - 7 ~
N [ i H je 5 b_1 b )
R 2y (2) (%)~ (%)
uf v ¢ ¢y
S = T_ é% éo ¢~)O > Ng = No — 2
é% Po o )



~ Weak breaking must then occur along the H-Higgs directions:
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- Assignment implies 9 pairs of Higgses one for each Yukawa coupling



SU(N¢) x SUR2) x SUR2)r — SU3)e x SUR2), xU(1)y

- Explicit embedding looks like P-S with

N¢

ST N N N
Yo T3 oY%
S~ N~
Q Q Q Q Q Q
S 3 n OO
N—

I

&

=

Ng = N¢g — 2




© Explicit embedding looks like P-S with  SU(N¢) x SU(2)r x SU(2)g — SU(3). x SU2)L x U(1)y

)\ ((2{) (%) R
)  Np 5 Q= (ic> <:%>
) () (%)
/, \ : : )
A [ (o V_1 b1 \
(505 ) - (%
] o G0 ) - 0
(8 w0y ) - (3
M?’v 5 5 )

s /
o Little g’s required (by chiral symmetry) to remove the extra SU(2) doublets: (Nc-4) uncharged

under SU(2)R




And the couplings that do this are as follows:

removes excess quark colours:
Standard Yukawas masses remove 2 q's S locks colour/flavour

y S P
Lover D Lxs+ ST {(QH) - Q} + s (qHg] — ETr[(s - Q) ]
— T [H'H]" — o Te [HH HH] — o Tx [HH] Te | $7. 8]

_wlTr[gf.gf_mr[gf.ggrg |

Note expect relatively light (TeV scale) g-states looking like “higgsinos”



And the couplings that do this are as follows:

removes excess quark colours:
S locks colour/flavour

Standard Yukawas masses remove 2 q’s

~

~

Lover O Lxm + —=Tr {(QH) - Q} + %Tr (qHg] — %Tr[(g - Q) ]

V2
— T [H'H]" — o Te [HH HH] — o Tx [HH] Te | $7. 8]
L 212 e aa s
—unTr [§1- 8] - wy T [$7. 551 8
For later fine rescaled c’pgs: _ Neg® o Ney? . New . NeY? o NeV?
or later use define rescaled c’pgs: o, 7 O = Gyt 01 = Gzt O = o O = gy
N}%’U/l . NFU2 . N%’Ul. . Ngwl . . NCw2

o T w2 M T @2 T @m0 T @2 M T (a2




In case you’re suffering from “expectation versus reality syndrome” ...

Expectations VS Reality -



In case you’re suffering from “expectation versus reality syndrome” ...
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A guiver diagram is useful to see (at least some of the structure of) what we did:

Before:

SU(Np)p == SU(NF)R




After: (hence the name Tetrad)

SU(Ns — 2)s @ SU(2)s

SU(Nf)LD H SU(Nf)RD

SU(N; — 2n,)1 @ (SU(ng)r ® SU(2);) SU(N; — 2n,)r @ (SU(ng)r ® SU(2),)




~ As this model is based on LS, the same UVFP applies (see later). But what about AS for the
SU(2)xSU(2) electroweak gauge groups?

These see a large number of flavours (Nf (small f) of order order Nc)?

© This gives UVFP behaviour with a fixed point at 't Hooft couple ~ 1 ... if Nf >>16:

Palanques Mestre, Pascual; Gracey; Holdom;

Shrock; Antipin, Pica, Sannino

Resum first terms gives

300 _,, H(@)
4042 Nf

1
H(a) = 1 log |3 — 2a| + constant

+ O(N;?)

Coupling

~ —4N
Flavour, g’ Qs = 5—06 f

// Colour, g,y

_—

Mass squared



© Interpretation: the flow is on a hypersurface in g,y,g’ that is independent of g’ (more later)

Coupling

A A Flavour, g’

Colour, g,y

Mass squared

Colour, g,y Electroweak, g’




~ Can show by power counting that the two kinds of UVFP decouple.

> In the Veneziano limit the corrections to the weak FP go like epsilon. Can neglect

everything but SU(2) gauge couplings when determining the SU(2) fixed points...

O D9 -G

D

1
Ny

1
Ny

1 ~(L-1)

Ck Oé N—fOé

>>

ag& ~ EQ

OéyO{ ~ EQ

oA

(L-1)

3\
EL
D



© Conversely for the SU(Nc) fixed point ...

(O (D =(

2

&l



C.W. Radiative symmetry breaking is automatic!



e Suppose that the classically relevant operators are negligible. (compared to the scales we
are about to generate.)

e Then Coleman-Weinberg radiative symmetry breaking is induced along the flow.

e First look at Yukawas which run without caring about quartics:




e Suppose that the classically relevant operators are negligible. (compared to the scales we
are about to generate.)

e Then Coleman-Weinberg radiative symmetry breaking is induced along the flow.

e First look at Yukawas which run without caring about quartics:

Ncg2 ) o N0y2. NcﬂQ- N0Y2. NCY/2 )

Qg = (471-)2 ; Oy = (47‘(‘)2’ Qg =

4 26
B, = 0452; <§e—|—(?xp—20)ag—x%ay—xpay—xpa?) ,

By = 4T +ay (L +2r)oy + ag + ay +ay —6ay)
g = AT +ay(I+zrp)ag+ oy +ay +ay) ,
1 1
By = 2xrYT + ay (2(1—|—xp)ay—|—asp(§ay+50@+2a?)—3a9) ,
1 1
By =2z Y + ay 2(1—|—$‘F)O{}7—|—I‘F(§Oéy-|—50@4—20@/)—30{9 .

T = | /oyagayay



e Solve to find the following set of fixed points ...

Label | o) | az/ay ay /oy ay /ag ay /oy
A 0 0 0 0 0
B [ fe| 0 T 0 0
C |32¢| 0 % — 151 m — = 0
D [3%e| 0 | ot~ i 0 Tl 11
E [55e] 0 | sioinr ~ 37 | srseormr — o7 | omseermE — o

A—-B—CD—FE

e A s the Gaussian fixed point — i.e. usual quartic theory

e B s the LS fixed point trajectory (so we know it leads to a true UVFP when we add quartics)

e C,D are unstable trajectories in both UV and IR directions

® Eisan IR “fixed-trajectory” (sometimes called quasi-fixed point) in the absence of quartics




The flow to the E-trajectory is induced by the Y couplings:

Nearby FP for just Gauge/Yukawa
with non-zero Y True UVFP with only non-zeroy

.\

0.00257 ¢

000256 Cross-over induced by Y couplings

0.00255}

L A L L L .
0.00243 0.00244 0.00245 0.00246 0.00247 ij



® This in turn induces a flow in the quartic couplings driving them negative! we essentially

have Gildener-Weinberg breaking of the extended PS symmetry.
Note that the generated H mass-squareds are all positive at this scale. But as we saw

flavour dependence could generate EW breaking lower
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® This in turn induces a flow in the quartic couplings driving them negative! we essentially
have Gildener-Weinberg breaking of the extended PS symmetry.

® Note that the generated H mass-squareds are all positive at this scale. But as we saw
flavour dependence could generate EW breaking lower

=4
V~a,S
6.x 1077}
4.x107%7}

2.x 10777}

-2.x107%}

—4.x107%}

—6.x 1077}



Thoughts on embedding in string theory



Normally try to think about such UV fixed point behaviour within field
theory: but is string theory already asymptotically free?



Normally try to think about such UV fixed point behaviour within field
theory: but is string theory already asymptotically free?

A) No! (Distler) String theory doesn’t need such behaviour to make itself finite. The
massless spectrum doesn’t control finiteness, and in any case it doesn’t resemble any
known field theory with a UV fixed point.



Normally try to think about such UV fixed point behaviour within field
theory: but is string theory already asymptotically free?

A) No! (Distler) String theory doesn’t need such behaviour to make itself finite. The
massless spectrum doesn’t control finiteness, and in any case it doesn’t resemble any
known field theory with a UV fixed point.

B) Yes! (Wetterich) String theory has only one dimensionful parameter (which goes into
defining the units by which we measure energy). A second energy scale is needed to
observe scale violation. This could be the Planck scale, or the dynamical scale of some field
theory. But well above the physics at which this second scale is generated, the theory
should return to scale invariance(a.k.a. a UV fixed point for operators)



Normally try to think about such UV fixed point behaviour within field
theory: but is string theory already asymptotically free?

A) No! (Distler) String theory doesn’t need such behaviour to make itself finite. The
massless spectrum doesn’t control finiteness, and in any case it doesn’t resemble any
known field theory with a UV fixed point.

B) Yes! (Wetterich) String theory has only one dimensionful parameter (which goes into
defining the units by which we measure energy). A second energy scale is needed to
observe scale violation. This could be the Planck scale, or the dynamical scale of some field
theory. But well above the physics at which this second scale is generated, the theory
should return to scale invariance(a.k.a. a UV fixed point for operators)

It would be interesting to know if it is B) and if so how string theory does it.



e A meaningful RG procedure with a messy UV: attempt 1)

1672 2204 |
—92 Aé?uge(s) - = 3 (ppbpv - nguy) (E — YE + log A7 —+ log (— ) ,
167'('2 (2)

S
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+
o
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xw‘ N

2N,
‘Ascalar(s) - —s(pupl/ - p2.gw/)

3

Interested in s dependence at a particular mu. Normally count UV divergences



e A meaningful RG procedure with a messy UV: attempt 1)

Instead count branch cuts as a function of s

167 220A 1 :
92 Aé?uge(s) - (pupv nguy) (E — YE + log A7 —+ IOg (—?

1 2
5 Atei(5) = — (ups = PGy (— — v + log 4 + log 5 + (
€ mf

(2) 2N
g ‘Ascalar< ) 3

S

1 u?
(pupy pQQW) (Z — g +log4nm + log 3 + (

The most physical picture: Total s branch cuts just tell us how many states

above threshold (s > 4m”2) (but hard to get without doing the actual

integral) 1 [1672

g () =~ | A o)

v




e A meaningful RG procedure with a messy UV: attempt 1)

QZCA

1 B
(pupv ng;w) (E — YE + log A7 —+ log (—— ) ,

S
2 Aferm(s) ~ 3 (pupu p guu) E — v + log4m + log m—? +(1+ A(S; mf,mf) ,

Aéiilar( ) = 3 —(pupv — P’ g0) (E —vE +log4m + log 3 + (1 — ) A(s;ms,ms)> :

g°

Or impose IR cut-off on Schwinger integral: equivalent to deep Euclidean s, and then..

o (L5 A®)
dlog s

5#(3) = Re



e Toy example: KK theory

2 (s) = [UOnKK) | q drdzr" Ab _ m - m
589%(3) 5 + mZ/ / TdxT exp | T(sx(l —x) — 72

(non KK) + Im / / de:U

Poisson resum then to get the branch cut expand the exponential until you get the pole
—> log —> power law running beta function:

Ab ZRdﬁd/2 exp (7’(3 z(l—2x)— u7r2R2>
¢

T

(d+3)/2
g\ T P [(3+d/2) 2d4+1

(RV3)+0 ((R\/E)d_l)



e Toy example: KK theory

Note that the answer averages over the UV states and is not the same as a naive
rigid cut-off at the scale s. (e.g. can introduce Scherk-Schwarz splitting of N=4
theory — the KK modes still give zero, even though the naive beta function

would oscillate as ™~ +- (R\/g)d )



RG in a messy UV: the string case



e Can we do the same thing in a string theory?

e Kaplunovsky + \infty ... calculate threshold corrections by doing the same diagram:

2 2
v 9y M 1m0 v d°T Q,BZQ
" ~ == (k1 ky — ki.kant E
16772( 172 1-R27] )/ T 47T2|77 ‘4 5 mt
d*z Vap(0]7) 2k1.k 2 2| sab koo 2
4 log(————= | |V 12 —k1.ko—S 0 Tr | — 05 log ¥ (2
[ 22 (o tou PO ) o )P exp | ko 222 0T | o2 ogvn (2 + @

gYM abr.pn 152 @ —WSTQL . 19@5(0|7_) . 1 2
~ o2 =20 (kU kY — k1.kam )/ 7_26 47T2Tr Ami0; log n(7) 47T7_2-|—Q



This is the scale s — the answer will go like log(s) — so this gives the correct
running in the field theory limit (s << 1) where the cut-off is at tau_2 >> 1.

I+

Q

9 v v .
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X / %z (47?2'8T 1og(%)

gYM ab/1.1.v v dTQ — ST 1 . 19045 (O|T) 1 2
~~ 0V (kY kS — Ekq.kont — 2—Tr (470, 1 —
1672 (k ks = F-kom )/ . ar? ( s n(7) 47Ty +e

1 Z 7Z
- ZZ2 ZOé,B, 2
2 S
a,D,42

2
1(2)[2F1R2 exp _kl.kQ_Tr%(Z)2 52Ty i(?g log ¥1(2) + Q2
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Note the importance of e—kl'k2G12 — 6_3G12/2 v @ 728



Note the importance of e—kl'k2G12 — 6_8G12/2 L @ T2

The particle limit of the world-sheet Green’s function gives a natural cut-off in s:



Note the importance of e—kl'k2G12 —sG12/2

; 6—71'7'28

€

The particle limit of the world-sheet Green’s function gives a natural cut-off in s:
This is the one you want:

_ § : 72 e27ri(mu—m))
7|lmT + n|?

(m,n)#(0,0)
— Z 72 p2mi(m(z1—T122/72) —nz2/72)
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Note the importance of e—kl'k2G12 — —sG12/2 v @ 728

The particle limit of the world-sheet Green’s function gives a natural cut-off in s:
This is the one you want:

: TN~ L o le'<k+>—2|||k—/|
G(z2|T _ 'z — e minze /T2 4+ p2mim(kTi+21) ,—2mT2|m 29 /7o
n#0 m#0
(& -~ J/ kEZ

=G (2|7)=2772(22 /73— |22/ 72|+ 2)

1
~ 2T (25 )15 — |22 /Ta| + 6) e T

[ S P S e ol ol _ o

c.f. the the factor eT(Sw(l_w)_mQ) that appeared in the field theory two-point fn.

Takes the form of the one-loop world-line Green’s function + stringy corrections.



However: string theory is defined on-shell — can use tricks but probably not
very meaningful at scales well above s>>1.



e A meaningful RG procedure with a messy UV: attempt 2)

Instead focus on amplitudes we can calculate on-shell: 4pt gluon amplitude in the
Euclidean region s>>1, t,u<0 and add contributions from t channel and u channel.
Also gives corrections to the Yang-Mills action, but can now put gluons on-shell.



e A meaningful RG procedure with a messy UV: attempt 2)

Instead focus on amplitudes we can calculate on-shell: 4pt gluon amplitude in the
Euclidean region s>>1, t,u<0 and add contributions from t channel and u channel.
Also gives corrections to the Yang-Mills action, but can now put gluons on-shell.

In field theory: in principle we need to calculate about 1000 diagrams. However
can use various tricks to extract the divergences, or branch-cuts. e.g. only need to

D X
Adding the diagrams in s,t,u channel
gives correct answer! N K ><E

populate these topologies ...

T7 T8 T9
T10 T11 T12



e A meaningful RG procedure with a messy UV: attempt 2)

Instead focus on amplitudes we can calculate on-shell: 4pt gluon amplitude in the
Euclidean region s>>1, t,u<0 and add contributions from t channel and u channel.
Also gives corrections to the Yang-Mills action, but can now put gluons on-shell.

In string theory: The fixed angle scattering amplitude and region of phase space
was done by Gross-Mende: dominated by saddle at

4
<g—z> = —g ~ sin’ ¢/2 ,

() =5 =
— | = ——~cos“¢/2.
03

S



e A meaningful RG procedure with a messy UV: attempt 2)

4
(9—2) _ ! ~ sin? ¢/2 ,
93 S 7/:
O 4_—ENCOSQ¢/2 "
(93 N s .

u - channel | s - channel

: 2(5/0)) | | T
F( y 55 138111 (¢/2)) g t- Cwel
N/
- - . . L 5 t
T — 103X inthe zero angle limit logarithmically ... exp(—mTs) = T

We now see that if we add the s,t,u parts equally, the definition is modular invariant !



e A meaningful RG procedure with a messy UV: attempt 2)

The integrand has a well defined saddle point which gives the amplitude

N

4 gn 9" 2 ¥ 40/3
9421O7T—24(Stu)—8/3€—(slogs—l—tlogt—l—ulogu)/8 H ﬁoz (ﬁa + %(7/\_)> %(%)—13 (7)

a=2

Adding the 3 channels we get a “beta function” that goes to zero in the UV:

B

1.5 2.0 2.5 3.0

-0.5+
-1.0+

-1.5-




Summary

Adapted perturbative asymptotically safe QFTs (gauge-Yukawa theories)

A minimal embedding of the SM within this set-up straightforward within an extended PS
structure

Radiative symmetry breaking can be driven by Coleman-Weinberg or running mass-terms

Overall now has the “feel of” other RG systems with large numbers of degrees of freedom
in the UV: simpler dual way to understand this type of theory?

It would be very nice to have a better lattice handle on large Nf UV fixed points

It would be nice to think about flavour hierarchies in this set-up.



