Hunting τ-loops in $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$

Matthias König
Physik-Institut
Universität Zürich
"7th Workshop on rare semileptonic B-Decays" Lyon, Sep 6, 2019

Universität Zürich ${ }^{\text {VZH }}$

FNTMF

Anomalies in semileptonic B-decays:

$$
\underline{B \rightarrow K \mu^{+} \mu^{-}}
$$

FCNC (\rightarrow loop level) process in the Standard Model

Anomalies in semileptonic B-decays:

$$
\begin{array}{ll}
\underline{B \rightarrow K \mu^{+} \mu^{-}} & \text {FCNC }(\rightarrow \text { loop level }) \text { process in the } \\
\text { Standard Model }
\end{array}
$$

$\underline{B \rightarrow D \tau \nu}$
Charged current (\rightarrow tree level) process in the Standard Model

Anomalies in semileptonic B-decays:

$$
\begin{array}{ll}
B \rightarrow K \mu^{+} \mu^{-} & \begin{array}{l}
\text { FCNC }(\rightarrow \text { loop level }) \text { process in the } \\
\text { Standard Model }
\end{array}
\end{array}
$$

$\underline{B \rightarrow D \tau \nu}$
Charged current (\rightarrow tree level) process in the Standard Model

New physics explanations favor NP mostly in the third generation, possible connection to the SM flavor puzzle!
\rightarrow large effects in τ, smaller effects in μ

In these cases, one expects large effects from τ in $B \rightarrow K$ as well!
What's the sitaution on $b \rightarrow s \tau \tau$?

In these cases, one expects large effects from τ in $B \rightarrow K$ as well!
What's the sitaution on $b \rightarrow s \tau \tau$?
■ $B \rightarrow K \tau^{+} \tau^{-}$experimentally challenging:

$$
\operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<2.25 \cdot 10^{-3}
$$

$$
\operatorname{Br}_{\mathrm{SM}}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=1.2 \cdot 10^{-7}
$$

[BaBar (2017), Phys.Rev.Lett. 118 no.3, 031802]

In these cases, one expects large effects from τ in $B \rightarrow K$ as well!
What's the sitaution on $b \rightarrow s \tau \tau$?

- $B \rightarrow K \tau^{+} \tau^{-}$experimentally challenging:

$$
\begin{aligned}
& \operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<2.25 \cdot 10^{-3} \\
& \operatorname{Br}_{\mathrm{SM}}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=1.2 \cdot 10^{-7}
\end{aligned}
$$

[BaBar (2017), Phys.Rev.Lett. 118 no.3, 031802]

- $B_{s} \rightarrow \tau^{+} \tau^{-}$likewise:

$$
\operatorname{Br}\left(B_{s} \rightarrow \tau^{+} \tau^{-}\right)<6.8 \cdot 10^{-3}
$$

$\operatorname{Br}_{\mathrm{SM}}\left(B_{s} \rightarrow \tau^{+} \tau^{-}\right)=7.73 \cdot 10^{-7}$
[LHCb (2017), Phys.Rev.Lett. 118 no.25, 251802]

In these cases, one expects large effects from τ in $B \rightarrow K$ as well!
What's the sitaution on $b \rightarrow s \tau \tau$?

- $B \rightarrow K \tau^{+} \tau^{-}$experimentally challenging:

$$
\begin{aligned}
& \operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<2.25 \cdot 10^{-3} \\
& \operatorname{Br}_{\mathrm{SM}}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=1.2 \cdot 10^{-7}
\end{aligned}
$$

[BaBar (2017), Phys.Rev.Lett. 118 no.3, 031802]

- $B_{s} \rightarrow \tau^{+} \tau^{-}$likewise:

$$
\operatorname{Br}\left(B_{s} \rightarrow \tau^{+} \tau^{-}\right)<6.8 \cdot 10^{-3}
$$

$\operatorname{Br}_{\mathrm{SM}}\left(B_{s} \rightarrow \tau^{+} \tau^{-}\right)=7.73 \cdot 10^{-7}$
[LHCb (2017), Phys.Rev.Lett. 118 no.25, 251802]
There is a lot of room for new physics!

In these cases, one expects large effects from τ in $B \rightarrow K$ as well!
What's the sitaution on $b \rightarrow s \tau \tau$?

- $B \rightarrow K \tau^{+} \tau^{-}$experimentally challenging:

$$
\begin{aligned}
& \operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<2.25 \cdot 10^{-3} \\
& \operatorname{Br}_{\mathrm{SM}}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=1.2 \cdot 10^{-7}
\end{aligned}
$$

[BaBar (2017), Phys.Rev.Lett. 118 no.3, 031802]

- $B_{s} \rightarrow \tau^{+} \tau^{-}$likewise:

$$
\operatorname{Br}\left(B_{s} \rightarrow \tau^{+} \tau^{-}\right)<6.8 \cdot 10^{-3}
$$

$\operatorname{Br}_{\mathrm{SM}}\left(B_{s} \rightarrow \tau^{+} \tau^{-}\right)=7.73 \cdot 10^{-7}$
[LHCb (2017), Phys.Rev.Lett. 118 no.25, 251802]
There is a lot of room for new physics!
Also: Lots of data on $b \rightarrow s \mu \mu$!

Idea: Can we probe $b \rightarrow s \tau \tau$ through its loop-contribution to the $b \rightarrow s \mu \mu$ spectrum?

Idea: Can we probe $b \rightarrow s \tau \tau$ through its loop-contribution to the $b \rightarrow s \mu \mu$ spectrum?

Electroweak loop, but large enhancements motivated by NP and allowed by current bounds!

Idea: Can we probe $b \rightarrow s \tau \tau$ through its loop-contribution to the $b \rightarrow s \mu \mu$ spectrum?

Electroweak loop, but large enhancements motivated by NP and allowed by current bounds!

Based on:

Hunting for $B \rightarrow K \tau^{+} \tau^{-}$imprints on the $B \rightarrow K \mu^{+} \mu^{-}$dimuon spectrum
C. Cornella, G. Isidori, MK, S. Liechti, P. Owen, N. Serra

1 EFT description of $B \rightarrow K \ell \ell$

2 Long-distance hadronic effects
3τ-loops in $b \rightarrow s \mu \mu$

4 Sensitivity and future projections

5 Conclusions

EFT description of $B \rightarrow K \ell \ell$

Weak effective Lagrangian: $\quad \mathcal{L}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} \mathcal{C}_{i}(\mu) \mathcal{O}_{i}$
FCNC operators:

$$
\begin{array}{ll}
\mathcal{O}_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} \\
\mathcal{O}_{9}^{l}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{l} \gamma^{\mu} l\right) & \mathcal{O}_{10}^{l}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{l} \gamma^{\mu} \gamma_{5} l\right)
\end{array}
$$

Weak effective Lagrangian: $\quad \mathcal{L}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} \mathcal{C}_{i}(\mu) \mathcal{O}_{i}$
FCNC operators:

$$
\mathcal{O}_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu}
$$

$$
\mathcal{O}_{9}^{l}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{l} \gamma^{\mu} l\right) \quad \mathcal{O}_{10}^{l}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{l} \gamma^{\mu} \gamma_{5} l\right)
$$

Four-quark operators:

$$
\mathcal{O}_{1}^{q}=\left(\bar{s} \gamma_{\mu} P_{L} q\right)\left(\bar{q} \gamma_{\mu} P_{L} b\right)
$$

$$
\mathcal{O}_{2}^{q}=\left(\bar{s}^{\alpha} \gamma_{\mu} P_{L} q^{\beta}\right)\left(\bar{q}^{\beta} \gamma_{\mu} P_{L} b^{\alpha}\right)
$$

Differential decay rate:

$$
\begin{aligned}
\frac{d \Gamma}{d q^{2}}=\frac{\alpha_{\mathrm{em}}^{2} G_{F}^{2}\left|V_{t b} V_{t s}^{*}\right|^{2}}{128 \pi^{5}} \kappa \beta\{ & \frac{2}{3} \kappa^{2} \beta^{2}\left|\mathcal{C}_{10}^{\mu} f_{+}\left(q^{2}\right)\right|^{2}+\frac{4 m_{\mu}^{2}\left(m_{B}^{2}-m_{K}^{2}\right)^{2}}{q^{2} m_{B}^{2}}\left|\mathcal{C}_{10}^{\mu} f_{0}\left(q^{2}\right)\right|^{2} \\
& \left.+\kappa^{2}\left(1-\frac{1}{3} \beta\right)\left|\mathcal{C}_{9}^{\mu} f_{+}\left(q^{2}\right)+2 \mathcal{C}_{7} \frac{m_{b}+m_{s}}{m_{B}+m_{K}} f_{T}\left(q^{2}\right)\right|^{2}\right\},
\end{aligned}
$$

Ingredients for the description:

- Perturbative short distance: matching coefficients $\mathcal{C}_{i}(\mu)$

■ Hadronic matrix elements: form factors $f_{i}\left(q^{2}\right) \quad$ [see talk by N. Gubermari]

Differential decay rate:

$$
\begin{aligned}
\frac{d \Gamma}{d q^{2}}=\frac{\alpha_{\mathrm{em}}^{2} G_{F}^{2}\left|V_{t b} V_{t s}^{*}\right|^{2}}{128 \pi^{5}} \kappa \beta\{ & \frac{2}{3} \kappa^{2} \beta^{2}\left|\mathcal{C}_{10}^{\mu} f_{+}\left(q^{2}\right)\right|^{2}+\frac{4 m_{\mu}^{2}\left(m_{B}^{2}-m_{K}^{2}\right)^{2}}{q^{2} m_{B}^{2}}\left|\mathcal{C}_{10}^{\mu} f_{0}\left(q^{2}\right)\right|^{2} \\
& \left.+\kappa^{2}\left(1-\frac{1}{3} \beta\right)\left|\mathcal{C}_{9}^{\mu} f_{+}\left(q^{2}\right)+2 \mathcal{C}_{7} \frac{m_{b}+m_{s}}{m_{B}+m_{K}} f_{T}\left(q^{2}\right)\right|^{2}\right\},
\end{aligned}
$$

Ingredients for the description:

- Perturbative short distance: matching coefficients $\mathcal{C}_{i}(\mu)$
- Hadronic matrix elements: form factors $f_{i}\left(q^{2}\right) \quad$ [see talk by N. Gubernari]

Real world more complicated than that. Introduce:

$$
\mathcal{C}_{9}^{\mu} \rightarrow \mathcal{C}_{9}^{\mathrm{eff}}\left(q^{2}\right)=\mathcal{C}_{9}^{\mu}+Y_{i}\left(q^{2}\right)
$$

Differential decay rate:

$$
\begin{aligned}
\frac{d \Gamma}{d q^{2}}=\frac{\alpha_{\mathrm{em}}^{2} G_{F}^{2}\left|V_{t b} V_{t s}^{*}\right|^{2}}{128 \pi^{5}} \kappa \beta\{ & \frac{2}{3} \kappa^{2} \beta^{2}\left|\mathcal{C}_{10}^{\mu} f_{+}\left(q^{2}\right)\right|^{2}+\frac{4 m_{\mu}^{2}\left(m_{B}^{2}-m_{K}^{2}\right)^{2}}{q^{2} m_{B}^{2}}\left|\mathcal{C}_{10}^{\mu} f_{0}\left(q^{2}\right)\right|^{2} \\
& \left.+\kappa^{2}\left(1-\frac{1}{3} \beta\right)\left|\mathcal{C}_{9}^{\mu} f_{+}\left(q^{2}\right)+2 \mathcal{C}_{7} \frac{m_{b}+m_{s}}{m_{B}+m_{K}} f_{T}\left(q^{2}\right)\right|^{2}\right\},
\end{aligned}
$$

Ingredients for the description:

- Perturbative short distance: matching coefficients $\mathcal{C}_{i}(\mu)$

■ Hadronic matrix elements: form factors $f_{i}\left(q^{2}\right) \quad$ [see talk by N. Gubermari]
Real world more complicated than that. Introduce:

$$
\mathcal{C}_{9}^{\mu} \rightarrow \mathcal{C}_{9}^{\mathrm{eff}}\left(q^{2}\right)=\mathcal{C}_{9}^{\mu}+Y_{i}\left(q^{2}\right)
$$

short-distance SM/NP

Differential decay rate:

$$
\begin{aligned}
\frac{d \Gamma}{d q^{2}}=\frac{\alpha_{\mathrm{em}}^{2} G_{F}^{2}\left|V_{t b} V_{t s}^{*}\right|^{2}}{128 \pi^{5}} \kappa \beta\{ & \frac{2}{3} \kappa^{2} \beta^{2}\left|\mathcal{C}_{10}^{\mu} f_{+}\left(q^{2}\right)\right|^{2}+\frac{4 m_{\mu}^{2}\left(m_{B}^{2}-m_{K}^{2}\right)^{2}}{q^{2} m_{B}^{2}}\left|\mathcal{C}_{10}^{\mu} f_{0}\left(q^{2}\right)\right|^{2} \\
& \left.+\kappa^{2}\left(1-\frac{1}{3} \beta\right)\left|\mathcal{C}_{9}^{\mu} f_{+}\left(q^{2}\right)+2 \mathcal{C}_{7} \frac{m_{b}+m_{s}}{m_{B}+m_{K}} f_{T}\left(q^{2}\right)\right|^{2}\right\},
\end{aligned}
$$

Ingredients for the description:

- Perturbative short distance: matching coefficients $\mathcal{C}_{i}(\mu)$
- Hadronic matrix elements: form factors $f_{i}\left(q^{2}\right)$ [see talk by N. Gubernari]

Real world more complicated than that. Introduce:

Long-distance hadronic effects

Long-distance hadronic effects

Leave it to QCD to make live interesting:

Depending on q^{2}, the intermediate state live at non-perturbative scales
\Rightarrow Hadronic intermediate states rather than quarks.

Long-distance hadronic effects

Leave it to QCD to make live interesting:

Depending on q^{2}, the intermediate state live at non-perturbative scales
\Rightarrow Hadronic intermediate states rather than quarks.
To extract bounds on a q^{2}-dependent signal, we need to understand the shape of the SM spectrum.

Long-distance hadronic effects

Leave it to QCD to make live interesting:

Depending on q^{2}, the intermediate state live at non-perturbative scales
\Rightarrow Hadronic intermediate states rather than quarks.
To extract bounds on a q^{2}-dependent signal, we need to understand the shape of the SM spectrum.

Not a straightforward computation by first principles.

The way around: Find a region in q^{2}, where the intermediate state is dominated by short-distance physics.

The way around: Find a region in q^{2}, where the intermediate state is dominated by short-distance physics.

Example: Charm-quark loop at $q^{2} \sim 0$
Charm quarks hard $\left(k^{2} \sim m_{c}^{2}\right)$
Can compute QCD corrections using the established bag of tricks
(factorizable/non-factorizable corrections, ...)

Long-distance hadronic effects

The way around: Find a region in q^{2}, where the intermediate state is dominated by short-distance physics.

Example: Charm-quark loop at $q^{2} \sim 0$
Charm quarks hard $\left(k^{2} \sim m_{c}^{2}\right)$
Can compute QCD corrections using the established bag of tricks
(factorizable/non-factorizable corrections, ...)

Then: Extrapolate to high- q^{2} region using analyticity of amplitude.
[Khodjamirian et al. (2010), JHEP 1009 089; Khodjamirian et al. (2013), JHEP 1302 010; see talk by Nico]

Universität

Leading contribution: Intermediate charmonium resonances.

Leading contribution: Intermediate charmonium resonances.

The q^{2}-dependence is described by a relativistic Breit-Wigner.

$$
\Delta Y_{c \bar{c}}^{1 P}(s)=\eta_{V} e^{i \delta_{V}} \frac{s}{m_{V}^{2}} \frac{m_{V} \Gamma_{V}}{s-m_{V}^{2}+i m_{V} \Gamma_{V}}
$$

Charm loops - two-particle states

Two-particle intermediate states:

Two-particle intermediate states:

q^{2} dependence through subtracted hadronic dispersion relation:

$$
\begin{aligned}
\Delta Y_{c \bar{c}}^{2 \mathrm{P}}(s)= & \frac{s}{\pi} \sum_{V} \int_{\tau_{V}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{V}(\tilde{s})}{\tilde{s}-s} \\
& V \in\left\{D D, D^{*} D, D^{*} D^{*}\right\}
\end{aligned}
$$

[Khodjamirian et al. (2010), JHEP 1009 089; Khodjamirian et al. (2013), JHEP 1302 010]

Two-particle intermediate states:

q^{2} dependence through subtracted hadronic dispersion relation:

$$
\begin{aligned}
\Delta Y_{c \bar{c}}^{2 \mathrm{P}}(s)= & \frac{s}{\pi} \sum_{V} \int_{\tau_{V}}^{\infty} \frac{d \tilde{s}}{\tilde{s}} \frac{\rho_{V}(\tilde{s})}{\tilde{s}-s} \\
& V \in\left\{D D, D^{*} D, D^{*} D^{*}\right\}
\end{aligned}
$$

[Khodjamirian et al. (2010), JHEP 1009 089; Khodjamirian et al. (2013), JHEP 1302 010]
What are the various $\rho_{V}(s) ? \quad \rightarrow$ estimate!

Charm loops - two-particle states

First-principle calculation of the spectral densities $\rho_{V}(s)$ not viable.

Charm loops - two-particle states

First-principle calculation of the spectral densities $\rho_{V}(s)$ not viable.

\rightarrow Can estimate $\rho_{V}(s)$ from $V V^{\prime} \rightarrow \mu \mu$ using helicity arguments.

Charm loops - two-particle states

First-principle calculation of the spectral densities $\rho_{V}(s)$ not viable.

\rightarrow Can estimate $\rho_{V}(s)$ from $V V^{\prime} \rightarrow \mu \mu$ using helicity arguments.

From this we find: $\rho_{V}=\sum_{n} c_{n}^{V} \beta^{n}\left(4 m_{V}^{2} / s\right), \quad \beta(\tau)=\sqrt{1-\tau}$

First-principle calculation of the spectral densities $\rho_{V}(s)$ not viable.

\rightarrow Can estimate $\rho_{V}(s)$ from $V V^{\prime} \rightarrow \mu \mu$ using helicity arguments.

From this we find: $\rho_{V}=\sum_{n} c_{n}^{V} \beta^{n}\left(4 m_{V}^{2} / s\right), \quad \beta(\tau)=\sqrt{1-\tau}$
Keeping only the leading partial waves:

$$
\rho_{D D}=\left(1-\frac{4 m_{D}^{2}}{s}\right)^{3 / 2} \rho_{D D^{*}}=\left(1-\frac{4 m_{D D^{*}}^{2}}{s}\right)^{1 / 2} \rho_{D^{*} D^{*}}=\left(1-\frac{4 m_{D}^{* 2}}{s}\right)^{3 / 2}
$$

$$
\rho_{D D}=\left(1-\frac{4 m_{D}^{2}}{s}\right)^{3 / 2} \rho_{D D^{*}}=\left(1-\frac{4 m_{D D^{*}}^{2}}{s}\right)^{1 / 2} \rho_{D^{*} D^{*}}=\left(1-\frac{4 m_{D}^{* 2}}{s}\right)^{3 / 2}
$$

While the charm-contributions are the largest ones, light quarks still need to be accounted for.

Light resonances

While the charm-contributions are the largest ones, light quarks still need to be accounted for.

They are strongly CKM-suppressed with respect to the leading charm.
\rightarrow We limit ourselves to single-particle contributions.

While the charm-contributions are the largest ones, light quarks still need to be accounted for.

They are strongly CKM-suppressed with respect to the leading charm.
\rightarrow We limit ourselves to single-particle contributions.

$$
Y_{\text {light }}^{1 \mathrm{P}}(s)=\sum_{V} \eta_{V} e^{i \delta_{V}} \frac{m_{V} \Gamma_{V}}{s-m_{V}^{2}+i m_{V} \Gamma_{V}}
$$

with $V=\rho, \omega, \phi$.

Constraints

In our approach, we only fix the q^{2}-shape of the contributions.

Constraints

In our approach, we only fix the q^{2}-shape of the contributions.

Magnitudes and phases are floating parameters in the fit.

In our approach, we only fix the q^{2}-shape of the contributions.

Magnitudes and phases are floating parameters in the fit.

The hadronic long-distance contributions are written as:

$$
Y_{\mathrm{hadr}}(s)=\Delta Y_{c \bar{c}}^{1 \mathrm{P}}(s)+\Delta Y_{c \bar{c}}^{2 \mathrm{P}}(s)+Y_{\text {light }}^{1 \mathrm{P}}(s)
$$

All $\Delta Y_{c \bar{c}}^{i}(0)=0$ by construction!

In our approach, we only fix the q^{2}-shape of the contributions.

Magnitudes and phases are floating parameters in the fit.

The hadronic long-distance contributions are written as:

$$
Y_{\mathrm{hadr}}(s)=\Delta Y_{c \bar{c}}^{1 \mathrm{P}}(s)+\Delta Y_{c \bar{c}}^{2 \mathrm{P}}(s)+Y_{\text {light }}^{1 \mathrm{P}}(s)
$$

All $\Delta Y_{c \bar{c}}^{i}(0)=0$ by construction!
We can constrain our fit by requiring $\Delta Y_{c \bar{c}}^{i}(0)$ to be close to the perturbative result.

Constraints

At low q^{2}, the slope of the perturbative charm contribution is:

$$
\left.\frac{d}{d q^{2}} \Delta Y_{c \bar{c}}^{\text {pert }}\right|_{q^{2}=0}=\frac{4}{15 m_{c}^{2}}\left(\mathcal{C}_{2}+\frac{1}{3} \mathcal{C}_{1}\right) \approx(1.7 \pm 1.7) \cdot 10^{-2} \mathrm{GeV}^{-2}
$$

At low q^{2}, the slope of the perturbative charm contribution is:

$$
\left.\frac{d}{d q^{2}} \Delta Y_{c \bar{c}}^{\text {pert }}\right|_{q^{2}=0}=\frac{4}{15 m_{c}^{2}}\left(\mathcal{C}_{2}+\frac{1}{3} \mathcal{C}_{1}\right) \approx(1.7 \pm 1.7) \cdot 10^{-2} \mathrm{GeV}^{-2}
$$

This yields the following set of constraints:
$\operatorname{Re}\left[\sum_{j=\Psi(1 S), \ldots} \eta_{j} e^{i \delta_{j}} \frac{\Gamma_{j}}{m_{j}^{3}}+\eta_{\bar{D}} e^{i \delta_{j}} \frac{1}{6 m_{\bar{D}}^{2}}+\sum_{j=D, D^{*}} \eta_{j} e^{i \delta_{j}} \frac{1}{10 m_{j}^{2}}\right]=(1.7 \pm 2.2) \cdot 10^{-2} \mathrm{GeV}^{-2}$

$$
\left|\sum_{j=\Psi(1 S), \ldots} \eta_{j} e^{i \delta_{j}} \frac{\Gamma_{j}}{m_{j}^{3}}+\eta_{\bar{D}} e^{i \delta_{j}} \frac{1}{6 m_{\bar{D}}^{2}}+\sum_{j=D, D^{*}} \eta_{j} e^{i \delta_{j}} \frac{1}{10 m_{j}^{2}}\right| \leq 5 \cdot 10^{-2} \mathrm{GeV}^{-2}
$$

At low q^{2}, the slope of the perturbative charm contribution is:

$$
\left.\frac{d}{d q^{2}} \Delta Y_{c \bar{c}}^{\text {pert }}\right|_{q^{2}=0}=\frac{4}{15 m_{c}^{2}}\left(\mathcal{C}_{2}+\frac{1}{3} \mathcal{C}_{1}\right) \approx(1.7 \pm 1.7) \cdot 10^{-2} \mathrm{GeV}^{-2}
$$

This yields the following set of constraints:
$\operatorname{Re}\left[\sum_{j=\Psi(1 S), \ldots} \eta_{j} e^{i \delta_{j}} \frac{\Gamma_{j}}{m_{j}^{3}}+\eta_{\bar{D}} e^{i \delta_{j}} \frac{1}{6 m_{\bar{D}}^{2}}+\sum_{j=D, D^{*}} \eta_{j} e^{i \delta_{j}} \frac{1}{10 m_{j}^{2}}\right]=(1.7 \pm 2.2) \cdot 10^{-2} \mathrm{GeV}^{-2}$
$\left|\sum_{j=\Psi(1 S), \ldots} \eta_{j} e^{i \delta_{j}} \frac{\Gamma_{j}}{m_{j}^{3}}+\eta_{\bar{D}} e^{i \delta_{j}} \frac{1}{6 m_{\bar{D}}^{2}}+\sum_{j=D, D^{*}} \eta_{j} e^{i \delta_{j}} \frac{1}{10 m_{j}^{2}}\right| \leq 5 \cdot 10^{-2} \mathrm{GeV}^{-2}$
Similarly, we can put an upper limit on the η from ΔY directly:

$$
\left|\eta_{D, D^{*}, \bar{D}}\right| \leq 0.2
$$

τ-loops in $b \rightarrow s \mu \mu$

The τ loops enter as a contribution to $\mathcal{C}_{9}^{\text {eff }}\left(q^{2}\right)$:

$$
Y_{\tau \bar{\tau}}\left(q^{2}\right)=-\frac{\alpha}{2 \pi} \mathcal{C}_{9}^{\tau}\left[h_{s}\left(m_{\tau}^{2}, q^{2}\right)-\frac{1}{3} h_{p}\left(m_{\tau}^{2}, q^{2}\right)\right]
$$

Intriguing channel because:
■ It has an s-wave contribution \rightarrow large

The τ loops enter as a contribution to $\mathcal{C}_{9}^{\text {eff }}\left(q^{2}\right)$:

$$
Y_{\tau \bar{\tau}}\left(q^{2}\right)=-\frac{\alpha}{2 \pi} \mathcal{C}_{9}^{\tau}\left[h_{s}\left(m_{\tau}^{2}, q^{2}\right)-\frac{1}{3} h_{p}\left(m_{\tau}^{2}, q^{2}\right)\right]
$$

Intriguing channel because:

- It has an s-wave contribution \rightarrow large
- A large enhancement over the SM is well-motivated by NP explanations to B-anomalies

The τ loops enter as a contribution to $\mathcal{C}_{9}^{\text {eff }}\left(q^{2}\right)$:

$$
Y_{\tau \bar{\tau}}\left(q^{2}\right)=-\frac{\alpha}{2 \pi} \mathcal{C}_{9}^{\tau}\left[h_{s}\left(m_{\tau}^{2}, q^{2}\right)-\frac{1}{3} h_{p}\left(m_{\tau}^{2}, q^{2}\right)\right]
$$

Intriguing channel because:
■ It has an s-wave contribution \rightarrow large

- A large enhancement over the SM is well-motivated by NP explanations to B-anomalies
- Current direct bounds are rather weak, implying $\mathcal{C}_{9}^{\tau} \lesssim 580$

The τ loops enter as a contribution to $\mathcal{C}_{9}^{\text {eff }}\left(q^{2}\right)$:

$$
Y_{\tau \bar{\tau}}\left(q^{2}\right)=-\frac{\alpha}{2 \pi} \mathcal{C}_{9}^{\tau}\left[h_{s}\left(m_{\tau}^{2}, q^{2}\right)-\frac{1}{3} h_{p}\left(m_{\tau}^{2}, q^{2}\right)\right]
$$

Intriguing channel because:

- It has an s-wave contribution \rightarrow large
- A large enhancement over the SM is well-motivated by NP explanations to B-anomalies
- Current direct bounds are rather weak, implying $\mathcal{C}_{9}^{\tau} \lesssim 580$

■ Very distinct shape of the spectrum, with a "cusp" at $q^{2}=4 m_{\tau}^{2}$

The τ loops enter as a contribution to $\mathcal{C}_{9}^{\text {eff }}\left(q^{2}\right)$:

$$
Y_{\tau \bar{\tau}}\left(q^{2}\right)=-\frac{\alpha}{2 \pi} \mathcal{C}_{9}^{\tau}\left[h_{s}\left(m_{\tau}^{2}, q^{2}\right)-\frac{1}{3} h_{p}\left(m_{\tau}^{2}, q^{2}\right)\right]
$$

Intriguing channel because:

- It has an s-wave contribution \rightarrow large
- A large enhancement over the SM is well-motivated by NP explanations to B-anomalies
■ Current direct bounds are rather weak, implying $\mathcal{C}_{9}^{\tau} \lesssim 580$
- Very distinct shape of the spectrum, with a "cusp" at $q^{2}=4 m_{\tau}^{2}$

■ Again: LHCb has lots of data on $B \rightarrow K \mu \mu$!

With the amount of data LHCb has, we can find a bound competitive to the current one!

Preliminary sensitivity and future

Preliminary sensitivity:

Preliminary sensitivity and future

Preliminary sensitivity:

$$
\operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) \lesssim 8.1 \cdot 10^{-4} @ 95 \% \mathrm{CL}
$$

using $9 \mathrm{fb}^{-1}$ of pseudodata (40k events after cutting resonances).

Preliminary sensitivity and future

Preliminary sensitivity:

$$
\operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) \lesssim 8.1 \cdot 10^{-4} @ 95 \% \mathrm{CL}
$$

using $9 \mathrm{fb}^{-1}$ of pseudodata (40k events after cutting resonances).
Future projections (better FFs):

$$
\operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<7.6 \cdot 10^{-4} \quad @ 95 \% \mathrm{CL}
$$

assuming FF uncertainty reduced to 30%

Preliminary sensitivity:

$$
\operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) \lesssim 8.1 \cdot 10^{-4} @ 95 \% \mathrm{CL}
$$

using $9 \mathrm{fb}^{-1}$ of pseudodata (40k events after cutting resonances).
Future projections (better FFs):

$$
\operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<7.6 \cdot 10^{-4} \quad @ 95 \% \mathrm{CL}
$$

assuming FF uncertainty reduced to 30%
Numbers preliminary! Full fit with resonance parameters $\left(\eta_{i}, \delta_{i}\right)$ underway!

Preliminary sensitivity:

$$
\operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right) \lesssim 8.1 \cdot 10^{-4} \quad @ 95 \% \mathrm{CL}
$$

using $9 \mathrm{fb}^{-1}$ of pseudodata (40k events after cutting resonances).
Future projections (better FFs):

$$
\operatorname{Br}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)<7.6 \cdot 10^{-4} \quad @ 95 \% \mathrm{CL}
$$

assuming FF uncertainty reduced to 30%
Numbers preliminary! Full fit with resonance parameters $\left(\eta_{i}, \delta_{i}\right)$ underway!

Competitive with the projected bounds from Belle!

Competitive with the projected bounds from Belle!
[see talk by S. Wehler]

Conclusions

Conclusions

- If the anomalies in semileptonic B decays hold any water, $B \rightarrow K \tau \tau$ should exhibit a large enhancement.
- If the anomalies in semileptonic B decays hold any water, $B \rightarrow K \tau \tau$ should exhibit a large enhancement.
■ Direct measurements are tough, current bounds allow for large enhancements over the SM value.

■ If the anomalies in semileptonic B decays hold any water, $B \rightarrow K \tau \tau$ should exhibit a large enhancement.
■ Direct measurements are tough, current bounds allow for large enhancements over the SM value.

- Tau loops lead to a distinct distortion of the q^{2} spectrum, with a cusp nicely set between the ψ and ψ^{\prime} resonances!
- If the anomalies in semileptonic B decays hold any water, $B \rightarrow K \tau \tau$ should exhibit a large enhancement.
■ Direct measurements are tough, current bounds allow for large enhancements over the SM value.
- Tau loops lead to a distinct distortion of the q^{2} spectrum, with a cusp nicely set between the ψ and ψ^{\prime} resonances!
- Sufficient understanding of the SM background required, especially the long-distance QCD with their respective phases.
- If the anomalies in semileptonic B decays hold any water, $B \rightarrow K \tau \tau$ should exhibit a large enhancement.
■ Direct measurements are tough, current bounds allow for large enhancements over the SM value.
- Tau loops lead to a distinct distortion of the q^{2} spectrum, with a cusp nicely set between the ψ and ψ^{\prime} resonances!
- Sufficient understanding of the SM background required, especially the long-distance QCD with their respective phases.
- We fix the q^{2}-shape of the contributions. Magnitudes and phases are floating parameters in the fit.
- If the anomalies in semileptonic B decays hold any water, $B \rightarrow K \tau \tau$ should exhibit a large enhancement.
■ Direct measurements are tough, current bounds allow for large enhancements over the SM value.
- Tau loops lead to a distinct distortion of the q^{2} spectrum, with a cusp nicely set between the ψ and ψ^{\prime} resonances!
- Sufficient understanding of the SM background required, especially the long-distance QCD with their respective phases.
- We fix the q^{2}-shape of the contributions. Magnitudes and phases are floating parameters in the fit.
■ Bound competitive with $B \rightarrow K \tau \tau$!
- If the anomalies in semileptonic B decays hold any water, $B \rightarrow K \tau \tau$ should exhibit a large enhancement.
■ Direct measurements are tough, current bounds allow for large enhancements over the SM value.
- Tau loops lead to a distinct distortion of the q^{2} spectrum, with a cusp nicely set between the ψ and ψ^{\prime} resonances!
- Sufficient understanding of the SM background required, especially the long-distance QCD with their respective phases.
- We fix the q^{2}-shape of the contributions. Magnitudes and phases are floating parameters in the fit.
- Bound competitive with $B \rightarrow K \tau \tau$!

■ Future perspective: Bound will tighten with more statistics, better hadronic form factors.

- If the anomalies in semileptonic B decays hold any water, $B \rightarrow K \tau \tau$ should exhibit a large enhancement.
■ Direct measurements are tough, current bounds allow for large enhancements over the SM value.
- Tau loops lead to a distinct distortion of the q^{2} spectrum, with a

Thank you for your attention!

are floating parameters in the fit.

- Bound competitive with $B \rightarrow K \tau \tau$!
- Future perspective: Bound will tighten with more statistics, better hadronic form factors.

Bonus slides

