Emerging patterns of New Physics with and without Lepton Flavour Universal contributions

> Marcel Algueró Universitat Autònoma de Barcelona

In collaboration with: <u>B. Capdevila, A. Crivellin, S. Descotes-Genon, P. Masjuan, J. Matias</u> and <u>J.Virto</u> Based on: [arXiv: 1903.09578] + [arXiv: 1809.08447]

 $bs\ell\ell$, September 2019, Lyon

Outline

- Motivation
 - Pattern of New Physics from $b \rightarrow s\ell\ell$ anomalies
- Anatomy of Fits
- State-of-the-art (2017 vs 2019)
- What's new?
- Discussion on models
- Conclusions and Outlook

Motivation

Coherent pattern of deviations — deficit in muons in different channels @ large and low recoil:

[Algueró et al JHEP07 (2019) 096]

Tension observed in $\mathcal{B}(B_s \to \phi \mu \mu)$ between Large and Low Recoil

Anomalies also in Lepton Flavour Universality Violating (LFUV) observables

[LHCb: 1406.6482]

Belle released new measurement of R_K in the low and high kinematic range

8

Another **LFUV** observable showing a sizeable deviation:

$$R_{K^{*0}} = \frac{\operatorname{Br}(B^0 \to K^{*0} \mu^+ \mu^-)}{\operatorname{Br}(B^0 \to K^{*0} J/\Psi(\to \mu^+ \mu^-))} \bigg/ \frac{\operatorname{Br}(B^0 \to K^{*0} e^+ e^-)}{\operatorname{Br}(B^0 \to K^{*0} J/\Psi(\to e^+ e^-))}$$

- More complex structure, 6-8 amplitudes and 7 FF
- If NP or $q^2 < 1 \,\mathrm{GeV}^2$ hadronic uncertainties return

$$R_{K^{*0}} = \begin{cases} 0.66^{+0.11}_{-0.07} \pm 0.03 & q^2 \in [0.045, 1.1] \text{ GeV}^2\\ 0.69^{+0.11}_{-0.07} \pm 0.05 & q^2 \in [1.1, 6] \text{ GeV}^2 \end{cases}$$

[LHCb: 1705.05802]

Belle combined data from neutral and charged channels:

$$R_{K^*}^{[0.045,1.1]} = 0.52_{-0.26}^{+0.36} \pm 0.05$$
$$R_{K^*}^{[1.1,6]} = 0.96_{-0.29}^{+0.45} \pm 0.11$$
$$R_{K^*}^{[15,19]} = 1.18_{-0.32}^{+0.52} \pm 0.10$$

[Belle: 1904.02440]

Another LFUV observable: $Q_5 = P_{5\mu}' - P_{5e}'$

Belle, PRL118 (2017)

Anatomy of the Fits

Weak Effective Hamiltonian

B = a = a = b = 0 B = a = a = 0 W = 0 B = a = a = 0 W = 0 B = a = a = 0 W = 0 B = a = a M = 0 B = a = a

 $\mathcal{H}^{SM}_{\triangle F=1} \propto \sum V^*_{ts} V_{tb} \mathcal{C}_i \mathcal{O}_i + \dots$

separate short and long distances $(\mu = m_b = 4.8)$ • $\mathcal{O}_7 = \frac{e}{16\pi^2} m_b \bar{s} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu} b$ [real or soft photon] • $\mathcal{O}_9 = \frac{e^2}{16\pi^2} \bar{s} \gamma_\mu (1 - \gamma_5) b \bar{\ell} \gamma^\mu \ell$ [$b \rightarrow s \mu \mu$ via Z/hard $\gamma \dots$] • $\mathcal{O}_{10} = \frac{e^2}{16\pi^2} \bar{s} \gamma_\mu (1 - \gamma_5) b \bar{\ell} \gamma^\mu \gamma_5 \ell$ [$b \rightarrow s \mu \mu$ via Z] $\mathcal{C}_7^{SM} = -0.29, \ \mathcal{C}_9^{SM} = 4.1, \ \mathcal{C}_{10}^{SM} = -4.3$

 $A = C_i$ (short dist) × Hadronic quantities (long dist)

$$\begin{array}{ll} \mathcal{C}_9 = -\mathcal{C}_{10} \Rightarrow L_q \otimes L_\ell \\ \\ \textbf{Interesting directions:} & \mathcal{C}_{9'} = -\mathcal{C}_{10'} \Rightarrow R_q \otimes L_\ell \\ \\ \mathcal{C}_9 = -\mathcal{C}_{9'} \Rightarrow A_q \otimes V_\ell \end{array}$$

Global Fits

180 observables from (LHCb, Belle, ATLAS and CMS, no CP-violating obs)

• $B \to K^* \mu \mu$ ($P_{1,2}, P'_{4,5,6,8}, F_L$ in 5 large-recoil bins + 1 low-recoil bin)+available electronic obs.

...latest update $Br(B \to K^* \mu \mu)$ in small bins.

...LHCb results on R_{K^*}

• $B_s \rightarrow \phi \mu \mu$ ($P_1, P'_{4,6}, F_L$ in 3 large-recoil bins + 1 low-recoil bin)

+ 2 bins of R_K from Belle

- $B^+ \to K^+ \mu \mu$, $B^0 \to K^0 \ell \ell$ (BR) ($\ell = e, \mu$) (new average $R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$)
- $B \to X_s \gamma, B \to X_s \mu \mu, B_s \to \mu \mu$ (BR).
- Radiative decays: $B^0 \to K^{*0}\gamma$ (A_I and $S_{K^*\gamma}$), $B^+ \to K^{*+}\gamma$, $B_s \to \phi\gamma$
- ► Belle measurements for the isospin-averaged but lepton-flavour dependent $(Q_{4,5} = P_{4,5}'^{\mu} P_{4,5}'^{e})$: [3rd test of LFUV]

$$P_i^{\prime \ell} = \sigma_+ P_i^{\prime \ell}(B^+) + (1 - \sigma_+) P_i^{\prime \ell}(\bar{B}^0) \qquad \sigma_+ = 0.5 \pm 0.5$$

similar treatment of new Belle isospin-averaged result on R_{K^*} (3-bins)

- ▶ ATLAS measurement of whole basis of P_i and CMS measurements of P_1 and P'_5 .
- ► ATLAS update of $B_s \rightarrow \mu\mu$ (averaged with LHCb & CMS) and latest f_{Bs} lattice update.

State-of-the-art 2019

Frequentist approach: $C_i = C_i^{SM} + C_i^{NP}$, with C_i^{NP} assumed to be real (no CPV)

[JHEPC)1(2018)093]		All				LFUV					
	1D Hyp.	Best fit	1 σ	2σ	Pull _{SN}	p-value	Best fit	1	σ	2σ	$Pull_{SM}$	p-value
	$\mathcal{C}_{9\mu}^{ m NP}$	-1.11	[-1.28, -0.94]	[-1.45, -0.7]	5] 5.8	68	-1.76	[-2.36,	, -1.23]	[-3.04, -0.0]	.76] 3.9	69
	$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{10\mu}^{\mathrm{NP}}$	-0.62	[-0.75, -0.49]	[-0.88, -0.3]	7] 5.3	58	-0.66	[-0.84,	, -0.48]	[-1.04, -0.0]	.32] 4.1	78
	$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{9\mu}'$	-1.01	[-1.18, -0.84]	[-1.34, -0.6]	5] 5.4	61	-1.64	[-2.13]	, -1.05]	[-2.52, -0.52]	.49] 3.2	32
	$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -3\mathcal{C}_{9e}^{\mathrm{NP}} \ $	-1.07	[-1.24,-0.90]	[-1.40, -0.72]] 5.8	70	-1.35	[-1.82]	, -0.95]	[-2.38, -0.5]	.59] 4.0	72
_	[1903.09578]		Al	1				LFUV				
_	1D Hyp.	Best fit	t $1 \sigma/2 \sigma$	$\operatorname{Pull}_{\operatorname{SM}}$	p-value	Best fit	$1 \sigma /$	2σ	$\text{Pull}_{\rm SM}$	p-value	$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	preferred in All Fit
-	$\mathcal{C}_{9\mu}^{ m NP}$	-0.98	[-1.15, -0.8] [-1.31, -0.6]	31] 54] 5.6	65.4%	-0.89	[-1.23, [-1.60,	-0.59] -0.32]	3.3	52.2%	$\mathcal{C}^{\mathrm{NP}}_{9\mu}=-0$	${\cal C}_{10\mu}^{ m NP}$ preferred in LFUV Fit
	$\mathcal{C}_{9\mu}^{ m NP}=-\mathcal{C}_{10\mu}^{ m NP}$	-0.46	[-0.56, -0.3] [-0.66, -0.2]	37] 5.2 28]	55.6%	-0.40	[-0.53, -0.63, -0.63]	-0.29] -0.18]	4.0	74.0%	Same ł	nierarchies except
_	${\cal C}_{9\mu}^{ m NP}=-{\cal C}_{9'\mu}$	-0.99	[-1.15, -0.8] [-1.31, -0.6]	32] 54] 5.5	62.9%	-1.61	[-2.13, -2.54, -2.54]	-0.96] -0.41]	3.0	42.5%	$\mathcal{C}_{9}^{\mathrm{N}}$	$\mathcal{L}_{\mu}^{\mathrm{PP}}=-\mathcal{C}_{9'\mu}$
	${\cal C}_{9\mu}^{ m NP}=-3{\cal C}_{9e}^{ m NP}$	-0.87	[-1.03, -0.7] [-1.19, -0.5]	71] 55] 5.5	61.9%	-0.66	[-0.90, [-1.17,	-0.44] -0.24]	3.3	52.2%	Rĸ	~ 1
											- 01	-

Pull_{SM}: how much the SM is disfavoured with respect to a New Physics hypothesis to explain data. \rightarrow A scenario with a large SM-pull \Rightarrow big improvement over SM and better description of data.

Frequentist approach: $C_i = C_i^{SM} + C_i^{NP}$, with C_i^{NP} assumed to be real (no CPV)

[JHEP0	1 (2018) 093]		All				LFUV						
-	1D Hyp.	Best fit	1 σ	2σ	Pulls	p-value	Best fit	1	σ	2σ	Pull _{SI}	M p-value	
-	$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	-1.11	[-1.28, -0.94]	[-1.45, -0.7]	75] 5.8	68	-1.76	[-2.36,	-1.23]	[-3.04, -0]	0.76] 3.9	69	
	$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{10\mu}^{\mathrm{NP}}$	-0.62	[-0.75, -0.49]	[-0.88, -0.3]	37] 5.3	58	-0.66	[-0.84,	-0.48]	[-1.04, -0]	0.32] 4.1	78	
-	$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{9\mu}'$	-1.01	[-1.18, -0.84]	[-1.34, -0.6]	65] 5.4	61	-1.64	[-2.13,	-1.05]	[-2.52, -0]	0.49] 3.2	32	
	$\mathcal{C}_{9\mu}^{\rm NP} = -3\mathcal{C}_{9e}^{\rm NP} \ $	-1.07	[-1.24,-0.90]	[-1.40, -0.72]	2] 5.8	70	-1.35	[-1.82]	-0.95]	[-2.38, -0]	0.59] 4.0	72	
	[1903.09578]		Al	1				LFUV					
_	1D Hyp.	Best fit	t $1 \sigma/2 \sigma$	$\operatorname{Pull}_{\operatorname{SM}}$	p-value	Best fit	1 σ/	2σ	$\operatorname{Pull}_{\operatorname{SM}}$	p-value	$\mathcal{C}_{9\mu}^{ ext{NP}}$	preferre	ed in All Fit
_	$\mathcal{C}_{9\mu}^{ m NP}$	-0.98	[-1.15, -0.8] [-1.31, -0.6]	81] 64] 5.6	65.4%	-0.89	[-1.23, -1.60, -1.60, -1.60]	-0.59] -0.32]	3.3	52.2%	$\mathcal{C}^{\mathrm{NP}}_{9\mu} = -$	- $\mathcal{C}^{ ext{NP}}_{10\mu}$ pre	eferred in LFUV Fit
	$\mathcal{C}_{9\mu}^{ m NP}=-\mathcal{C}_{10\mu}^{ m NP}$	-0.46	[-0.56, -0.3] [-0.66, -0.3]	37] 28]	55.6%	-0.40	[-0.53, -0.63, -0.63]	-0.29] -0.18]	4.0	74.0%	Same	hierarch	nies except
_	${\cal C}_{9\mu}^{ m NP}=-{\cal C}_{9'\mu}$	-0.99	[-1.15, -0.8] [-1.31, -0.6]	82] 54]	62.9%	-1.61	[-2.13, -2.54, -2.54]	-0.96] -0.41]	3.0	42.5%	С	$_{9\mu}^{\mathrm{NP}} = -6$	$\mathcal{C}_{9'\mu}$
(${\cal C}_{9\mu}^{ m NP}=-3{\cal C}_{9e}^{ m NP}$	-0.87	[-1.03, -0.3] [-1.19, -0.3]	71] 55]	61.9%	-0.66	[-0.90, [-1.17,	-0.44] -0.24]	3.3	52.2%	$R_{I\!\!P}$	$\kappa \sim 1$	

Pull_{SM}: how much the SM is disfavoured with respect to a New Physics hypothesis to explain data. \rightarrow A scenario with a large SM-pull \Rightarrow big improvement over SM and better description of data.

Frequentist approach: $C_i = C_i^{SM} + C_i^{NP}$, with C_i^{NP} assumed to be real (no CPV)

 $\begin{array}{l} \mbox{Pull}_{SM} : \mbox{how much the SM is disfavoured with respect to a New Physics hypothesis to explain data.} \\ \rightarrow \mbox{A scenario with a large SM-pull} \Rightarrow \mbox{big improvement over SM and better description of data.} \end{array}$

Frequentist approach: $C_i = C_i^{SM} + C_i^{NP}$, with C_i^{NP} assumed to be real (no CPV)

 $\begin{array}{l} \mbox{Pull}_{SM} : \mbox{how much the SM is disfavoured with respect to a New Physics hypothesis to explain data.} \\ \mbox{\rightarrow A scenario with a large SM-pull \Rightarrow big improvement over SM and better description of data.} \end{array}$

Frequentist approach: $C_i = C_i^{SM} + C_i^{NP}$, with C_i^{NP} assumed to be real (no CPV)

 $\begin{array}{l} \mbox{Pull}_{SM} : \mbox{how much the SM is disfavoured with respect to a New Physics hypothesis to explain data.} \\ \rightarrow \mbox{A scenario with a large SM-pull} \Rightarrow \mbox{big improvement over SM and better description of data.} \end{array}$

Frequentist approach: $C_i = C_i^{SM} + C_i^{NP}$, with C_i^{NP} assumed to be real (no CPV)

 $\begin{array}{l} \mbox{Pull}_{SM} : \mbox{how much the SM is disfavoured with respect to a New Physics hypothesis to explain data.} \\ \rightarrow \mbox{A scenario with a large SM-pull} \Rightarrow \mbox{big improvement over SM and better description of data.} \end{array}$

Update in 2D Fits

ΓH	[IHEP01(2018)093] "										
υ.			All		L	FUV					
	2D Hyp.	Best fit	Pull_{SM}	p-value	Best fit	$\mathrm{Pull}_{\mathrm{SM}}$	p-value				
	$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10\mu}^{ ext{NP}})$	(-1.01,0.29)	5.7	72	(-1.30,0.36)	3.7	75				
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_7')$	(-1.13,0.01)	5.5	69	(-1.85,-0.04)	3.6	66				
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu})$	(-1.15, 0.41)	5.6	71	(-1.99, 0.93)	3.7	72				
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu})$	(-1.22, -0.22)	5.7	72	(-2.22,-0.41)	3.9	85				
	$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.00, 0.42)	5.5	68	(-1.36, 0.46)	3.5	65				
	Hyp. 1	(-1.16, 0.38)	5.7	73	(-1.68, 0.60)	3.8	78				
	Hyp. 2	(-1.15, 0.01)	5.0	57	(-2.16, 0.41)	3.0	37				
	Hyp. 3	(-0.67,-0.10)	5.0	57	(0.61, 2.48)	3.7	73				
	Hyp. 4	(-0.70,0.28)	5.0	57	(-0.74, 0.43)	3.7	72				
E I	903 095781	4.11	1								
г.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		All		L	FUV					
	2D Hyp.	Best fit	All Pull _{SM}	p-value	Best fit	FUV Pull _{SM}	p-value				
	$\frac{1}{(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10\mu}^{\mathrm{NP}})}$	Best fit (-0.91,0.18)	All Pull _{SM} 5.4	p-value 68.7 %	Best fit	FUV Pull _{SM} 3.4	p-value 76.9%				
		Best fit (-0.91,0.18) (-1.00,0.02)	All Pull _{SM} 5.4 5.4	p-value 68.7 % 67.9 %	L Best fit (-0.16,0.56) (-0.90,-0.04)	FUV Pull _{SM} 3.4 2.9	p-value 76.9 % 55.1 %				
Γ.		Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55)	All Pull _{SM} 5.4 5.4 5.7	p-value 68.7 % 67.9 % 75.1 %	L Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14)	FUV Pull _{SM} 3.4 2.9 3.4	p-value 76.9 % 55.1 % 76.1 %				
	$ \begin{array}{c} \hline 2 \mathrm{D} \ \mathrm{Hyp.} \\ \hline \hline \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{7'}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9'\mu}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10'\mu}) \end{array} $	Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55) (-1.14,-0.35)	All Pull _{SM} 5.4 5.4 5.7 5.9	p-value 68.7 % 67.9 % 75.1 % 78.6 %	L Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14) (-1.88,-0.62)	FUV Pull _{SM} 3.4 2.9 3.4 3.8	p-value 76.9 % 55.1 % 76.1 % 91.3 %				
	$ \frac{ 2 \mathrm{D} \ \mathrm{Hyp.} }{ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}) } \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{7'}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9'\mu}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10'\mu}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10'\mu}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9e}^{\mathrm{NP}}) $	Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55) (-1.14,-0.35) (-1.05,-0.23)	All Pull _{SM} 5.4 5.4 5.7 5.9 5.3	p-value 68.7 % 67.9 % 75.1 % 78.6 % 66.2 %	L Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14) (-1.88,-0.62) (-0.73,0.16)	FUV Pull _{SM} 3.4 2.9 3.4 3.8 2.8	p-value 76.9 % 55.1 % 76.1 % 91.3 % 52.3 %				
		Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55) (-1.14,-0.35) (-1.05,-0.23) (-1.06,0.26)	All Pull _{SM} 5.4 5.4 5.7 5.9 5.3 5.7	p-value 68.7 % 67.9 % 75.1 % 78.6 % 66.2 % 75.7 %	Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14) (-1.88,-0.62) (-0.73,0.16) (-1.62,0.29)	FUV Pull _{SM} 3.4 2.9 3.4 3.8 2.8 3.4	p-value 76.9 % 55.1 % 76.1 % 91.3 % 52.3 % 77.6 %				
	$ \begin{array}{c} \hline 2 \mathrm{D} \ \mathrm{Hyp.} \\ \hline \hline \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{7'}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9'\mu}) \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10'\mu}) \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10'\mu}) \\ \hline \\ \mathrm{Hyp.} \ 1 \\ \mathrm{Hyp.} \ 2 \end{array} $	Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55) (-1.14,-0.35) (-1.05,-0.23) (-1.06,0.26) (-0.97,0.09)	All Pull _{SM} 5.4 5.7 5.9 5.3 5.7 5.3	p-value 68.7 % 67.9 % 75.1 % 78.6 % 66.2 % 75.7 % 65.2 %	Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14) (-1.88,-0.62) (-0.73,0.16) (-1.62,0.29) (-1.95,0.25)	FUV Pull _{SM} 3.4 2.9 3.4 3.8 2.8 3.4 3.2	p-value 76.9 % 55.1 % 76.1 % 91.3 % 52.3 % 77.6 % 66.6 %				
	$\begin{array}{c} \hline 2\text{D Hyp.} \\ \hline \hline 2\text{D Hyp.} \\ \hline \hline (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{10\mu}^{\text{NP}}) \\ (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{7'}) \\ (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{9'\mu}) \\ \hline (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{10'\mu}) \\ \hline (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{9e}^{\text{NP}}) \\ \hline \\ \text{Hyp. 1} \\ \\ \text{Hyp. 2} \\ \\ \text{Hyp. 3} \end{array}$	Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55) (-1.14,-0.35) (-1.05,-0.23) (-1.06,0.26) (-0.97,0.09) (-0.47,0.06)	All Pull _{SM} 5.4 5.4 5.7 5.9 5.3 5.7 5.3 4.8	p-value 68.7 % 67.9 % 75.1 % 78.6 % 66.2 % 65.2 % 55.7 %	L Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14) (-1.88,-0.62) (-0.73,0.16) (-1.62,0.29) (-1.95,0.25) (-0.39,-0.13)	FUV Pull _{SM} 3.4 2.9 3.4 3.8 2.8 3.4 3.2 3.4 3.4	p-value 76.9 % 55.1 % 76.1 % 91.3 % 52.3 % 77.6 % 66.6 % 76.2 %				
	$ \begin{array}{c} \hline 2 \text{D Hyp.} \\ \hline \hline 2 \text{D Hyp.} \\ \hline \hline (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{10\mu}^{\text{NP}}) \\ (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{7'}) \\ (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{9'\mu}) \\ \hline (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{10'\mu}) \\ \hline (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{9e}^{\text{NP}}) \\ \hline \\ \text{Hyp. 1} \\ \\ \text{Hyp. 2} \\ \\ \text{Hyp. 3} \\ \\ \text{Hyp. 4} \end{array} $	Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55) (-1.14,-0.35) (-1.05,-0.23) (-1.06,0.26) (-0.97,0.09) (-0.47,0.06) (-0.49,0.12)	All Pull _{SM} 5.4 5.4 5.7 5.9 5.3 5.7 5.3 4.8 5.0	p-value 68.7 % 67.9 % 75.1 % 78.6 % 66.2 % 65.2 % 55.7 % 59.3 %	L Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14) (-1.88,-0.62) (-0.73,0.16) (-0.73,0.16) (-1.62,0.29) (-1.95,0.25) (-0.39,-0.13) (-0.48,0.17)	FUV Pull _{SM} 3.4 2.9 3.4 3.8 2.8 3.4 3.2 3.4 3.4 3.6	p-value 76.9 % 55.1 % 76.1 % 91.3 % 52.3 % 77.6 % 66.6 % 76.2 % 84.3 %				

$$\begin{aligned} \text{Hyp.1} : (\mathcal{C}_{9\mu}^{\text{NP}} &= -\mathcal{C}_{9'\mu}, \mathcal{C}_{10\mu}^{\text{NP}} &= \mathcal{C}_{10'\mu}) \\ \text{Hyp.2} : (\mathcal{C}_{9\mu}^{\text{NP}} &= -\mathcal{C}_{9'\mu}, \mathcal{C}_{10\mu}^{\text{NP}} &= -\mathcal{C}_{10'\mu}) \\ \text{Hyp.3} : (\mathcal{C}_{9\mu}^{\text{NP}} &= -\mathcal{C}_{10\mu}^{\text{NP}}, \mathcal{C}_{9'\mu} &= \mathcal{C}_{10'\mu}) \\ \text{Hyp.4} : (\mathcal{C}_{9\mu}^{\text{NP}} &= -\mathcal{C}_{10\mu}^{\text{NP}}, \mathcal{C}_{9'\mu} &= -\mathcal{C}_{10'\mu}) \\ \text{Hyp.5} : (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{9'\mu} &= -\mathcal{C}_{10'\mu}) \end{aligned}$$

- Small increase ($\sim 0.2\sigma$) for some RHC scenarios opposite to 1D cases
- R_K closer to SM prefers $C_{9'\mu} > 0$ and $C_{10'\mu} < 0$
- A $R_q \otimes L_\ell$ for $\mathcal{O}_{9',10'}$ clearly prefers V structure over L_ℓ for leptons

Update in 2D Fits

ГП	[HEP01(2018)093]									
0.			All			FUV				
	2D Hyp.	Best fit	$\mathrm{Pull}_{\mathrm{SM}}$	p-value	Best fit	$\mathrm{Pull}_{\mathrm{SM}}$	p-value			
	$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10\mu}^{ ext{NP}})$	(-1.01,0.29)	5.7	72	(-1.30,0.36)	3.7	75			
	$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_7')$	(-1.13,0.01)	5.5	69	(-1.85,-0.04)	3.6	66			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu})$	(-1.15,0.41)	5.6	71	(-1.99, 0.93)	3.7	72			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu})$	(-1.22, -0.22)	5.7	72	(-2.22,-0.41)	3.9	85			
	$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.00, 0.42)	5.5	68	(-1.36, 0.46)	3.5	65			
	Hyp. 1	(-1.16, 0.38)	5.7	73	(-1.68, 0.60)	3.8	78			
	Hyp. 2	(-1.15, 0.01)	5.0	57	(-2.16, 0.41)	3.0	37			
	Hyp. 3	(-0.67,-0.10)	5.0	57	(0.61, 2.48)	3.7	73			
	Hyp. 4	(-0.70, 0.28)	5.0	57	(-0.74, 0.43)	3.7	72			
.					LFUV					
U	903.09578]		All		L	FUV				
U	2D Hyp.	Best fit	All Pull _{SM}	p-value	L Best fit	FUV Pull _{SM}	p-value			
U	$\frac{1}{(\mathcal{C}_{9\mu}^{\rm NP},\mathcal{C}_{10\mu}^{\rm NP})}$	Best fit (-0.91,0.18)	All Pull _{SM} 5.4	p-value 68.7 %	L Best fit (-0.16,0.56)	FUV Pull _{SM} 3.4	p-value 76.9 %			
[1	$\frac{1}{\begin{array}{c} 2\mathrm{D} \ \mathrm{Hyp.} \\ \hline \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{7'}) \end{array}}$	Best fit (-0.91,0.18) (-1.00,0.02)	All Pull _{SM} 5.4 5.4	p-value 68.7 % 67.9 %	L Best fit (-0.16,0.56) (-0.90,-0.04)	FUV Pull _{SM} 3.4 2.9	p-value 76.9 % 55.1 %			
[1	$ \begin{array}{c} \hline & \\ \hline \\ \hline$	Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55)	All Pull _{SM} 5.4 5.4 5.7	p-value 68.7 % 67.9 % 75.1 %	L Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14)	FUV Pull _{SM} 3.4 2.9 3.4	p-value 76.9 % 55.1 % 76.1 %			
[1	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 2\mathrm{D} \ \mathrm{Hyp.} \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 2\mathrm{D} \ \mathrm{Hyp.} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{7'}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9'\mu}) \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \hline \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55) (-1.14,-0.35)	All Pull _{SM} 5.4 5.4 5.7 5.9	p-value 68.7 % 67.9 % 75.1 % 78.6 %	L Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14) (-1.88,-0.62)	FUV Pull _{SM} 3.4 2.9 3.4 3.8	p-value 76.9 % 55.1 % 76.1 % 91.3 %			
[1	$ \begin{array}{c} \hline 903.09578 \\ \hline \hline 2D \ \mathrm{Hyp.} \\ \hline \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{7'}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9'\mu}) \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10'\mu}) \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10'\mu}) \\ \hline \end{array} $	Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55) (-1.14,-0.35) (-1.05,-0.23)	All Pull _{SM} 5.4 5.4 5.7 5.9 5.3	p-value 68.7 % 67.9 % 75.1 % 78.6 % 66.2 %	L Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14) (-1.88,-0.62) (-0.73,0.16)	FUV Pull _{SM} 3.4 2.9 3.4 3.8 2.8	p-value 76.9 % 55.1 % 76.1 % 91.3 % 52.3 %			
[1	$\begin{array}{c} \hline & \\ \hline & \\ \hline 2D \text{ Hyp.} \\ \hline \\ \hline & \\ \hline \\ \hline$	Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55) (-1.14,-0.35) (-1.05,-0.23) (-1.06,0.26)	All Pull _{SM} 5.4 5.4 5.7 5.9 5.3 5.7	p-value 68.7 % 67.9 % 75.1 % 78.6 % 66.2 % 75.7 %	L Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14) (-1.88,-0.62) (-0.73,0.16) (-1.62,0.29)	FUV Pull _{SM} 3.4 2.9 3.4 3.8 2.8 3.4	p-value 76.9 % 55.1 % 76.1 % 91.3 % 52.3 % 77.6 %			
[1	$\begin{array}{c} \hline 903.09578 \end{bmatrix} \\ \hline \hline 2D \text{ Hyp.} \\ \hline \hline (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{10\mu}^{\text{NP}}) \\ (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{7'}) \\ (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{9'\mu}) \\ \hline (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{10'\mu}) \\ \hline (\mathcal{C}_{9\mu}^{\text{NP}}, \mathcal{C}_{9e}^{\text{NP}}) \\ \hline \text{Hyp. 1} \\ \text{Hyp. 2} \end{array}$	Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55) (-1.14,-0.35) (-1.05,-0.23) (-1.06,0.26) (-0.97,0.09)	All Pull _{SM} 5.4 5.4 5.7 5.9 5.3 5.7 5.3	p-value 68.7 % 67.9 % 75.1 % 78.6 % 66.2 % 75.7 % 65.2 %	L Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14) (-1.88,-0.62) (-0.73,0.16) (-1.62,0.29) (-1.95,0.25)	FUV Pull _{SM} 3.4 2.9 3.4 3.8 2.8 3.4 3.2	p-value 76.9 % 55.1 % 76.1 % 91.3 % 52.3 % 77.6 % 66.6 %			
[1	$\begin{array}{c} \hline \begin{array}{c} 2\mathrm{D} \ \mathrm{Hyp.} \\ \hline \\ \hline \hline \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{7'}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9'\mu}) \\ \hline \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10'\mu}) \\ \hline \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10'\mu}) \\ \hline \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{c} \mathrm{Hyp.} \ 1 \\ \\ \mathrm{Hyp.} \ 2 \\ \\ \mathrm{Hyp.} \ 3 \end{array}$	Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55) (-1.14,-0.35) (-1.05,-0.23) (-1.06,0.26) (-0.97,0.09) (-0.47,0.06)	All Pull _{SM} 5.4 5.7 5.9 5.3 5.7 5.3 4.8	p-value 68.7 % 67.9 % 75.1 % 78.6 % 66.2 % 75.7 % 65.2 % 55.7 %	L Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14) (-1.88,-0.62) (-0.73,0.16) (-1.62,0.29) (-1.95,0.25) (-0.39,-0.13)	FUV Pull _{SM} 3.4 2.9 3.4 3.8 2.8 3.4 3.2 3.4 3.4	p-value 76.9 % 55.1 % 76.1 % 91.3 % 52.3 % 77.6 % 66.6 % 76.2 %			
[1	$\begin{array}{c} \hline \begin{array}{c} 2\mathrm{D} \ \mathrm{Hyp.} \\ \hline \\ \hline \begin{array}{c} 2\mathrm{D} \ \mathrm{Hyp.} \\ \hline \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{7'}) \\ (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9'\mu}) \\ \hline \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10'\mu}) \\ \hline \\ \hline (\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9e}^{\mathrm{NP}}) \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{c} \mathrm{Hyp.} \ 1 \\ \\ \mathrm{Hyp.} \ 2 \\ \\ \mathrm{Hyp.} \ 3 \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathrm{Hyp.} \ 4 \end{array}$	Best fit (-0.91,0.18) (-1.00,0.02) (-1.10,0.55) (-1.14,-0.35) (-1.05,-0.23) (-1.06,0.26) (-0.97,0.09) (-0.47,0.06) (-0.49,0.12)	All Pull _{SM} 5.4 5.4 5.7 5.9 5.3 4.8 5.0	p-value 68.7 % 67.9 % 75.1 % 78.6 % 66.2 % 75.7 % 65.2 % 55.7 % 59.3 %	L Best fit (-0.16,0.56) (-0.90,-0.04) (-1.79,1.14) (-1.88,-0.62) (-0.73,0.16) (-1.62,0.29) (-1.95,0.25) (-0.39,-0.13) (-0.48,0.17)	FUV Pull _{SM} 3.4 2.9 3.4 3.8 2.8 3.4 3.2 3.4 3.4 3.2 3.4 3.6	p-value 76.9 % 55.1 % 76.1 % 91.3 % 52.3 % 77.6 % 66.6 % 76.2 % 84.3 %			

Hyp.1 :
$$(C_{9\mu}^{NP} = -C_{9'\mu}, C_{10\mu}^{NP} = C_{10'\mu})$$

Hyp.2 : $(C_{9\mu}^{NP} = -C_{9'\mu}, C_{10\mu}^{NP} = -C_{10'\mu})$
Hyp.3 : $(C_{9\mu}^{NP} = -C_{10\mu}^{NP}, C_{9'\mu} = C_{10'\mu})$
Hyp.4 : $(C_{9\mu}^{NP} = -C_{10\mu}^{NP}, C_{9'\mu} = -C_{10'\mu})$
Hyp.5 : $(C_{9\mu}^{NP}, C_{9'\mu} = -C_{10'\mu})$

- Small increase ($\sim 0.2\sigma$) for some RHC scenarios opposite to 1D cases
- R_K closer to SM prefers $C_{9'\mu} > 0$ and $C_{10'\mu} < 0$
- A $R_q \otimes L_\ell$ for $\mathcal{O}_{9',10'}$ clearly prefers V structure over L_ℓ for leptons

Update in 2D Fits

ΓIŀ	IHEP01(2018)0931									
0.			All		L	FUV				
	2D Hyp.	Best fit	Pull_{SM}	p-value	Best fit	$\mathrm{Pull}_{\mathrm{SM}}$	p-value			
	$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10\mu}^{ ext{NP}})$	(-1.01,0.29)	5.7	72	(-1.30,0.36)	3.7	75			
	$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_7')$	(-1.13,0.01)	5.5	69	(-1.85,-0.04)	3.6	66			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu})$	(-1.15, 0.41)	5.6	71	(-1.99, 0.93)	3.7	72			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu})$	(-1.22, -0.22)	5.7	72	(-2.22,-0.41)	3.9	85			
	$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.00, 0.42)	5.5	68	(-1.36, 0.46)	3.5	65			
	Hyp. 1	(-1.16, 0.38)	5.7	73	(-1.68, 0.60)	3.8	78			
	Hyp. 2	(-1.15, 0.01)	5.0	57	(-2.16, 0.41)	3.0	37			
	Hyp. 3	(-0.67, -0.10)	5.0	57	(0.61, 2.48)	3.7	73			
	Hyp. 4	(-0.70, 0.28)	5.0	57	(-0.74, 0.43)	3.7	72			
[]	903.09578]		All		LFUV					
	2D Hyp.	Best fit	$\operatorname{Pull}_{\mathrm{SM}}$	p-value	Best fit	$\operatorname{Pull}_{\operatorname{SM}}$	p-value			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10\mu}^{\mathrm{NP}})$	(-0.01.0.18)	F 4	00 - 01		1				
		(-0.31,0.10)	5.4	68.7 %	(-0.16, 0.56)	3.4	70.9%			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7'})$	(-1.00,0.02)	5.4 5.4	68.7% 67.9%	(-0.16, 0.56) (-0.99, -0.04)	3.4 2.9	76.9% 55.1%			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7'}) \ (\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu})$	(-1.00, 0.02) (-1.10, 0.55)	5.4 5.4 5.7	68.7% 67.9% 75.1%	(-0.16,0.56) (-0.99,-0.04) (-1.79,1.14)	3.4 2.9 3.4	76.9% 55.1% 76.1%			
	$(\mathcal{C}_{9\mu}^{ m NP},\mathcal{C}_{7'}) \ (\mathcal{C}_{9\mu}^{ m NP},\mathcal{C}_{9'\mu}) \ (\mathcal{C}_{9\mu}^{ m NP},\mathcal{C}_{10'\mu})$	(-1.00, 0.02) (-1.10, 0.55) (-1.14, -0.35)	5.4 5.4 5.7 5.9	68.7% 67.9% 75.1% 78.6%	(-0.16, 0.56) (-0.90, -0.04) (-1.79, 1.14) (-1.88, -0.62)	3.4 2.9 3.4 3.8	70.9% 55.1% 76.1% 91.3%			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{7'}) \ (\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu}) \ (\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu}) \ (\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu}) \ (\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9e}^{\mathrm{NP}})$	$\begin{array}{c} (-0.31, 0.13) \\ (-1.00, 0.02) \\ (-1.10, 0.55) \\ (-1.14, -0.35) \\ \hline (-1.05, -0.23) \end{array}$	5.4 5.7 5.9 5.3	$68.7\% \\ 67.9\% \\ 75.1\% \\ 78.6\% \\ 66.2\%$	(-0.16, 0.56) (-0.90, -0.04) (-1.79, 1.14) (-1.88, -0.62) (-0.73, 0.16)	3.4 2.9 3.4 3.8 2.8	70.9% 55.1% 76.1% 91.3% 52.3%			
	$ \begin{array}{c} (\mathcal{C}_{9\mu}^{\rm NP}, \mathcal{C}_{7'}) \\ (\mathcal{C}_{9\mu}^{\rm NP}, \mathcal{C}_{9'\mu}) \\ \hline (\mathcal{C}_{9\mu}^{\rm NP}, \mathcal{C}_{10'\mu}) \\ \hline (\mathcal{C}_{9\mu}^{\rm NP}, \mathcal{C}_{9e}^{\rm NP}) \\ \hline \end{array} \\ \end{array} $ Hyp. 1	$\begin{array}{c} (-0.51, 0.13) \\ (-1.00, 0.02) \\ (-1.10, 0.55) \\ (-1.14, -0.35) \\ \hline (-1.05, -0.23) \\ \hline (-1.06, 0.26) \end{array}$	5.4 5.7 5.9 5.3 5.7	68.7 % 67.9 % 75.1 % 78.6 % 66.2 % 75.7 %	$\begin{array}{c} (-0.16, 0.56) \\ (-0.90, -0.04) \\ (-1.79, 1.14) \\ (-1.88, -0.62) \\ (-0.73, 0.16) \\ (-1.62, 0.29) \end{array}$	3.4 2.9 3.4 3.8 2.8 3.4	76.9 % 55.1 % 76.1 % 91.3 % 52.3 % 77.6 %			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{7'})$ $(\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9'\mu})$ $(\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10'\mu})$ $(\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9e}^{\mathrm{NP}})$ Hyp. 1 Hyp. 2	$\begin{array}{c} (-0.91, 0.18) \\ (-1.00, 0.02) \\ (-1.10, 0.55) \\ (-1.14, -0.35) \\ \hline (-1.05, -0.23) \\ (-1.06, 0.26) \\ (-0.97, 0.09) \end{array}$	5.4 5.7 5.9 5.3 5.7 5.3	68.7% $67.9%$ $75.1%$ $78.6%$ $66.2%$ $75.7%$ $65.2%$	$\begin{array}{c} (-0.16, 0.56) \\ (-0.90, -0.04) \\ (-1.79, 1.14) \\ (-1.88, -0.62) \\ (-0.73, 0.16) \\ (-1.62, 0.29) \\ (-1.95, 0.25) \end{array}$	3.4 2.9 3.4 3.8 2.8 3.4 3.2	76.9% $55.1%$ $76.1%$ $91.3%$ $52.3%$ $77.6%$ $66.6%$			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{7'})$ $(\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9'\mu})$ $(\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10'\mu})$ $(\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9e}^{\mathrm{NP}})$ Hyp. 1 Hyp. 2 Hyp. 3	$\begin{array}{c} (-0.91, 0.18) \\ (-1.00, 0.02) \\ (-1.10, 0.55) \\ (-1.14, -0.35) \\ \hline (-1.05, -0.23) \\ \hline (-1.06, 0.26) \\ (-0.97, 0.09) \\ (-0.47, 0.06) \end{array}$	5.4 5.7 5.9 5.3 5.7 5.3 4.8	$\begin{array}{c} 68.7 \% \\ 67.9 \% \\ 75.1 \% \\ 78.6 \% \\ 66.2 \% \\ 75.7 \% \\ 65.2 \% \\ 55.7 \% \end{array}$	$\begin{array}{c} (-0.16, 0.56) \\ (-0.99, -0.04) \\ (-1.79, 1.14) \\ (-1.88, -0.62) \\ (-0.73, 0.16) \\ (-1.62, 0.29) \\ (-1.95, 0.25) \\ (-0.39, -0.13) \end{array}$	$ \begin{array}{r} 3.4 \\ 2.9 \\ 3.4 \\ 3.8 \\ 2.8 \\ 3.4 \\ 3.2 \\ 3.4 \\ 3.2 \\ 3.4 \\ \end{array} $	76.9% $55.1%$ $76.1%$ $91.3%$ $52.3%$ $77.6%$ $66.6%$ $76.2%$			
	$(\mathcal{C}_{9\mu}^{\rm NP}, \mathcal{C}_{7'})$ $(\mathcal{C}_{9\mu}^{\rm NP}, \mathcal{C}_{9'\mu})$ $(\mathcal{C}_{9\mu}^{\rm NP}, \mathcal{C}_{10'\mu})$ $(\mathcal{C}_{9\mu}^{\rm NP}, \mathcal{C}_{9e}^{\rm NP})$ Hyp. 1 Hyp. 2 Hyp. 3 Hyp. 4	$\begin{array}{c} (-0.31, 0.18) \\ (-1.00, 0.02) \\ (-1.10, 0.55) \\ (-1.14, -0.35) \\ \hline (-1.05, -0.23) \\ (-1.06, 0.26) \\ (-0.97, 0.09) \\ (-0.47, 0.06) \\ (-0.49, 0.12) \end{array}$	$5.4 \\ 5.4 \\ 5.7 \\ 5.9 \\ 5.3 \\ 5.7 \\ 5.3 \\ 4.8 \\ 5.0 \\ $	$\begin{array}{c} 68.7 \ \% \\ 67.9 \ \% \\ 75.1 \ \% \\ 78.6 \ \% \\ 66.2 \ \% \\ 75.7 \ \% \\ 65.2 \ \% \\ 55.7 \ \% \\ 59.3 \ \% \end{array}$	$\begin{array}{c} (-0.16, 0.56) \\ (-0.90, -0.04) \\ (-1.79, 1.14) \\ (-1.88, -0.62) \\ (-0.73, 0.16) \\ (-1.62, 0.29) \\ (-1.95, 0.25) \\ (-0.39, -0.13) \\ (-0.48, 0.17) \end{array}$	$3.4 \\ 2.9 \\ 3.4 \\ 3.8 \\ 2.8 \\ 3.4 \\ 3.2 \\ 3.4 \\ 3.6 \\ $	76.9% $55.1%$ $76.1%$ $91.3%$ $52.3%$ $77.6%$ $66.6%$ $76.2%$ $84.3%$			

Hyp.1 :
$$(C_{9\mu}^{NP} = -C_{9'\mu}, C_{10\mu}^{NP} = C_{10'\mu})$$

Hyp.2 : $(C_{9\mu}^{NP} = -C_{9'\mu}, C_{10\mu}^{NP} = -C_{10'\mu})$
Hyp.3 : $(C_{9\mu}^{NP} = -C_{10\mu}^{NP}, C_{9'\mu} = C_{10'\mu})$
Hyp.4 : $(C_{9\mu}^{NP} = -C_{10\mu}^{NP}, C_{9'\mu} = -C_{10'\mu})$
Hyp.5 : $(C_{9\mu}^{NP}, C_{9'\mu} = -C_{10'\mu})$

- Small increase ($\sim 0.2\sigma$) for some RHC scenarios opposite to 1D cases
- R_K closer to SM prefers $C_{9'\mu} > 0$ and $C_{10'\mu} < 0$
- A $R_q \otimes L_\ell$ for $\mathcal{O}_{9',10'}$ clearly prefers V structure over L_ℓ for leptons

Update in 2D Fits

ΓH	HEP01(2018)093]									
			All		L	FUV				
	2D Hyp.	Best fit	Pull_{SM}	p-value	Best fit	$\mathrm{Pull}_{\mathrm{SM}}$	p-value			
	$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{10\mu}^{ ext{NP}})$	(-1.01,0.29)	5.7	72	(-1.30,0.36)	3.7	75			
	$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_7')$	(-1.13, 0.01)	5.5	69	(-1.85,-0.04)	3.6	66			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu})$	(-1.15, 0.41)	5.6	71	(-1.99, 0.93)	3.7	72			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu})$	(-1.22,-0.22)	5.7	72	(-2.22,-0.41)	3.9	85			
	$(\mathcal{C}_{9\mu}^{ ext{NP}},\mathcal{C}_{9e}^{ ext{NP}})$	(-1.00, 0.42)	5.5	68	(-1.36, 0.46)	3.5	65			
	Hyp. 1	(-1.16, 0.38)	5.7	73	(-1.68, 0.60)	3.8	78			
	Hyp. 2	(-1.15, 0.01)	5.0	57	(-2.16, 0.41)	3.0	37			
	Hyp. 3	(-0.67, -0.10)	5.0	57	(0.61, 2.48)	3.7	73			
	Hyp. 4	(-0.70, 0.28)	5.0	57	(-0.74, 0.43)	3.7	72			
[]	903.09578]		All		L	FUV				
	2D Hyp.	Best fit	Pull _{SM}	p-value	Best fit	$\operatorname{Pull}_{\operatorname{SM}}$	p-value			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10\mu}^{\mathrm{NP}})$	(-0.91,0.18)	5.4	68.7%	(-0.16,0.56)	3.4	70.9%	Γ		
	$(\mathcal{C}^{\mathrm{NP}}_{9\mu},\mathcal{C}_{7'})$	(-1.00,0.02)	5.4	67.9%	(-0.99,-0.04)	2.9	55.1%			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu})$	(-1.10,0.55)	5.7	75.1%	(-1.79,1.14)	3.4	76.1%			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu})$	(-1.14,-0.35)	5.9	78.6%	(-1.88,-0.62)	3.8	91.3%			
	$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9e}^{\mathrm{NP}})$	(-1.05,-0.23)	5.3	66.2%	(-0.73,0.16)	2.8	52.3%			
	Hyp. 1	(-1.06,0.26)	5.7	75.7%	(-1.62,0.29)	3.4	77.6%			
	Hyp. 2	(-0.97,0.09)	5.3	65.2%	(-1.95,0.25)	3.2	65.0%			
	Hyp. 3	(-0.47, 0.06)	4.8	55.7%	(-0.39,-0.13)	3.4	76.2%			
	Hyp. 4	(-0.49,0.12)	5.0	59.3 %	(-0.48, 0.17)	3.6	84.3%			
	Hyp. 5	(-1.14, 0.24)	5.9	78.7%	(-2.07, 0.52)	3.9	92.5%			

Hyp.1 : $(C_{9\mu}^{NP} = -C_{9'\mu}, C_{10\mu}^{NP} = C_{10'\mu})$ Hyp.2: $(C_{9\mu}^{NP} = -C_{9'\mu}, C_{10\mu}^{NP} = -C_{10'\mu})$ Hyp.3 : $(\mathcal{C}_{9\mu}^{NP} = -\mathcal{C}_{10\mu}^{NP}, \mathcal{C}_{9'\mu} = \mathcal{C}_{10'\mu})$ Hyp.4 : $(C_{9\mu}^{NP} = -C_{10\mu}^{NP}, C_{9'\mu} = -C_{10'\mu})$ Hyp.5 : $(C_{9\mu}^{NP}, C_{9'\mu} = -C_{10'\mu})$

- Small increase ($\sim 0.2\sigma$) for some RHC scenarios opposite to 1D cases
- R_K closer to SM prefers $C_{9'\mu} > 0$ and $C_{10'\mu} < 0$
- A $R_q \otimes L_\ell$ for $\mathcal{O}_{9',10'}$ clearly prefers V structure over L_ℓ for leptons

- 2D Fits: 1σ CL for fit All and 3σ CL for individual experiments

Marcel Algueró

ECT*, 26th June 2019

Concerning the 6D Fit:

[JHEP01(20	18)093]	$\mathcal{C}_7^{\mathrm{NP}}$	$\mathcal{C}_{9\mu}^{ m NP}$	$\mathcal{C}^{\mathrm{NP}}_{10\mu}$	$\mathcal{C}_{7'}$	$\mathcal{C}_{9'\mu}$	$\mathcal{C}_{10'\mu}$	
	Best fit	+0.03	-1.12	+0.31	+0.03	+0.38	+0.02	State of the second sec
	1σ	[-0.01, +0.05]	$\left[-1.34,-0.88\right]$	[+0.10, +0.57]	[+0.00, +0.06]	[-0.17, +1.04]	[-0.28, +0.36]	
	2σ	[-0.03, +0.07]	[-1.54, -0.63]	[-0.08, +0.84]	[-0.02, +0.08]	[-0.59, +1.58]	[-0.54, +0.68])
[1903	.09578]	$\mathcal{C}_7^{\mathrm{NP}}$	${\cal C}_{9\mu}^{ m NP}$	$\mathcal{C}^{\mathrm{NP}}_{10\mu}$	$\mathcal{C}_{7'}$	$\mathcal{C}_{9'\mu}$	${\cal C}_{10'\mu}$	
	Best fit	+0.01	-1.10	+0.15	+0.02	+0.36	-0.16	
	1σ	[-0.01, +0.05]	[-1.28, -0.90]	[-0.00, +0.36]	[-0.00, +0.05]	[-0.14, +0.87]	[-0.39, +0.13]	
		[]						

No significant changes except:

- 5.0σ (2017) **----> 5.1**σ (2019)
- Opposite sign for b.f.p. of $C_{10'}$ but $C_{10} C_{10'}$ stays the same

What's new?

- Change of paradigm! Now same LFU piece in electrons, muons and tau different from LFUV
- Assumption: hadronic uncertainties well controlled $\rightarrow C_9^{U}$ is NP
- New mechanism to fulfill $\mathcal{B}(B_s \to \mu^+ \mu^-) \propto |\mathcal{C}_{10}^V + \mathcal{C}_{10}^U|^2$

Update of scenarios with LFU

[Algueró et	t al, 1809.08447]	Best-fit point	t 1σ		$Pull_{SM}$	p-valu	Je
	$\mathcal{C}_{9\mu}^{V}$	-0.16	[-0.94,+0	.46]			
Sc. 5	$\mathcal{C}_{10\mu}^{V}$	+1.00	[+0.18, +1	.59]	5.8	78%	0
	$\mathcal{C}_9^{U} = \mathcal{C}_{10}^{U}$	-0.87	[-1.43, -0	0.14]			
Sc. 6	$\mathcal{C}_{9\mu}^{v} = -\mathcal{C}_{10\mu}^{v}$	-0.64	[-0.77, -0	.51]	6.0	79%	, 0
	$C_9^0 = C_{10}^0$	-0.44	[-0.58, -0	.29]			
Sc. 7	$\mathcal{C}_{9\mu}^{v}$	-1.57	[-2.14, -1	.06]	5.7	72%	
	C_9^{\cup}	+0.56	[+0.01, +1	.15]			
Sc. 8	$\mathcal{C}_{9\mu}^{v} = -\mathcal{C}_{10\mu}^{v}$	-0.42	[-0.57, -0	.27]	5.8	74%	6
	C_9^0	-0.67	[-0.90, -0	.42]			
		1	I				
[Algueró et	al, 1903.09578]	Best-fit point	1σ		2 σ	$\operatorname{Pull}_{\operatorname{SM}}$	p-value
	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-0.36	[-0.86, +0.10]	[-1.4]	$1, \pm 0.52$]		
Sc. 5	${\cal C}_{10\mu}^{ m V}$	+0.67	[+0.24, +1.03]	[-1.7	3, +1.36]	5.2	71.2%
	$\mathcal{C}_9^{\mathrm{U}}=\mathcal{C}_{10}^{\mathrm{U}}$	-0.59	[-0.90, -0.12]	[-1.1	3, +0.68]		
Sc. 6	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.50	[-0.61, -0.38]	[-0.7]	2, -0.28]	55	71.0%
	${\mathcal C}_9^{\mathrm{U}}={\mathcal C}_{10}^{\mathrm{U}}$	-0.38	[-0.52, -0.22]	[-0.6]	4, -0.06]	0.0	1.0 70
07	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-0.78	[-1.11, -0.47]	[-1.4]	5, -0.18]	53	66 2 %
SC. 7	$\mathcal{C}_9^{\mathrm{U}}$	-0.20	[-0.57, +0.18]	[-0.9]	2, +0.55]	0.0	00.2 70
0 0	${\mathcal C}_{9\mu}^{ m V}=-{\mathcal C}_{10\mu}^{ m V}$	-0.30	[-0.42, -0.20]	[-0.5]	3, -0.10]	57	75 9%
SC. 8	$\mathcal{C}_9^{\mathrm{U}}$	-0.74	[-0.96, -0.51]	[-1.1]	5, -0.25]	0.1	10.270

- Significances remain basically unchanged
- Sc. 6 (LFUV V-A, LFU V+A) still describes data well
- Sc. 7 changed \rightarrow preference for LFUV- C_9 if only V contributions allowed
- Sc. 8 LFUV left-handed lepton structure provides better
 ✓ description with LFU in C₉

Update of scenarios with LFU

[Algueró e	et al, 1809.08447]	Best-fit point	t 1σ		$Pull_{SM}$	p-valu	le
0.5	$\mathcal{C}_{9\mu}^{V}$	-0.16	[-0.94, +0	.46]	5.0	70.0	,
SC. 5	$\mathcal{C}_{10\mu}^{U} = \mathcal{C}_{10}^{U}$	+1.00	[+0.18, +1] [-1.43, -0]	.59] .14]	5.8	/8%	0
Sc. 6	$\mathcal{C}_{9\mu}^{V} = -\mathcal{C}_{10\mu}^{V}$	-0.64	[-0.77, -0	.51]	6.0	79%	, D
	$C_9^0 = C_{10}^0$	-0.44	[-0.58, -0	.29]			
Sc. 7	$\mathcal{C}^{y}_{9\mu} \mathcal{C}^{U}_{9}$	-1.57 +0.56	[-2.14, -1]	.06] .15]	5.7	72%	,
Sc. 8	$\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.42	[-0.57, -0	.27]	5.8	74%	
	09	-0.07	[-0.50, -0	.42j			
[Algueró et	t al, 1903.09578]	Best-fit point	1σ		2 σ	$\mathrm{Pull}_\mathrm{SM}$	p-value
	$\mathcal{C}_{9\mu}^{ m V}$	-0.36	[-0.86, +0.10]	[-1.4]	$1, \pm 0.52]$		
Sc. 5	${\cal C}_{10\mu}^{ m V}$	+0.67	[+0.24, +1.03]	[-17	3, +1.36]	5.2	71.2%
	$\mathcal{C}_9^{\mathrm{U}}=\mathcal{C}_{10}^{\mathrm{U}}$	-0.59	[-0.90, -0.12]	[-1.1]	3, +0.68]		
Sc. 6	${\mathcal C}_{9\mu}^{ m V}=-{\mathcal C}_{10\mu}^{ m V}$	-0.50	[-0.61, -0.38]	[-0.7]	2, -0.28]	5.5	71.0%
	$\mathcal{C}_9^{\mathrm{U}}=\mathcal{C}_{10}^{\mathrm{U}}$	-0.38	[-0.52, -0.22]	[-0.6]	4, -0.06]	0.0	11070
Sc. 7	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-0.78	[-1.11, -0.47]	[-1.4]	5, -0.18]	5.3	66.2%
	$\mathcal{C}_9^{\mathrm{U}}$	-0.20	[-0.57, +0.18]	[-0.9]	2, +0.55]	0.0	00.270
	${\mathcal C}_{9\mu}^{ m V}=-{\mathcal C}_{10\mu}^{ m V}$	-0.30	$\left[-0.42,-0.20\right]$	[-0.5]	3, -0.10]	5.7	75.2%
SC. 8	$\mathcal{C}_9^{\mathrm{U}}$	-0.74	$\left[-0.96,-0.51\right]$	[-1.1]	5, -0.25]		10.270

- Significances remain basically unchanged
- Sc. 6 (LFUV V-A, LFU V+A) still describes data well
- Sc. 7 changed \rightarrow preference for LFUV- C_9 if only V contributions allowed
- Sc. 8 LFUV left-handed lepton structure provides better
 ✓ description with LFU in C₉

LFU-NP dependent on structure of LFUV-NP

New scenarios with LFU in RHC

						\mathcal{C}
Scenario 9	$\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}$	-0.57	$\left \left[-0.73, -0.41 \right] \right \left[-0.87, -0.28 \right] \right $	5.0	60.2%	natu
	${\cal C}_{10}^{ m U}$	-0.34	[-0.60, -0.07] [-0.84, +0.18]	0.0	00.270	
Scenario 10	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-0.95	[-1.13, -0.76] $[-1.30, -0.57]$	5.5	69.5%	
	${\cal C}_{10}^{ m U}$	+0.27	[0.08, 0.47] $[-0.09, 0.66]$	0.0	00.070	
Scenario 11	$\mathcal{C}_{9\mu}^{\mathbf{V}}$	-1.03	[-1.22, -0.84] $[-1.38, -0.65]$	5.6	73.6%	
	$\mathcal{C}^{\mathrm{U}}_{10'}$	-0.29	[-0.47, -0.12] $[-0.63, 0.05]$	0.0	10.070	
Scenario 12	$\mathcal{C}^{\mathrm{V}}_{9'\mu}$	-0.03	[-0.22, 0.15] $[-0.40, 0.32]$	1.6	15.7%	- :
	${\cal C}_{10}^{ m U}$	+0.41	[0.21, 0.63] $[0.02, 0.83]$	1.0	10.170	
	$\mathcal{C}_{9\mu}^{\mathrm{V}}$	-1.11	[-1.28, -0.91] $[-1.41, -0.71]$			
Scenario 13	$\mathcal{C}^{\mathrm{V}}_{9'\mu}$	+0.53	[0.24, 0.83] $[-0.10, 1.11]$	5.4	78.7%	– Sc
	$\mathcal{C}_{10}^{\mathrm{U}}$	+0.24	[0.01, 0.48] $[-0.21, 0.69]$			
	$\mathcal{C}^{\mathrm{U}}_{10'}$	-0.04	$\left[-0.28, 0.20\right]$ $\left[-0.48, 0.42\right]$			

- Extension of LFU contributions to RHC (motivated by 2D results) \Rightarrow natural connection to models

- A contribution to $\mathcal{C}_{10}^{\mathrm{U}}$ prefers a V lepton structure (opposite to Sc. 8)
- Sc. 11 shows a slight preference for $C_{10'}^{U}$ over C_{10}^{U}
- Sc. 12 points out the need of $\mathcal{C}_{9\mu}^{\mathrm{V}} \Rightarrow$ cannot be traded for $\mathcal{C}_{9'}^{\mathrm{V}}$

New scenarios with LFU in RHC

Scenario 9	$\mathcal{C}_{9\mu}^{\mathrm{V}}=-\mathcal{C}_{10\mu}^{\mathrm{V}}$ $\mathcal{C}_{10}^{\mathrm{U}}$	$-0.57 \\ -0.34$	[-0.73, -0.41] [-0.60, -0.07]	[-0.87, -0.28] [-0.84, +0.18]	5.0	60.2%	$\mathcal{C}_{10(')}^{\cup}$ contributions naturally from modified Z
Scenario 10	$\mathcal{C}^{\mathrm{V}}_{9\mu} \ \mathcal{C}^{\mathrm{U}}_{10}$	-0.95 + 0.27	$[-1.13, -0.76] \\ [0.08, 0.47]$	[-1.30, -0.57] [-0.09, 0.66]	5.5	69.5%	coupingo
Scenario 11	$\mathcal{C}^{\mathrm{V}}_{9\mu} \ \mathcal{C}^{\mathrm{U}}_{10'}$	$-1.03 \\ -0.29$	[-1.22, -0.84] [-0.47, -0.12]	[-1.38, -0.65] [-0.63, 0.05]	5.6	73.6%	
Scenario 12	$\mathcal{C}^{\mathrm{V}}_{9'\mu}\ \mathcal{C}^{\mathrm{U}}_{10}$	-0.03 + 0.41	[-0.22, 0.15] [0.21, 0.63]	[-0.40, 0.32] [0.02, 0.83]	1.6	15.7%	 Sc. 9 via Two-Higgs Doublet
Scenario 13	${f {\cal C}^{ m V}_{9\mu} \ {\cal C}^{ m V}_{9'\mu} \ {\cal C}^{ m U}_{10} \ {\cal C}^{ m U}_{10'}$	-1.11 +0.53 +0.24 -0.04	$\begin{matrix} [-1.28, -0.91] \\ [0.24, 0.83] \\ [0.01, 0.48] \\ [-0.28, 0.20] \end{matrix}$	[-1.41, -0.71] [-0.10, 1.11] [-0.21, 0.69] [-0.48, 0.42]	5.4	78.7%	 Sc. 11-13 via vector-like quarks @ tree level

- Extension of LFU contributions to RHC (motivated by 2D results) \Rightarrow natural connection to models

- A contribution to $\mathcal{C}_{10}^{\mathrm{U}}$ prefers a V lepton structure (opposite to Sc. 8)
- Sc. 11 shows a slight preference for $C_{10'}^{U}$ over C_{10}^{U}
- Sc. 12 points out the need of $\mathcal{C}_{9\mu}^{\mathrm{V}} \Rightarrow$ cannot be traded for $\mathcal{C}_{9'}^{\mathrm{V}}$

New scenarios with LFU in RHC

Scenario 9	$egin{aligned} \mathcal{C}^{\mathrm{V}}_{9\mu} = -\mathcal{C}^{\mathrm{V}}_{10\mu} \ \mathcal{C}^{\mathrm{U}}_{10} \end{aligned}$	$-0.57 \\ -0.34$	[-0.73, -0.41] [-0.60, -0.07]	[-0.87, -0.28] [-0.84, +0.18]	5.0	60.2%	$\mathcal{C}_{10(')}^{\cup}$ contributions naturally from modified Z
Scenario 10	$\mathcal{C}^{\mathrm{V}}_{9\mu} \ \mathcal{C}^{\mathrm{U}}_{10}$	-0.95 + 0.27	$[-1.13, -0.76] \\ [0.08, 0.47]$	[-1.30, -0.57] [-0.09, 0.66]	5.5	69.5%	ocupiingo
Scenario 11	$\mathcal{C}^{\mathrm{V}}_{9\mu} \ \mathcal{C}^{\mathrm{U}}_{10'}$	$-1.03 \\ -0.29$	[-1.22, -0.84] [-0.47, -0.12]	[-1.38, -0.65] [-0.63, 0.05]	5.6	73.6%	
Scenario 12	$\mathcal{C}^{\mathrm{V}}_{9'\mu}\ \mathcal{C}^{\mathrm{U}}_{10}$	-0.03 + 0.41	[-0.22, 0.15] [0.21, 0.63]	[-0.40, 0.32] [0.02, 0.83]	1.6	15.7%	 Sc. 9 via Two-Higgs Doublet
Scenario 13	$\mathcal{C}^{ m V}_{9\mu}\ \mathcal{C}^{ m V}_{9'\mu}\ \mathcal{C}^{ m U}_{10}\ \mathcal{C}^{ m U}_{10'}$	-1.11 + 0.53 + 0.24 - 0.04	$\begin{matrix} [-1.28, -0.91] \\ [0.24, 0.83] \\ [0.01, 0.48] \\ [-0.28, 0.20] \end{matrix}$	[-1.41, -0.71] [-0.10, 1.11] [-0.21, 0.69] [-0.48, 0.42]	5.4	78.7%	 Sc. 11-13 via vector-like quarks @ tree level

- Extension of LFU contributions to RHC (motivated by 2D results) \Rightarrow natural connection to models

- A contribution to $\mathcal{C}_{10}^{\mathrm{U}}$ prefers a V lepton structure (opposite to Sc. 8)
- Sc. 11 shows a slight preference for $C_{10'}^{U}$ over C_{10}^{U}
- Sc. 12 points out the need of $\mathcal{C}_{9\mu}^{\mathrm{V}} \Rightarrow$ cannot be traded for $\mathcal{C}_{9'}^{\mathrm{V}}$

Discussion on models

Discussion on models

Framework: SMEFT $\rightarrow \Lambda_{NP} >> m_{t,W,Z}$ [Grzadkowski, Iskrzynski, Misiak, Rosiek; Alonso, Grinstein, Camalich] Model independent connection between $b \to s\ell\ell$ and $b \to c\tau\nu$ anomalies through Sc. 8 $\begin{pmatrix} C_{9\mu} = -C_{10\mu} \\ C_0^U \end{pmatrix}$ (3.1σ) [Capdevila, Crivellin, - SMEFT with $\mathcal{C}^{(1)} = \mathcal{C}^{(3)}$ in terms of $SU(2)_L$ inv. operators $\begin{cases} \mathcal{O}^{(1)}_{ijkl} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] & \text{SDG, Hofer, JM,} \\ \mathcal{O}^{(3)}_{ijkl} = [\bar{Q}_i \gamma_\mu \sigma^I Q_j] [\bar{L}_k \gamma^\mu \sigma^I L_l] \end{cases}$ 3rd lepton generation Op. $\longrightarrow R_{D^{(*)}}$ 2nd lepton generation Op. \longrightarrow LFUV effect in $b \rightarrow s\mu^+\mu^-$ - Constraint from $b \to c\tau\nu$ + invariance - enhance $b \to s\tau^+\tau^-$ But also mixes into \mathcal{O}_9 Rad Corr w/ insertion of Assuming generic flavour structure: $\mathcal{O}_{2333} \longrightarrow \mathcal{C}_9^{\mathrm{U}}$ $C_9^{\rm U} \approx 7.5 \left(1 - \sqrt{\frac{R_{D^{(*)}}}{R_{D^{(*)}\rm SM}}} \right) \left(1 + \frac{\log(\Lambda^2/(1\,{\rm TeV}^2))}{10.5} \right)$

Discussion on models

 $\Lambda_{\rm NP} = 2 \,{\rm TeV}$

A possible candidate?

A very promising candidate:

Vector leptoquark SU(2) singlet:

 $U_1(3, 1, 2/3)$

Coupled mainly to 3rd generation

See talk from J. Fuentes

Why:

- 1) Explains charged and neutral anomalies @ same time
- 2) Allows $C_{9\mu}^{V} = -C_{10\mu}^{V}$ and generates C_{9}^{U}
- 3) Avoids contributions to $b \rightarrow s \nu \bar{\nu}$
- 4) Safe concerning LHC searches

Conclusions and Outlook

- Coherent pattern of deviations in $b \rightarrow s\ell\ell$ and also **LFUV** (among other flavour anomalies)
- Similar big picture (and pattern of NP) after LHCb and Belle new measurements:
 - 1D hypotheses show same hierarchy (Global fit better explained by $C_{9\mu}^{NP}$ while LFUV observables prefer $C_{9\mu}^{NP} = -C_{10\mu}^{NP}$)
 - New emerging scenarios including RHC seen in 2D Fits
- New scope for NP -> 2 sectors: LFU+LFUV -> same level of significance
- ► LFU-NP structure dependent on LFUV-NP structure ($C_{9\mu}^{V} = -C_{10\mu}^{V}$ provides good description only in presence of C_{9}^{U}) → Need strategy to disentangle (Q_{5})

Thanks!

Back-up

- Change of paradigm! Now same LFU piece in electrons, muons and tau different from LFUV
- Assumption: hadronic uncertainties well controled $\longrightarrow C_9^U$ is NP
- New mechanism to fulfill $\mathcal{B}(B_s \to \mu^+ \mu^-) \propto |\mathcal{C}_{10}^{V} + \mathcal{C}_{10}^{U}|^2$

LFUV observables explained mainly by $C_{i\mu}^{V}$ **LFD** observables (like P'_{5}) explained by $C_{i\mu}^{V} + C_{i}^{U}$

Our strategy: 4D → 3D → 2D [Algueró et al, 1809.08447]

$$\begin{split} 4\mathrm{D} &\to \left\{ \mathcal{C}_{9\mu}^{\mathrm{V}}, \mathcal{C}_{10\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}}, \mathcal{C}_{10}^{\mathrm{U}} \right\} \\ 3\mathrm{D} &\to \left\{ \mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}}, \mathcal{C}_{10}^{\mathrm{U}} \right\} \\ 3\mathrm{D} &\to \left\{ \mathcal{C}_{9\mu}^{\mathrm{V}}, \mathcal{C}_{10\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}} = \mathcal{C}_{10}^{\mathrm{U}} \right\} \\ 2\mathrm{D} &\to \left\{ \mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}} = \mathcal{C}_{10}^{\mathrm{U}} \right\} \\ 2\mathrm{D} &\to \left\{ \mathcal{C}_{9\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}} \right\} \\ 2\mathrm{D} &\to \left\{ \mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}} \right\} \end{split}$$

Correlation Matrices Fits

$$\operatorname{Corr}(\mathcal{C}_{9\mu}^{\operatorname{NP}} = -\mathcal{C}_{9'\mu}, \mathcal{C}_{10\mu}^{\operatorname{NP}} = \mathcal{C}_{10'\mu}) = \begin{pmatrix} 1.00 & -0.17 \\ -0.17 & 1.00 \end{pmatrix}$$

$$\operatorname{Corr}(\mathcal{C}_{9\mu}^{\operatorname{NP}}, \mathcal{C}_{9'\mu} = -\mathcal{C}_{10'\mu}) = \begin{pmatrix} 1.00 & -0.34 \\ -0.34 & 1.00 \end{pmatrix}$$

$$\operatorname{Corr}(\mathcal{C}_{9\mu}^{\operatorname{NP}}, \mathcal{C}_{10\mu}^{\operatorname{NP}}) = \begin{pmatrix} 1.00 & 0.30 \\ 0.30 & 1.00 \end{pmatrix}$$

$$\operatorname{Corr}(\mathcal{C}_{9\mu}^{\operatorname{NP}}, \mathcal{C}_{9'\mu}) = \begin{pmatrix} 1.00 & -0.39 \\ -0.39 & 1.00 \end{pmatrix}$$

$$\operatorname{Corr}(\mathcal{C}_{9\mu}^{\operatorname{NP}}, \mathcal{C}_{10'\mu}) = \begin{pmatrix} 1.00 & 0.33 \\ 0.33 & 1.00 \end{pmatrix}$$

$$\operatorname{Corr}(\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9e}^{\mathrm{NP}}) = \begin{pmatrix} 1.00 & 0.51 \\ 0.51 & 1.00 \end{pmatrix} \qquad \operatorname{Corr}_{6\mathrm{D}} = \begin{pmatrix} 1.00 & -0.34 & -0.07 & 0.06 & 0.02 & -0.03 \\ -0.34 & 1.00 & 0.24 & -0.06 & 0.04 & 0.24 \\ -0.07 & 0.24 & 1.00 & -0.13 & 0.61 & 0.59 \\ 0.06 & -0.06 & -0.13 & 1.00 & -0.13 & -0.08 \\ 0.02 & 0.04 & 0.61 & -0.13 & 1.00 & 0.85 \\ -0.03 & 0.24 & 0.59 & -0.08 & 0.85 & 1.00 \end{pmatrix}$$

Correlation Matrices Fits

$$\operatorname{Corr}(\mathcal{C}_{9\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}} = \mathcal{C}_{10}^{\mathrm{U}}, \mathcal{C}_{10\mu}^{\mathrm{V}}) = \begin{pmatrix} 1.00 & -0.93 & 0.91 \\ -0.93 & 1.00 & -0.94 \\ 0.91 & -0.94 & 1.00 \end{pmatrix} \qquad \operatorname{Corr}(\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}, \mathcal{C}_{10}^{\mathrm{U}}) = \begin{pmatrix} 1.00 & 0.00 \\ 0.69 & 10 \\ 0.69 & 10 \end{pmatrix} \qquad \operatorname{Corr}(\mathcal{C}_{9\mu}^{\mathrm{V}}, \mathcal{C}_{10}^{\mathrm{U}}) = \begin{pmatrix} 1.00 & 0.05 \\ 0.05 & 1.00 \end{pmatrix}$$

$$\operatorname{Corr}(\mathcal{C}_{9\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}}) = \begin{pmatrix} 1.00 & -0.85 \\ -0.85 & 1.00 \end{pmatrix} \qquad \operatorname{Corr}(\mathcal{C}_{9\mu}^{\mathrm{V}}, \mathcal{C}_{10'}^{\mathrm{U}}) = \begin{pmatrix} 1.00 & 0.20 \\ 0.20 & 1.00 \end{pmatrix}$$

0.69

1.00

Possible UV completions

SU(4)×SU(3)'×SU(2)_L×U(1)_Y + Vector-like fermions

L. Di Luzio, A. Greljo, M. Nardecchia, arXiv:1708.08450

- SU(4)×U(2)_L×SU(2)_R + vector-like fermions
 L. Calibbi, AC, T. Li, arXiv:1709.00692
- SU(4)×SU(4)×SU(4)

M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, arXiv:1712.01368

 SU(4) ×U(2)_L×SU(2)_R including scalar LQs and light right-handed neutrinos

J. Heeck, D. Teresi, arXiv:1808.07492

• SU(8) might even explain ϵ'/ϵ

S. Matsuzaki, K. Nishiwaki and K. Yamamoto, arXiv:1806.02312

SU(4)×U(2)×SU(2)_R in RS background

M. Blanke, AC, arXiv:1801.07256

Towards a decision tree:

R_K and Q_5

Is there any observable that could disentangle among scenarios/hypotheses?

$$Q_{4,5} = P_{4,5}^{\prime\mu} - P_{4,5}^{\prime e}$$

Several LFUV observables:

$$B_{6s} = \frac{J_{6s}^{\mu}}{J_{6s}^{e}} - 1$$

$$R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu^+\mu^-)}{BR(B \to K^{(*)}e^+e^-)}$$

 $bs\ell\ell$, September 2019

[Algueró et al JHEP07 (2019) 096] R_K cannot disentangle among scenarios **BUT** together with Q_5 : Global Fits $\langle R_K \rangle_{[1.1,6]} = 0.846 \ (0\sigma)$ Global Fits $\langle R_K \rangle_{[1.1,6]} = 0.846 \ (0\sigma)$ 8 8 7 7 Pull_{SM} (σ) $\operatorname{Pull}_{9}^{SM}(\sigma)$ I: $C_{9\mu}^{NP}$ 5IV: $(C_{9\mu}^{NP}, C_{10\mu}^{NP})$ II: $C_{9\mu}^{NP} = -C_{10\mu}^{NP}$ V: $(\mathcal{C}_{9\mu}^{NP}, \mathcal{C}_{9'\mu})$ III: $C_{9\mu}^{NP} = -C_{9'\mu}$ 4 VI: $(C_{9\mu}^{NP}, C_{10'\mu})$ VII: $(C_{9\mu}^{NP} = -C_{9'\mu}, C_{10\mu}^{NP} = C_{10'\mu})$ 4 - VIII: $(C_{9\mu}^{NP}, C_{9'\mu} = -C_{10'\mu})$ 3 -0.50 -0.25-0.50 -0.250.00 0.250.751.000.500.000.250.500.751.00 $\langle Q_5 \rangle_{[1.1,6]}$ $\langle Q_5 \rangle_{[1.1,6]}$ $Q_5 > 0.2 \Rightarrow \mathcal{C}_{9\mu}$ $Q_5 < 0 \Rightarrow \mathcal{C}_{9\mu} = -\mathcal{C}_{10\mu}$

[Alguero et al, 1902.04900]

[Alguero et al, 1902.04900]

Inner tensions of the global fit

- We can see how inner tensions behave under NP Hypotheses

- We define pull: $\operatorname{pull}_{i}^{\operatorname{obs}} = \sqrt{\chi_{\min}^{2} - \chi_{\min w/o \operatorname{obs} i}^{2}}$ $\chi^{2} = \sum_{ij} (\mathcal{O}^{th} - \mathcal{O}^{exp})_{i} V_{ij}^{-1} (\mathcal{O}^{th} - \mathcal{O}^{exp})_{j},$ $\chi_{w/o \operatorname{obs} i}^{2} = \sum_{i \neq j} (\mathcal{O}^{th} - \mathcal{O}^{exp})_{i} V_{ij}^{-1} (\mathcal{O}^{th} - \mathcal{O}^{exp})_{j},$

$$\begin{array}{ll} [\mathrm{Hyp. I}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}}\} \\ [\mathrm{Hyp. II}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{10\mu}^{\mathrm{NP}}\} \\ [\mathrm{Hyp. III}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{9'\mu}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{9'\mu}^{\mathrm{NP}}\} \\ [\mathrm{Hyp. IV}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}}, \mathcal{C}_{10\mu}^{\mathrm{V}}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}\} \\ [\mathrm{Hyp. V}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}} = \mathcal{C}_{10}^{\mathrm{U}}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{10\mu}^{\mathrm{NP}} + 2\mathcal{C}_{9e}^{\mathrm{NP}}, \mathcal{C}_{9e}^{\mathrm{NP}} = \mathcal{C}_{10e}^{\mathrm{NP}}\} \\ [\mathrm{Hyp. VI}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9e}^{\mathrm{NP}}\} \\ [\mathrm{Hyp. VII}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{10\mu}^{\mathrm{NP}} + \mathcal{C}_{9e}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}, \mathcal{C}_{9e}^{\mathrm{NP}}\} \end{array}$$

- We can see how inner tensions behave under NP Hypotheses

- We define pull:
$$\operatorname{pull}_{i}^{\operatorname{obs}} = \sqrt{\chi_{\min}^{2} - \chi_{\min w/o \operatorname{obs} i}^{2}}$$
 Reduction \downarrow

$$\chi^{2} = \sum_{ij} (\mathcal{O}^{th} - \mathcal{O}^{exp})_{i} V_{ij}^{-1} (\mathcal{O}^{th} - \mathcal{O}^{exp})_{j}, \quad \text{No reduction or worse} \checkmark$$

$$\chi^{2}_{w/o \operatorname{obs} i} = \sum_{i \neq j} (\mathcal{O}^{th} - \mathcal{O}^{exp})_{i} V_{ij}^{-1} (\mathcal{O}^{th} - \mathcal{O}^{exp})_{j},$$

$$\begin{array}{ll} [\mathrm{Hyp. \ I}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}}\} \\ [\mathrm{Hyp. \ II}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{10\mu}^{\mathrm{NP}}\} \\ [\mathrm{Hyp. \ III}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{9'\mu}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{9'\mu}^{\mathrm{NP}}\} \\ [\mathrm{Hyp. \ IV}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}}, \mathcal{C}_{10\mu}^{\mathrm{V}}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}\} \\ [\mathrm{Hyp. \ V}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}} = \mathcal{C}_{10}^{\mathrm{U}}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{10\mu}^{\mathrm{NP}} + 2\mathcal{C}_{9e}^{\mathrm{NP}}, \mathcal{C}_{9e}^{\mathrm{NP}} = \mathcal{C}_{10e}^{\mathrm{NP}}\} \\ [\mathrm{Hyp. \ VI}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}}, \mathcal{C}_{9e}^{\mathrm{NP}}\} \\ [\mathrm{Hyp. \ VII}] & \{\mathcal{C}_{9\mu}^{\mathrm{V}} = -\mathcal{C}_{10\mu}^{\mathrm{V}}, \mathcal{C}_{9}^{\mathrm{U}}\} \to \{\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{10\mu}^{\mathrm{NP}} + \mathcal{C}_{9e}^{\mathrm{NP}}, \mathcal{C}_{10\mu}^{\mathrm{NP}}, \mathcal{C}_{9e}^{\mathrm{NP}}\} \end{array}$$

- List of observables with larger pulliobs in SM (black square)

[Alguero et al, 1902.04900]

- List of observables with larger pulliobs in SM (black square)

[Alguero et al, 1902.04900]

