

LHCb results on rare Ab decays

Carla Marin Benito, Michal Kreps

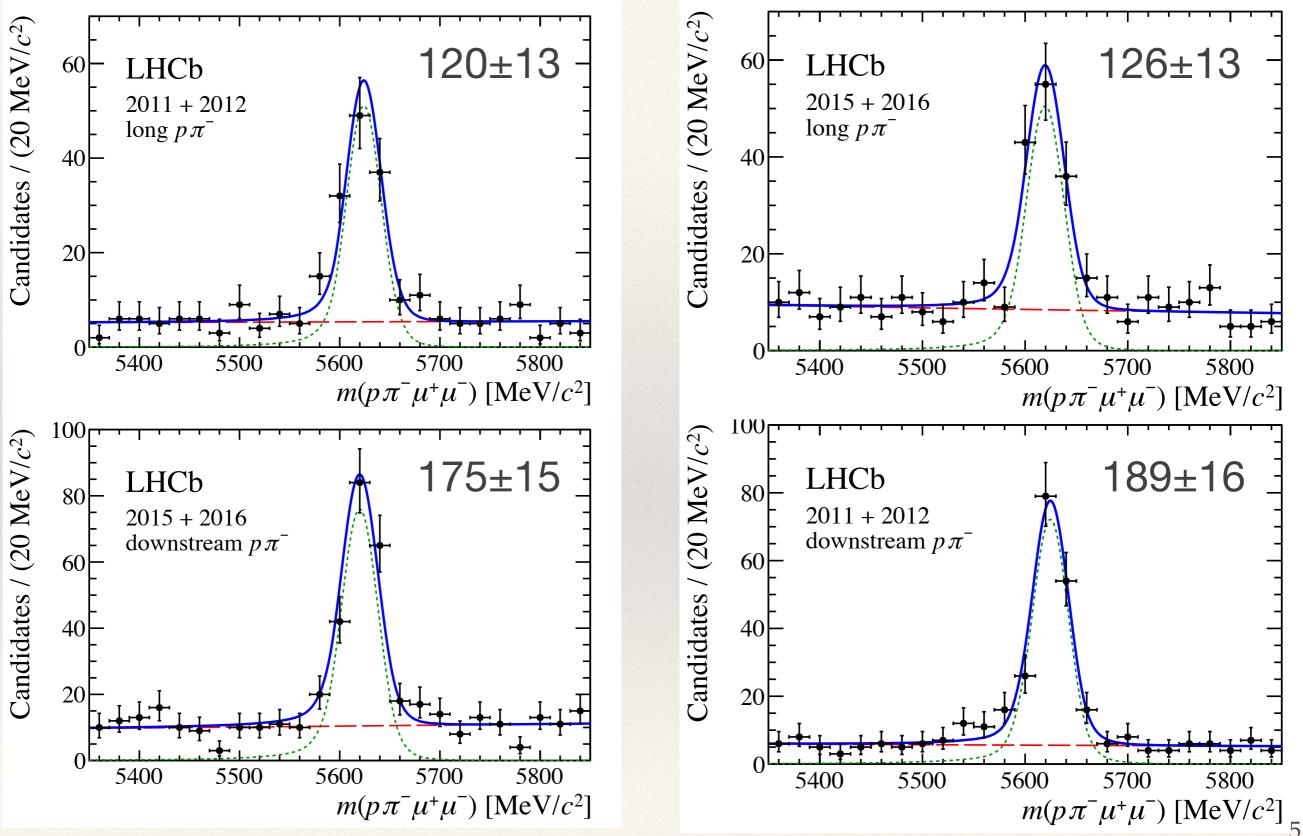
Why Λ_b baryons

- Compared to mesons, three differences
 - * Different spectator system diquark vs. single quark
 - If Λ_b produced polarised, access to more information than in meson case
 - Lowest strange baryon Λ decays weakly with asymmetry in decay amplitudes and retains non-trivial structure in angular distribution (unlike K_S)
 - ★ Form factors for $\Lambda_b \rightarrow \Lambda$ known well from LQCD (Phys.Rev. D93 (2016), 074501)
- Potentially interesting system to complement knowledge gain from meson decays

Angular analysis of $\Lambda_b \rightarrow \Lambda \mu \mu$

- Latest analysis uses about 5 fb⁻¹ of data (Run 1, 2015+2016)
- From 3 fb⁻¹ analysis we knew only significant signal at high q²
- Perform measurement only in 15<q²<20 GeV²
- Get full angular information
 - Low statistics, use method of moments

			C
q^2 interval [GeV ² / c^4]	Total signal yield	Significance	Ĭ
0.1 - 2.0	16.0 ± 5.3	4.4	Ē
2.0-4.0	4.8 ± 4.7	1.2	U
4.0-6.0	0.9 ± 2.3	0.5	0
6.0-8.0	11.4 ± 5.3	2.7	õ
11.0-12.5	60 ± 12	6.5	N
15.0-16.0	57 ± 9	8.7	0
16.0 - 18.0	118 ± 13	13	-
18.0-20.0	100 ± 11	14	5
1.1 - 6.0	9.4 ± 6.3	1.7	
15.0-20.0	276 ± 20	21	-
			(J

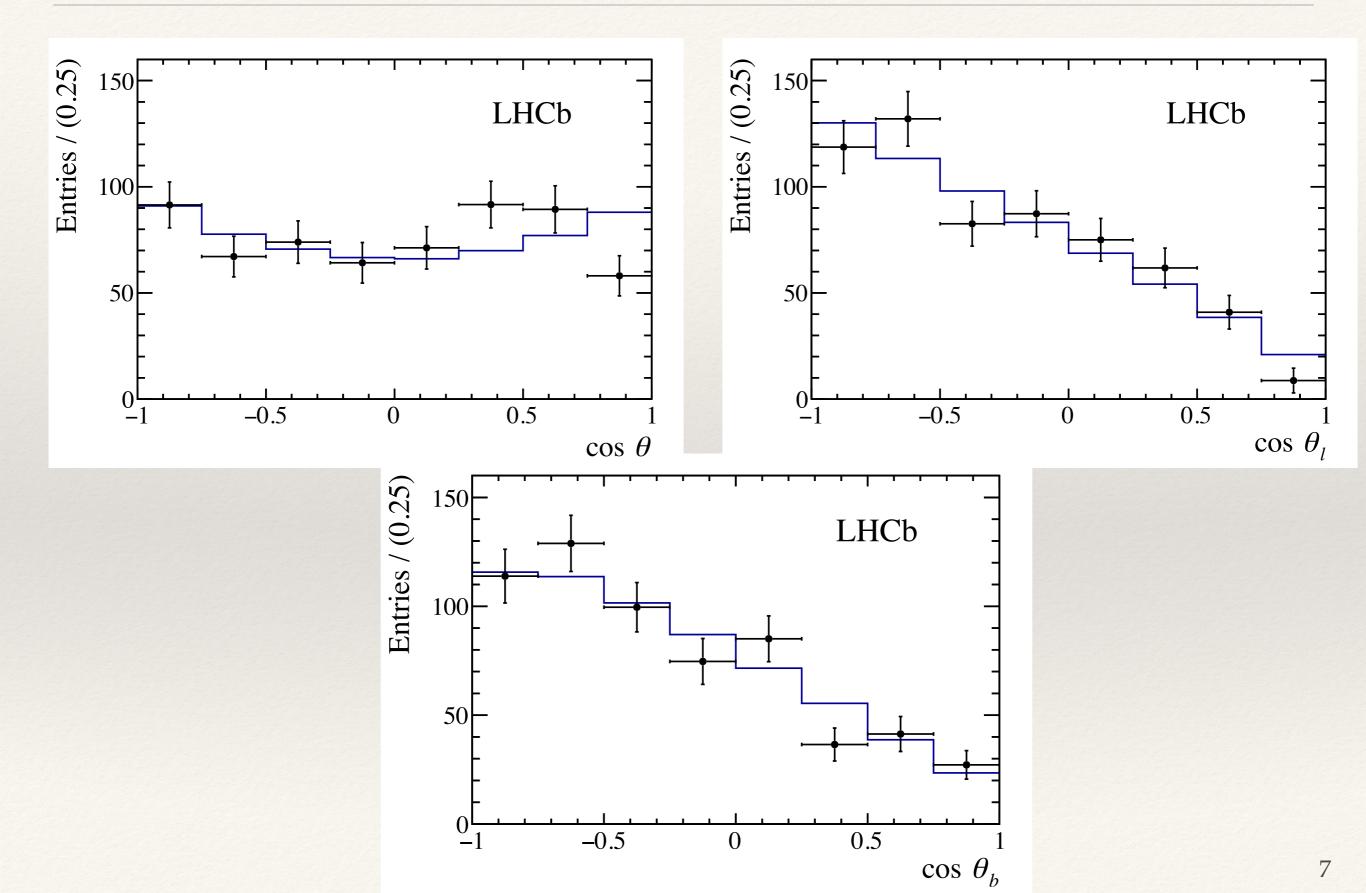

Angular distribution

- Full 5D angular
 distribution from JHEP
 1711 (2017) 138
- Observables 1-10 do not depend on production polarisation
- Others proportional to production polarisation
 - Expect close to zero given small measured polarisation

 $(K_1 \sin^2 \theta_l + K_2 \cos^2 \theta_l + K_3 \cos \theta_l) +$ $(K_4 \sin^2 \theta_l + K_5 \cos^2 \theta_l + K_6 \cos \theta_l) \cos \theta_b +$ $(K_7 \sin \theta_l \cos \theta_l + K_8 \sin \theta_l) \sin \theta_b \cos (\phi_b + \phi_l) +$ $(K_9 \sin \theta_l \cos \theta_l + K_{10} \sin \theta_l) \sin \theta_b \sin (\phi_b + \phi_l) +$ $\left(K_{11}\sin^2\theta_l + K_{12}\cos^2\theta_l + K_{13}\cos\theta_l\right)\cos\theta +$ $\left(K_{14}\sin^2\theta_l + K_{15}\cos^2\theta_l + K_{16}\cos\theta_l\right)\cos\theta_b\cos\theta +$ $(K_{17}\sin\theta_l\cos\theta_l + K_{18}\sin\theta_l)\sin\theta_b\cos(\phi_b + \phi_l)\cos\theta +$ $(K_{19}\sin\theta_l\cos\theta_l + K_{20}\sin\theta_l)\sin\theta_b\sin(\phi_b + \phi_l)\cos\theta +$ $(K_{21}\cos\theta_l\sin\theta_l + K_{22}\sin\theta_l)\sin\phi_l\sin\theta +$ $(K_{23}\cos\theta_l\sin\theta_l + K_{24}\sin\theta_l)\cos\phi_l\sin\theta +$ $(K_{25}\cos\theta_l\sin\theta_l + K_{26}\sin\theta_l)\sin\phi_l\cos\theta_b\sin\theta +$ $(K_{27}\cos\theta_l\sin\theta_l + K_{28}\sin\theta_l)\cos\phi_l\cos\theta_b\sin\theta +$ $\left(K_{29}\cos^2\theta_l + K_{30}\sin^2\theta_l\right)\sin\theta_b\sin\phi_b\sin\theta +$ $(K_{31}\cos^2\theta_l + K_{32}\sin^2\theta_l)\sin\theta_b\cos\phi_b\sin\theta +$ $(K_{33}\sin^2\theta_l)\sin\theta_b\cos(2\phi_l+\phi_b)\sin\theta+$ $(K_{34}\sin^2\theta_l)\sin\theta_b\sin(2\phi_l+\phi_b)\sin\theta)$.

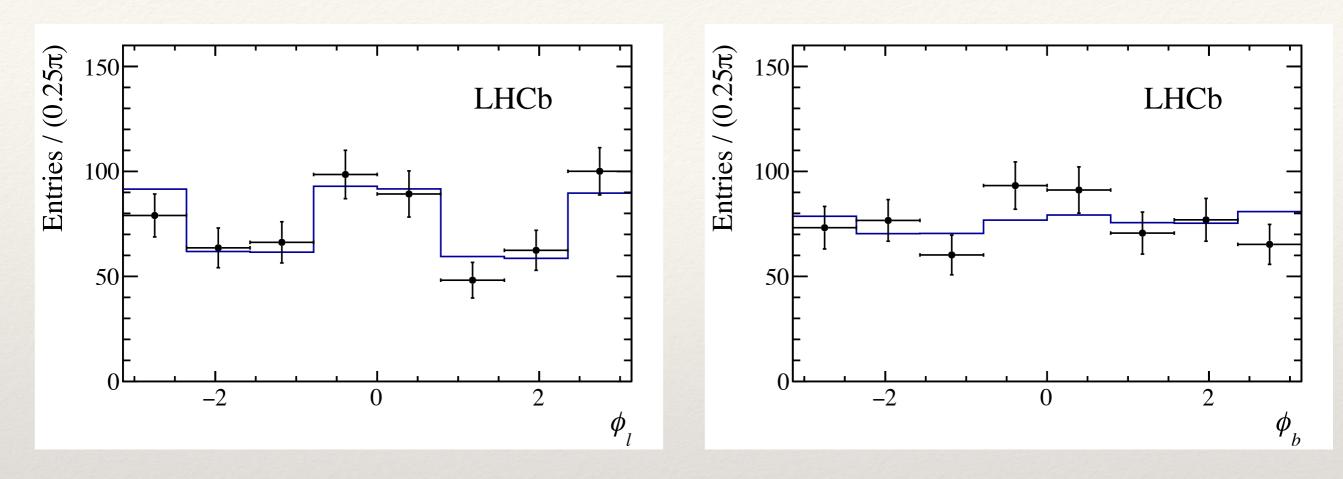
```
JHEP 09 (2018) 146
```

Signal yield



Background subtraction/Efficiency correction

- Method of moments based on orthogonality of trigonometric functions
- Observables obtained by calculating weighted sum, need to subtract background and correct for efficiency
- Background subtracted using sWeights
- Efficiency corrected using sum of products of Legendre polynomials
 - Takes into account correlations
 - Can be bit tricky with large number of terms needed


JHEP 09 (2018) 146

Angular projections

JHEP 09 (2018) 146

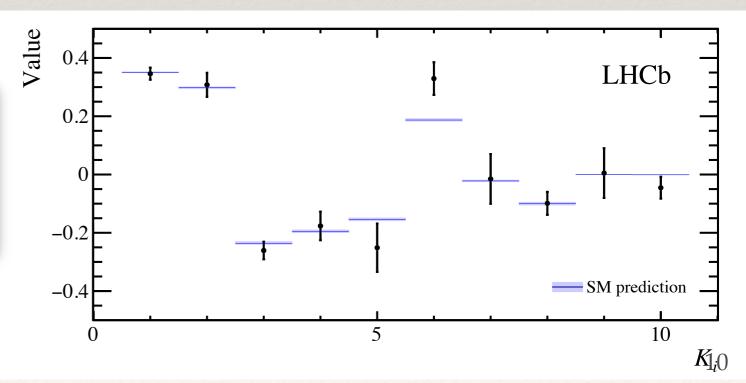
Angular projections

- Good description of data
- * Be aware that shape of $\cos(\theta_b)$ controlled by Λ decay asymmetry parameter
 - BESIII measurement in Nature Phys. 15 (2019)
 631-634 much higher than PDG value

JHEP 09 (20,18) 146

Systematic uncertainties

- Generally smaller than statistical uncertainties
- Many can be improved rather easily if they would start to be comparable to statistics
 - Some variations are unnecessary large but did not really matter


Source	Uncertainty $[10^{-3}]$	
	Range among K_i	Mean
Simulated sample size	3-22	9
Efficiency parameterisation	1-13	4
Data-simulation differences	2-16	6
Angular resolution	1-11	4
Beam crossing angle	1-8	4
Signal mass model	1-4	2

Results

- Consistent with SM but also
 with C^{NP}₉=-1
- Combines different CMS energies
 - * Moments of $\Lambda_b \rightarrow J/\psi \Lambda$ consistent \iff no difference in polarisation
- Covariance matrix OK

$$\begin{split} A^{\ell}_{\rm FB} &= -0.39 \pm 0.04 \, ({\rm stat}) \, \pm 0.01 \, ({\rm syst}) \ , \\ A^{h}_{\rm FB} &= -0.30 \pm 0.05 \, ({\rm stat}) \, \pm 0.02 \, ({\rm syst}) \ , \\ A^{\ell h}_{\rm FB} &= +0.25 \pm 0.04 \, ({\rm stat}) \, \pm 0.01 \, ({\rm syst}) \ . \end{split}$$

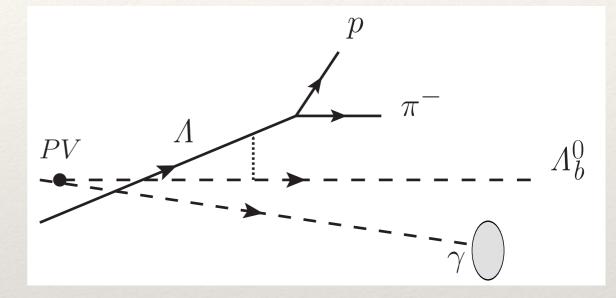
Obs.	Value	Obs.	Value
K_1	$0.346 \pm 0.020 \pm 0.004$	K_{18}	$-0.108 \pm 0.058 \pm 0.008$
K_2	$0.308 \pm 0.040 \pm 0.008$	K_{19}	$-0.151 \pm 0.122 \pm 0.022$
K_3	$-0.261 \pm 0.029 \pm 0.006$	K_{20}	$-0.116 \pm 0.056 \pm 0.008$
K_4	$-0.176\pm 0.046\pm 0.016$	K_{21}	$-0.041 \pm 0.105 \pm 0.020$
K_5	$-0.251 \pm 0.081 \pm 0.016$	K_{22}	$-0.014 \pm 0.045 \pm 0.007$
K_6	$0.329 \pm 0.055 \pm 0.012$	K_{23}	$-0.024 \pm 0.077 \pm 0.012$
K_7	$-0.015 \pm 0.084 \pm 0.013$	K_{24}	$0.005 \pm 0.033 \pm 0.005$
K_8	$-0.099 \pm 0.037 \pm 0.012$	K_{25}	$-0.226 \pm 0.176 \pm 0.030$
K_9	$0.005 \pm 0.084 \pm 0.012$	K_{26}	$0.140 \pm 0.074 \pm 0.014$
K_{10}	$-0.045 \pm 0.037 \pm 0.006$	K_{27}	$0.016 \pm 0.140 \pm 0.025$
K_{11}	$-0.007 \pm 0.043 \pm 0.009$	K_{28}	$0.032 \pm 0.058 \pm 0.009$
K_{12}	$-0.009 \pm 0.063 \pm 0.014$	K_{29}	$-0.127 \pm 0.097 \pm 0.016$
K_{13}	$0.024 \pm 0.045 \pm 0.010$	K_{30}	$0.011 \pm 0.061 \pm 0.011$
K_{14}	$0.010 \pm 0.082 \pm 0.013$	K_{31}	$0.180 \pm 0.094 \pm 0.015$
K_{15}	$0.158 \pm 0.117 \pm 0.027$	K_{32}	$-0.009 \pm 0.055 \pm 0.008$
K_{16}	$0.050 \pm 0.084 \pm 0.023$	K_{33}	$0.022 \pm 0.060 \pm 0.009$
K_{17}	$-0.000\pm 0.120\pm 0.022$	K_{34}	$0.060 \pm 0.058 \pm 0.009$

Note on $\Lambda_b \rightarrow \Lambda \mu \mu BF$

- * Measured relative to $\Lambda_b \rightarrow J/\psi \Lambda$ but its BF not well known
- * $\Lambda_b \rightarrow J/\psi \Lambda$ BF based on $f_\Lambda/f_d \times B(\Lambda_b \rightarrow J/\psi \Lambda)/B(B^0 \rightarrow J/\psi K_s)$ dominated by D0 measurement
- Fragmentation fraction is p_T dependent, depends on experiment

b hadron	Fraction at Z[%]	Fraction at $\overline{p}p$ [%]	$\operatorname{JeV}^{-2}c^4$		EP + TeVat eVatron	ron average		
		34.0 ± 2.1 10.1 ± 1.5 21.8 ± 4.7 $\Lambda_b \rightarrow J/\psi \Lambda$ ent to have	$\langle dB/dq^2 \rangle [0]$	1				
	l number			0	5	10	15	$\frac{20}{\text{GeV}^2/c^4}$

Near term future


- * Measure $\Lambda_b \rightarrow J/\psi \Lambda$ BF with LHCb data to have solid normalisation
- * Look back to differential branching fraction of $\Lambda_b \rightarrow \Lambda \mu \mu$ with full LHCb dataset
 - Should be about 4× previous dataset
 - LQCD (Phys.Rev. D93 (2016), 074501) expects in 1.1-6
 GeV² about 1/4 of signal in 15-20 GeV²
 - * It should be feasible to see some signal also at low q^2
- * Add remaining data for angular analysis of $\Lambda_b \rightarrow \Lambda \mu \mu$
 - Should double dataset
 - Might be possible to do something at low q² but might be difficult to get fully correct correlations
- * Measure $\Lambda_b \rightarrow p K \mu \mu$ differential branching fraction

Observation of $\Lambda_b \rightarrow \Lambda \gamma$

- No radiative b-baryon decay measured before
- * In SM: BR = $(10^{-7} 10^{-5})$
 - * large form factor uncertainties at $q^2=0$
 - best limit: BR < 1.9 x 10⁻³ at 90% CL [CDF <u>Phys.Rev.D66:112002</u>]
- * Gives access to the photon polarisation thanks to weak decay of Λ baryon
 - * test of right-handed currents in C7
- * Analysis uses 1.7 fb⁻¹ (2016)
- Dedicated trigger implemented in Run 2
 - Run 1 data has no sensitivity

Event reconstruction

- * Very challenging decay topology:
 - Large Λ lifetime
 - * No direction from the γ cluster
 - Cannot reconstruct decay vertex

Dedicated reconstruction:

- * Λ_b momentum as direct sum of Λ and γ momenta (origin at PV)
- ★ Reconstructed Λ and Λ_b trajectories don't necessarily cross but distance should be small → exploit in selection
- still, large combinatorial background expected

Multivariate selection

- Key analysis part: before this ~750 signal with ~150k background events expected!
- * Exploit high performance BDT using XGBoost algorithm
 - Kinematic and isolation information as input
- Requirement on BDT output optimised with Punzi figure of merit:

$$FoM = \frac{\epsilon_S}{\sigma/2 + \sqrt{N_B}}, \sigma = 5$$

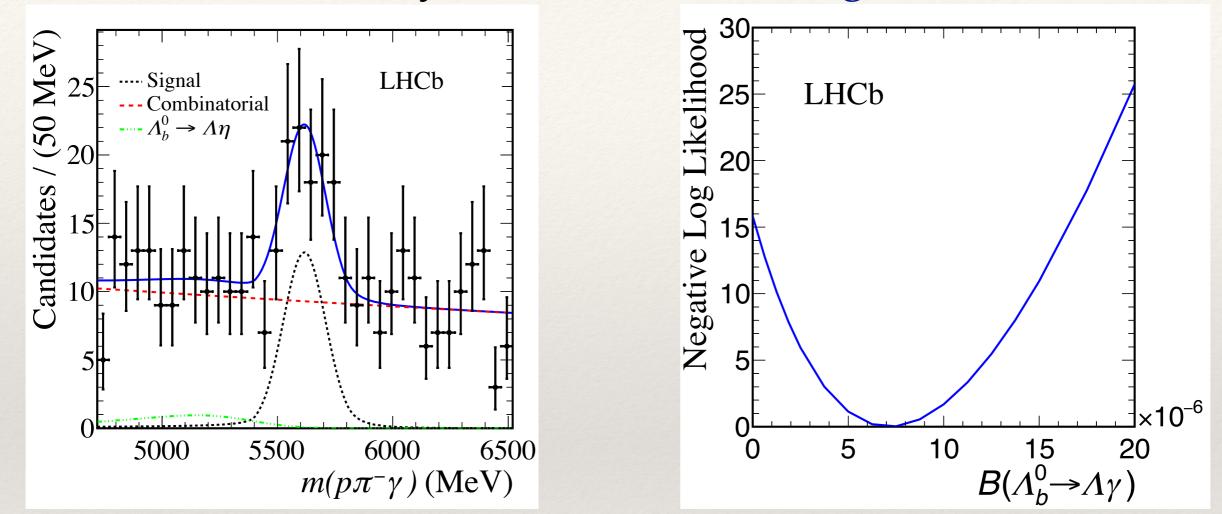
achieve 99.8% background rejection with 30% signal efficiency

Normalisation

* Use well-known $B^0 \rightarrow K^* \gamma$ decay to extract BR measurement:

$$\frac{N(\Lambda_b^0 \to \Lambda\gamma)}{N(B^0 \to K^{*0}\gamma)} = \frac{f_{\Lambda_b^0}}{f_{B^0}} \times \frac{\mathcal{B}(\Lambda_b^0 \to \Lambda\gamma)}{\mathcal{B}(B^0 \to K^{*0}\gamma)} \times \frac{\mathcal{B}(\Lambda \to p\pi^-)}{\mathcal{B}(K^{*0} \to K^+\pi^-)} \times \frac{\epsilon(\Lambda_b^0 \to \Lambda\gamma)}{\epsilon(B^0 \to K^{*0}\gamma)}$$

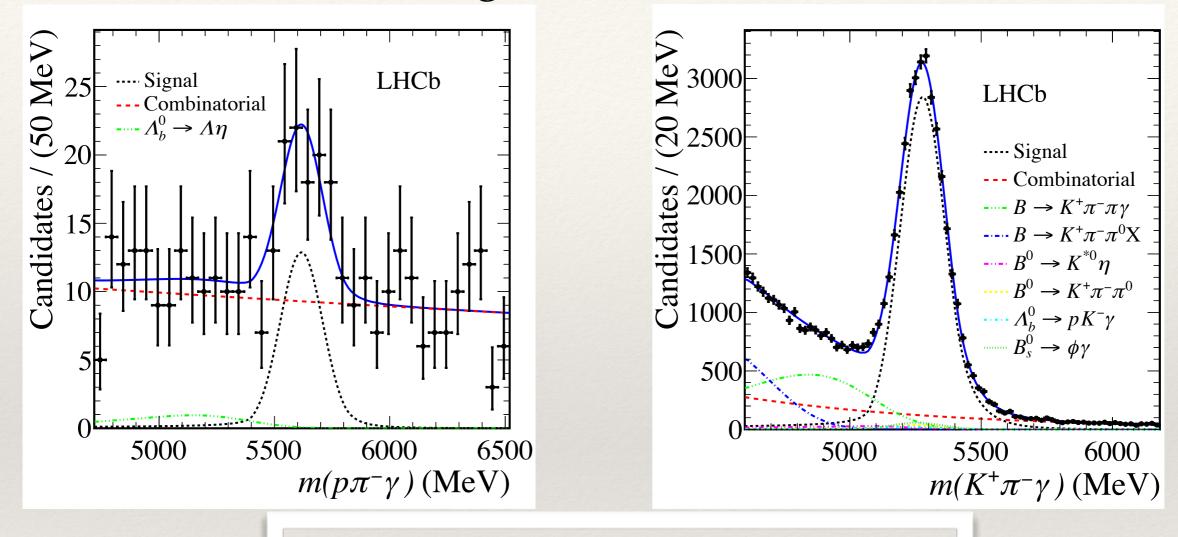
- Hadronisation fraction from LHCb [Phys. Rev. D 100, 031102(R)]
- Input branching fractions from PDG
- * Efficiencies from simulation and calibration samples


Systematic uncertainties

* Analysis statistically dominated, main uncertainties:

	Source	Uncertainty (%)
	Data/simulation agreement	7.7
	Λ_b^0 fit model	3.0
Internal	$B^0 \rightarrow K^{*0} \gamma$ backgrounds	2.7
	Size of simulated samples	1.7
	Efficiency ratio	1.4
	Sum in quadrature	9.0
External	$f_{A_{b}^{0}}/f_{B^{0}}$	8.7
LACTIA	Input branching fractions	3.0
	Sum in quadrature	9.2

$\Lambda_b \rightarrow \Lambda \gamma$ observation


* Invariant mass fit yield with 65 ± 13 signal events

Signal excess has 5.6**o** significance

BR measurement

Simultaneous fit to signal and normalisation modes

BR = $(7.1 \pm 1.5 \pm 0.6 \pm 0.7) \times 10^{-6}$

* In agreement with SM predictions from LCSR, HQL and Covariant Constituent QM [Wang et al., Mannel et al., Gutsche et al.]

Near term prospects

- With full Run 2 data, expect ~250 signal events
- ◆ Perform angular analysis to extract photon polarisation
 → constrain C'₇

$$\frac{d\Gamma}{d\cos\theta_{\gamma}} \propto 1 - \alpha_{\gamma} P_{\Lambda_{b}} \cos\theta_{\gamma} \qquad P_{\Lambda_{b}} \text{ is initial } \Lambda_{b}$$
polarisation, small at LHC
$$\frac{d\Gamma}{d\cos\theta_{p}} \propto 1 - \alpha_{\gamma} \alpha_{p,1/2} \cos\theta_{p} \qquad \alpha_{p,1/2} \text{ is } \Lambda \text{ decay}$$
parameter, well known

$$lpha_{\gamma} = rac{P(\gamma_L) - P(\gamma_R)}{P(\gamma_L) + P(\gamma_R)} \quad lpha_{\gamma}^{LO} = rac{|C_7|^2 - |C_7'|^2}{|C_7|^2 + |C_7'|^2}$$