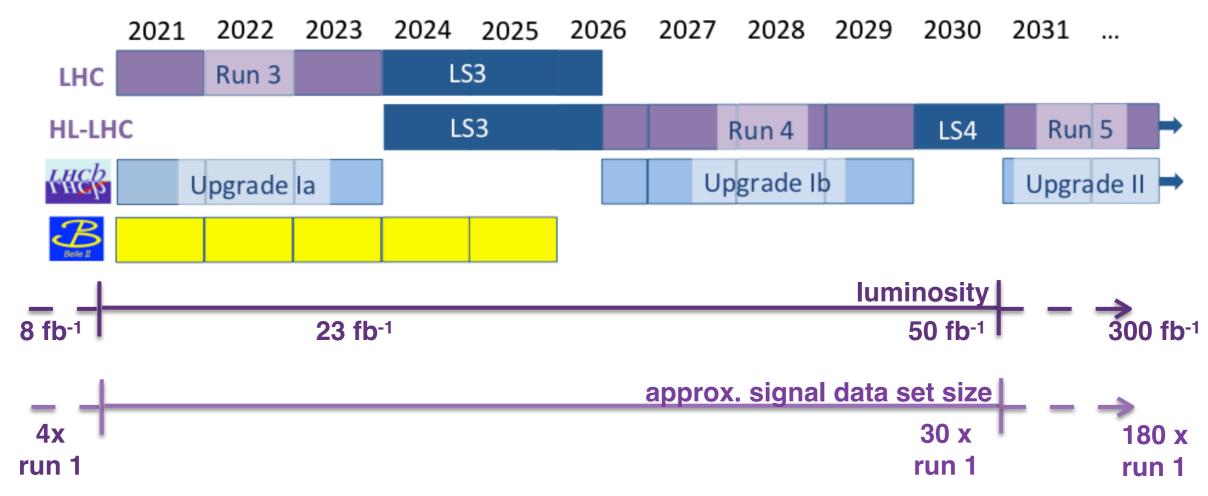
Experimental prospects for baryon decays

Lyon, 6th September 2019

T. Blake

LHCb Upgrades



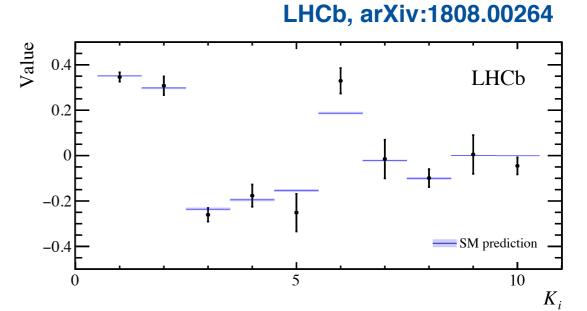
Expect a further factor of ~2 gain for channels with electrons/photons due to removal of the L0 hardware trigger.

 Focus on LHCb, but ATLAS and CMS can contribute to a number of the measurements mentioned in these slides (see talk by Greg).

$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

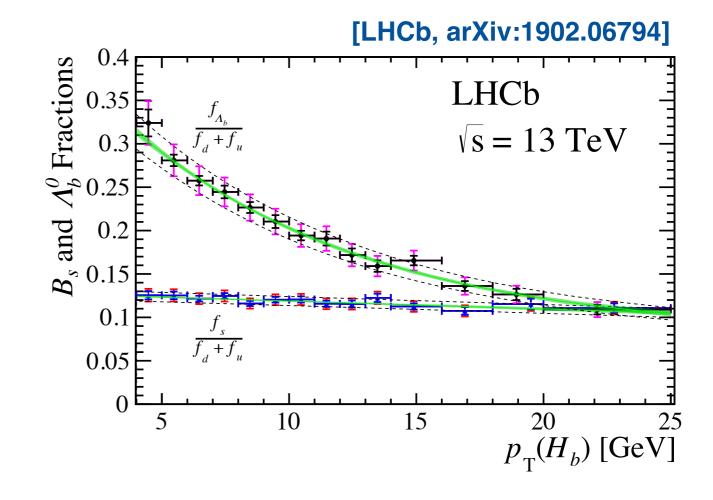
• Large number (34) of angular observables, 24 require Λ_b to be polarised at production and are consistent with zero in current dataset.

Detmold et al. arXiv:1602.01399 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 q^2 [GeV²]

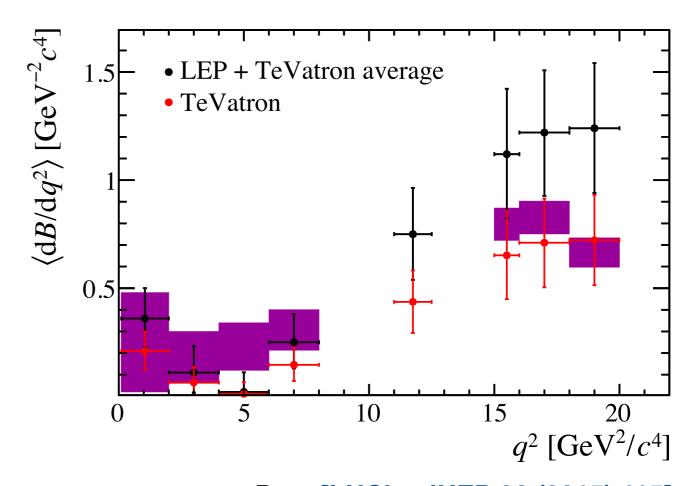


- SM predictions use external on α_{Λ} and production polarisation (small at the LHC).
- Branching fraction uncertainty currently dominated by knowledge of $\mathcal{B}(\Lambda_b \to J/\psi \Lambda)$.

- Existing branching fraction measurement uses CDF/D0 average of measurement of $f_{\Lambda_b} \times \mathcal{B}(\Lambda_b \to J/\psi \Lambda) = (5.8 \pm 0.8) \times 10^{-5}$, with f_{Λ_b} taken as a LEP + TeVatron average.
- Now know that the baryon production fractions exhibit strong p_T dependences in pp collisions.
- Λ_b baryons produced with lower average $p_{\rm T}$ at the TeVatron than LEP.



- Re-evaluating the branching fraction using only TeVatron inputs significantly changes the picture.
- Data consistent with, but now below SM predictions.
 - Consistent with pattern seen in other branching fraction measurements.



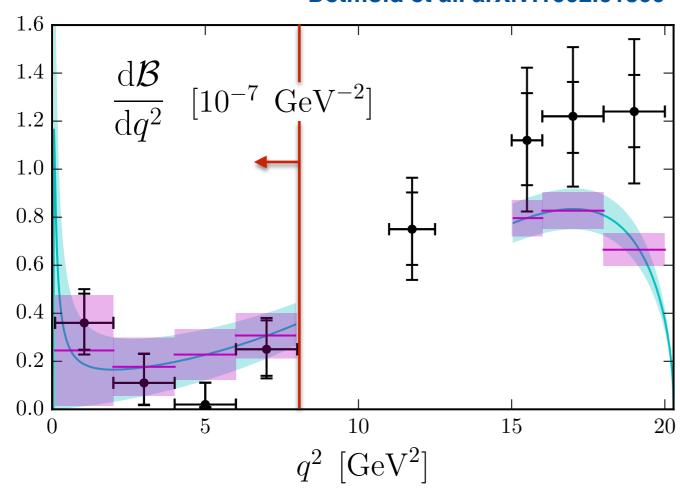
Data [LHCb, JHEP 06 (2015) 115] SM [Detmold et al. arXiv:1602.01399]

- Plan to measure $\mathcal{B}(\Lambda_b \to J/\psi \Lambda)$ at LHCb to improve the normalisation uncertainty.
- Ultimate precision on branching fraction measurements is limited by knowledge of $\mathcal{B}(B o J/\psi K)$ and f_{Λ_b}/f_d .
 - ightharpoonup Bin-by-bin measurements will be systematically limited with an 8% ($4\% \oplus 7\%$) systematic uncertainty.

$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

• We should observe significant signal at low q^2 in the run 2 data set.

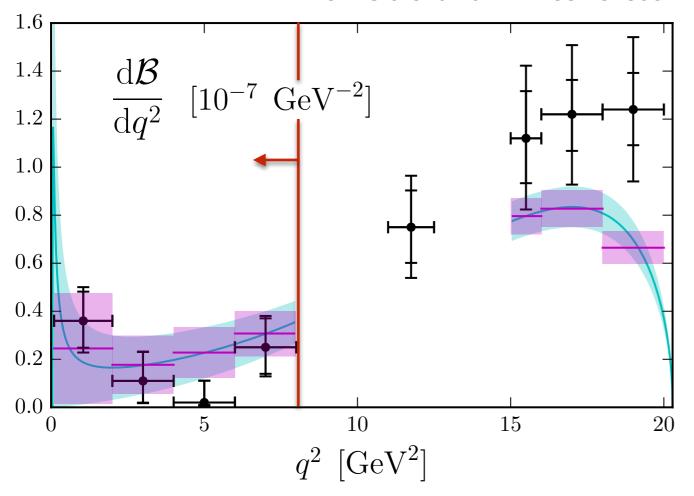
Detmold et al. arXiv:1602.01399



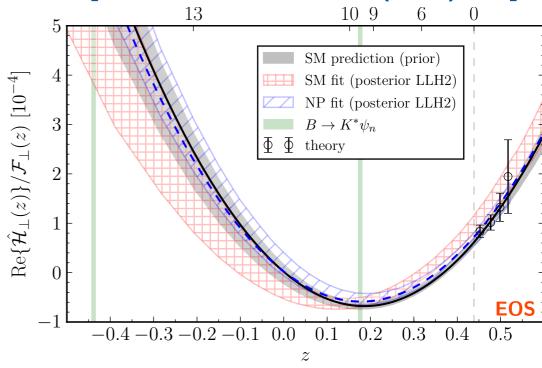
$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

• We should observe significant signal at low q^2 in the run 2 data set.

Detmold et al. arXiv:1602.01399



[Bobeth et al. EPJC 78 (2018) 451]



- Could also apply techniques from [EPJC 78 (2018) 451] to low q² region.
- External input wanted on decay amplitudes for $J/\psi/\Lambda$ and $\psi(2S)/\Lambda$.

$\Lambda_b \rightarrow J/\psi \Lambda$ angular distribution

- Parameterised by five decay angles:
 - Polar and azimuthal helicity angles for the Λ and J/ψ system and θ defined by \hat{n} , where $\hat{n} = \hat{p}_{\mathrm{beam}} \times \hat{p}_{\Lambda_b}$.
- Described by 4 helicity amplitudes. $H_{\lambda_{\Lambda},\lambda_{\psi}}$, the Λ_b production polarisation and the Λ asymmetry parameter α .
 - Amplitudes are $a_{-} = H_{-1/2,\,0}$ $a_{+} = H_{+1/2,\,0}$ $b_{-} = H_{+1/2,\,+1}$ $b_{+} = H_{-1/2,\,-1}$

 \hat{z}_{Λ} \hat{x}_{Λ} $\hat{p}_{\Lambda_b^0}^{\{lab\}}$ \hat{y}_{Λ} $\hat{z}_{\ell\bar{\ell}}$ $\hat{y}_{\ell\bar{\ell}}$

See, e.g.

T. Blake & M. Kreps arXiv:1710.00746,

J. Hrivnac et al. arXiv:hep-ph/9405231

Observables

- Large number of observables vanish if the Λ_b is unpolarised:
 - No longer have enough constraints to determine phases of the amplitudes.
- Even if the polarisation is large expect two amplitudes to be small: $a_+ \approx b_- \approx 0$.

Moments	Amplitude dependence					
M_1 $\frac{1}{4}(2 a_+ ^2 + 2 a ^2 + b_+ ^2 + b ^2)$						
M_2						
M_4 $\frac{\alpha}{4}(b ^2 - b_+ ^2 + 2 a_+ ^2 - 2 a ^2)$						
M_5 $\frac{\alpha}{2}(b ^2 - b_+ ^2)$						
M_7	$\frac{\alpha}{\sqrt{2}} \text{Re}(-b_{+}^{*}a_{+} + b_{-}a_{-}^{*})$					
M_9	$\frac{\alpha}{\sqrt{2}} \text{Im}(b_{+}^{*}a_{+} - b_{-}a_{-}^{*})$					
M_{11}	$P_{b\frac{1}{4}}(b_{+} ^{2} - b_{-} ^{2} + 2 a_{+} ^{2} - 2 a_{-} ^{2})$					
M_{12}	$P_b \frac{1}{2} (b_+ ^2 - b ^2)$					
M_{14}	$P_{b\frac{\alpha}{4}}(- b_{-} ^{2}- b_{+} ^{2}+2 a_{+} ^{2}+2 a_{-} ^{2})$					
M_{15}	$-P_b \frac{\alpha}{2} (b_+ ^2 + b ^2)$					
$-P_b \frac{\alpha}{\sqrt{2}} \text{Re}(b_+^* a_+ + b a^*)$						
M_{19} $P_b \frac{\dot{\alpha}}{\sqrt{2}} \text{Im}(b_+^* a_+ + b a^*)$						
$-P_b^{\tilde{1}} - Im(b_+^* a b a_+^*)$						
M_{23} $P_b \frac{1}{\sqrt{2}} \text{Re}(b_+^* a b a_+^*)$						
M_{25}	$P_b \frac{\alpha}{\sqrt{2}} \text{Im}(b_+^* a + b a_+^*)$					
M_{27}	$-P_b^{2} \frac{\alpha}{\sqrt{2}} \text{Re}(b_+^* a + b a_+^*)$					
M_{30}	$P_b \alpha \operatorname{Im}(a_+ a^*)$					
M_{32}	$-P_b\alpha \operatorname{Re}(a_+a^*)$					
M_{33}	$-P_b \frac{\alpha}{2} \operatorname{Re}(b_+^* b)$					
M_{34}	$P_b \frac{\alpha}{2} \text{Im}(b_+^* b)$					

/lasymmetry parameter

Recent measurement by BESIII [Nature Physics 15 (2019) 631–634] is 17% larger than current world average value:

$$lpha_{\Lambda} = 0.642 \pm 0.013$$
 PDG $lpha_{\Lambda} = 0.750 \pm 0.010$ BESIII

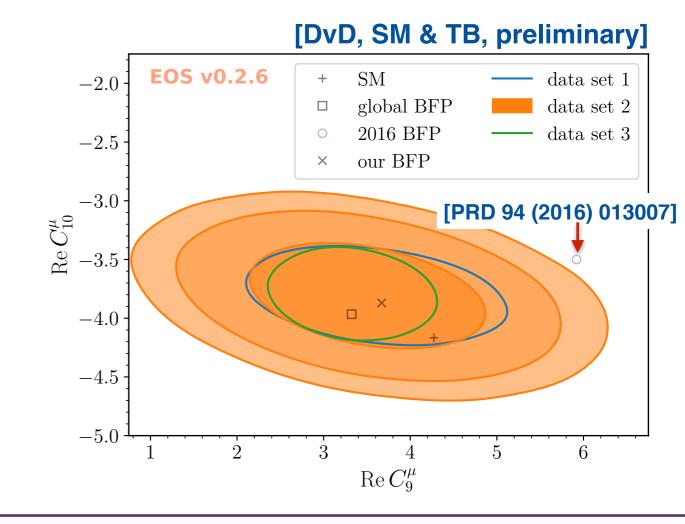
- The larger BESIII value likely solves the problems with the existing LHCb, ATLAS and CMS analyses of $\Lambda_b \rightarrow J/\psi \Lambda$, which favour an unphysical solution [LHCb, PLB 724 (2013) 27][ATLAS, PRD 89 (2014) 092009] [CMS, PRD 97 (2018) 072010].
- Old measurements of α had to determine the proton polarisation from secondary scattering.
- Impacts interpretation of the $\Lambda_b \to \Lambda \mu^+ \mu^-$ angular observables.

Updated global fit

Try three scenarios:

ATLAS, CMS & LHCb $\mathcal{B}(B_s \to \mu^+ \mu^-)$ + unpolarised $\Lambda \mu^+ \mu^-$ angular observables.

- + Polarised angular observables.
- + Updated branching fraction.
- SM point has good p-value.
- Data are consistent with the anomalies (best-fit point is close to the one obtained using meson data).

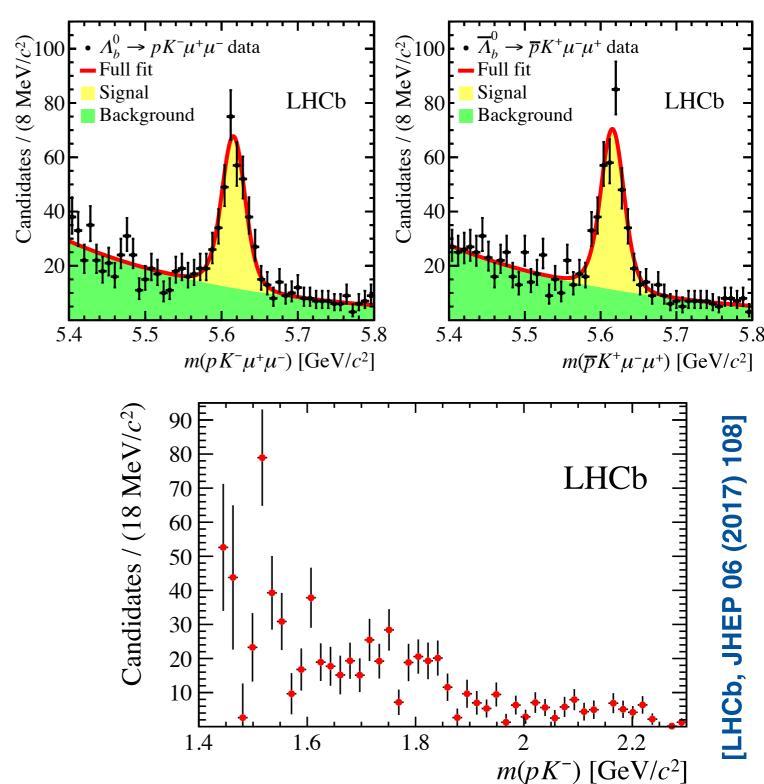


Polarised Λ_b baryons?

- Large number of new observables would be available if the Λ_b baryons were produced polarised, see [T. Blake & M. Kreps JHEP 11 (2017) 138].
- Polarisation is small at LHC, but is large in Z⁰ decays [ALEPH, PLB 365 (1996) 437-447], [OPAL, PLB 444 (1998) 539-554], [DELPHI, PLB 474 (2000) 205-222]
- Long-term, could perform these measurements at a future e+e- collider,
 e.g. expect 5 x 10¹² Z⁰'s at FCC-ee [A. Abada et al, EPJC 79 (2019) 474].
 - → O(1000) reconstructible $\Lambda_b \to \Lambda \mu^+ \mu^-$ decays at low-recoil.
- Could we also exploit the large $t\bar{t}$ cross-section at ATLAS and CMS as a source of polarised b-baryons?

$\Lambda_b \rightarrow pK\mu^+\mu^-$

- First observed in the LHCb Run 1 data set.
- Measured CP and triple product asymmetries (null result).
- Branching fraction measurement and angular analysis complicated by the presence of a large number of overlapping \(\Lambda^*\) resonances with different \(\mathcal{J}^{PC}\).



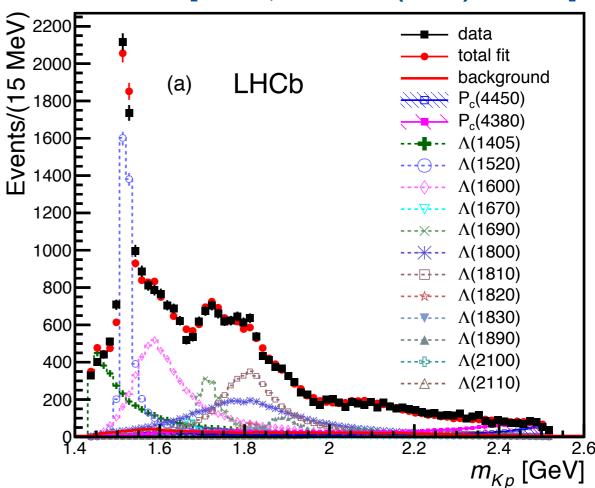
$\Lambda_b \rightarrow J/\psi p K$

 An amplitude analysis of *J*/ψ*pK* was carried out as part of the original pentaquark observation paper.

[PRL 115 (2015) 072001]

Data dominated by \(\lambda(1520) \)
 (with J^{PC} = 3/2-) at low \(pK \)
 mass. However, there are still large contributions from other resonances that are difficult to disentangle.

[LHCb, PRL 115 (2015) 072001]

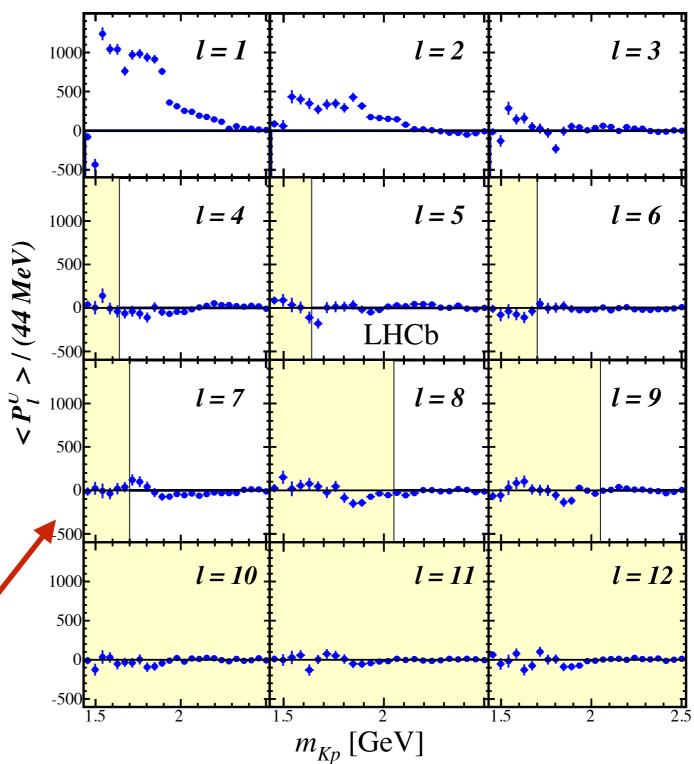


$\Lambda_b \rightarrow pK\mu^+\mu^-$

- Large number of overlapping Λ* resonances with different J^{PC}.
- Can separate using an amplitude analysis of the pKμ+μ- system.
- Simple first step, perform a moment analysis in bins on pK mass (and q²).

c.f. $\Lambda_b \rightarrow J/\psi p K$ model independent analysis in [LHCb, PRL 117 (2016) 082002]

[LHCb, PRL 117 (2016) 082002]



$\Lambda_b \rightarrow pK\mu^+\mu^-$

- Even if we cannot separate the different A* resonances, can still perform clean tests of the SM through LFU ratios.
 - ✓ Decay has different sources of experimental background to $B \rightarrow K^{*0}\mu^{+}\mu^{-}$.

- What other $b \rightarrow s \mu^+ \mu^-$ baryonic decays could we look for in the Run II/upgrade data sets?
 - $= \overline{\Xi}_b \rightarrow \overline{\Xi} \mu^+ \mu^- \text{ (with } \overline{\Xi} \rightarrow \Lambda \pi^- \text{)}$ $= \Omega_b \rightarrow \Omega^- \mu^+ \mu^- \text{ (with } \Omega^- \rightarrow \Lambda K^- \text{)}$

Decay chains involve two long-lived particles ⇒ low efficiency

From TeVatron:

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b}} = 0.167 \pm 0.037 \pm 0.012 ,$$

$$\frac{f_{\Omega_b^-}}{f_{\Lambda_b}} = 0.045 \pm 0.017 \pm 0.004 ,$$

[CDF, PRD 80 (2009) 072003] [D0, PRL 99 (2007) 052001]

- What other $b \rightarrow s \mu^+ \mu^-$ baryonic decays could we look for in the Run II/upgrade data sets?

Decay chains involve two long-lived particles ⇒ low efficiency

- Based on LHCb measurements of $\Xi_b \to \Xi^- J/\psi$ and $\Omega_b \to \Omega^- J/\psi$ [PLB 736 (2014) 154] expect:
 - \rightarrow O(10) $\equiv_b \rightarrow \equiv \mu^+ \mu^-$
 - \rightarrow O(2) $\Omega_b \rightarrow \Omega^- J/\psi$

decays to be reconstructible in the Run 2 data set.

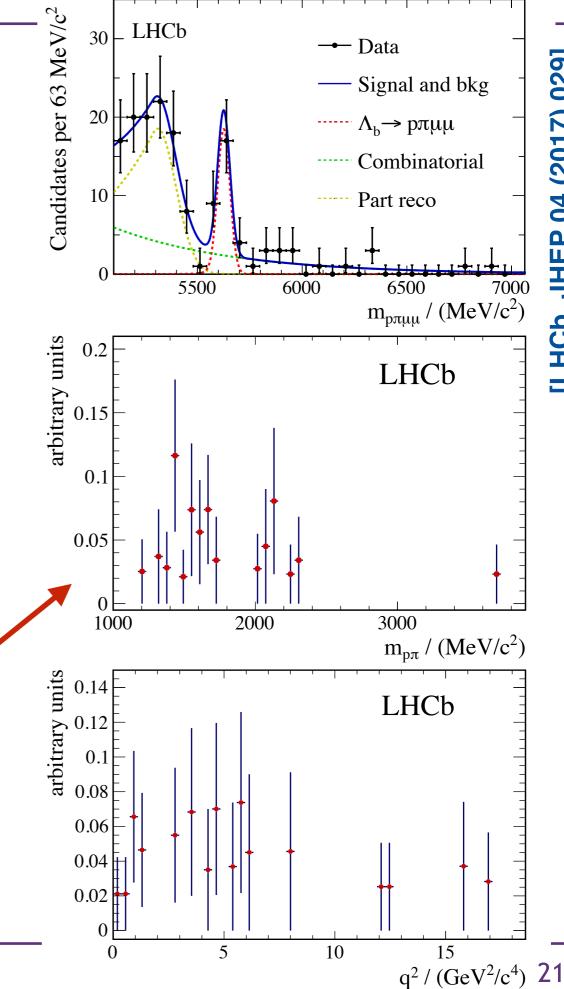
- What other $b \rightarrow s \mu^+ \mu^-$ baryonic decays could we look for in the Run II/upgrade data sets?
 - $= \overline{\Xi}_b \rightarrow \overline{\Xi}^- \mu^+ \mu^- \text{ (with } \overline{\Xi}^- \rightarrow \Lambda \pi^-)$ $= \Omega_b \rightarrow \Omega^- \mu^+ \mu^- \text{ (with } \Omega^- \rightarrow \Lambda K^-)$

Decay chains involve two long-lived particles ⇒ low efficiency

- Should be theoretically clean due to weak decays of Ξ and Ω .
- Described by a 5 or 7 (when considering the subsequent Λ decay) dimensional angular distribution:
 - Do we get additional NP sensitivity by probing the A helicity?

$\rightarrow p\pi \mu^+ \mu^-$

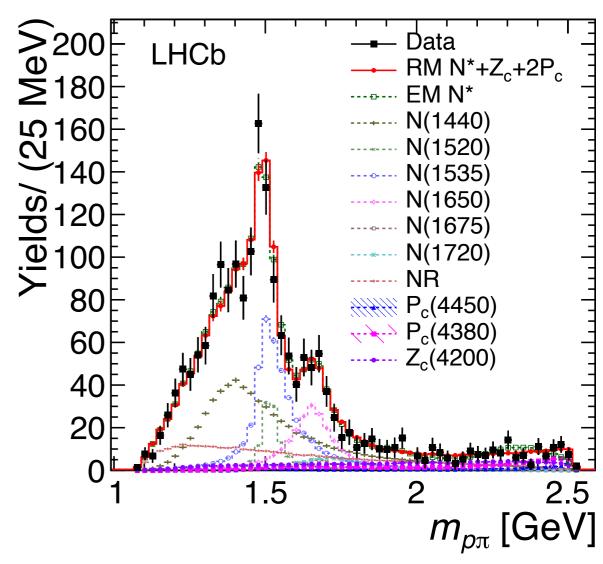
- Mediated by a $b \rightarrow d\mu^{+}\mu^{-}$ FCNC.
- First observation with 5.5σ significance (22±6 decays) in the LHCb Run 1 dataset.
- Same conceptual issue as $pK\mu^+\mu^$ when comparing to theory predictions:
 - Large number of overlapping N* resonances with different JPC.



$\Lambda_b \rightarrow J/\psi p \pi$

- An amplitude analysis of
 Λ_b → J/ψρπ has been
 carried out to search for
 exotic states in
 [LHCb, PRL 117 (2016) 082003].
- To describe the data need to consider a number of overlapping N* resonances along with a broad nonresonant contribution.

[LHCb, PRL 117 (2016) 082003]



- What about $b \rightarrow d\mu^+\mu^-$ decays to ground-state baryons?
 - \rightarrow $\Lambda_b \rightarrow \Pi \mu^+ \mu^-$ x neutron in final-state
 - $\rightarrow \Xi_b \rightarrow \wedge \mu + \mu -$
 - **→**

Decays are isospin violating, expect negligible rate.

Radiative 1/2 decays

 Photon polarisation can be determined from the angular distribution of baryonic decays,

 $\alpha_{\gamma} = \frac{P(\gamma_{L}) - P(\gamma_{R})}{P(\gamma_{L}) + P(\gamma_{R})}$

• $\Lambda_b \to \Lambda_\gamma$ [G. Hiller & A. Kagan, PRD 65 (2002) 074038]

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{\gamma}} = \frac{1}{2}(1 - \alpha_{\gamma}P_{b}\cos\theta_{\gamma}) \qquad \qquad \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{p}} = \frac{1}{2}(1 - \alpha_{\gamma}\alpha_{\Lambda}\cos\theta_{p})$$

• $\bigwedge_b \rightarrow \bigwedge^* \gamma$ [F. Legger & T. Schietinger, PLB 645 (2007) 204-212]

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{\gamma}} = \frac{1}{2}(1 - \alpha_{\gamma}\alpha_{3/2}P_{b}\cos\theta_{\gamma}) \qquad \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{p}} \propto \frac{1}{2}(1 - \alpha_{p,3/2}\cos^{2}\theta_{p})$$

• Only have sensitivity from θ_p in $\Lambda_b \to \Lambda_\gamma$ given due to small size of P_b .

Radiative 1/2 decays

- Using $\Lambda_b \rightarrow \Lambda_\gamma$ expect sensitivity to α_γ of:
 - → 25% with Run 2 dataset
 - → 15% with 23fb⁻¹
 - → 4% with 300fb⁻¹

[LHCb, Upgrade II physics case, arXiv:1808.08865].

Note, this uses the old PDG value of α_{Λ} . Expect a 17% improvement with the larger BESIII value.

• We will also measure the *CP* asymmetry of $\Lambda_b \to pK\gamma$ and $\Lambda_b \to p\pi\gamma$.

Other radiative decays

- Could also look at $\Xi_b \to \Xi_{\gamma}$ (with $\Xi_{\gamma} \to \Lambda \pi$):
 - → Involves two weak decays and will be challenging to reconstruct experimentally.
 - → Expect O(10) candidates in the LHCb Run 2 data set.
- More complex angular distribution given by:

$$\frac{\mathrm{d}^2 \Gamma}{\mathrm{d} \cos \theta_{\Lambda} \, \mathrm{d} \cos \theta_{p}} = \frac{1}{4} (1 - \alpha_{\gamma} \alpha_{\Xi} \cos \theta_{\Lambda} + \alpha_{\Lambda} \cos \theta_{p} (\alpha_{\Xi} - \alpha_{\gamma} \cos \theta_{\Lambda}))$$

$$-0.39 \pm 0.01$$

$$+0.75 \pm 0.01$$

• Expect sensitivity of 40% (10%) on α_{γ} with 23fb⁻¹ (300fb⁻¹) [LHCb, Upgrade II physics case, arXiv:1808.08865].

Summary

- Large number of different processes could be studied with the data collected during Runs 2+ of the LHC.
- Often have a trade-off between ease of the experimental measurement and theoretical complexity,
 - e.g. in dealing with overlapping states in $ph^-\mu^+\mu^-$.

New numbers use:

$$f_{\Lambda_b} \times \mathcal{B}(\Lambda_b \to J/\psi \Lambda) = (5.8 \pm 0.8) \times 10^{-5}$$
 , [PDG 2018]

with

$$f_{\rm baryon} = 0.218 \pm 0.047$$

[HFLAV 2017]

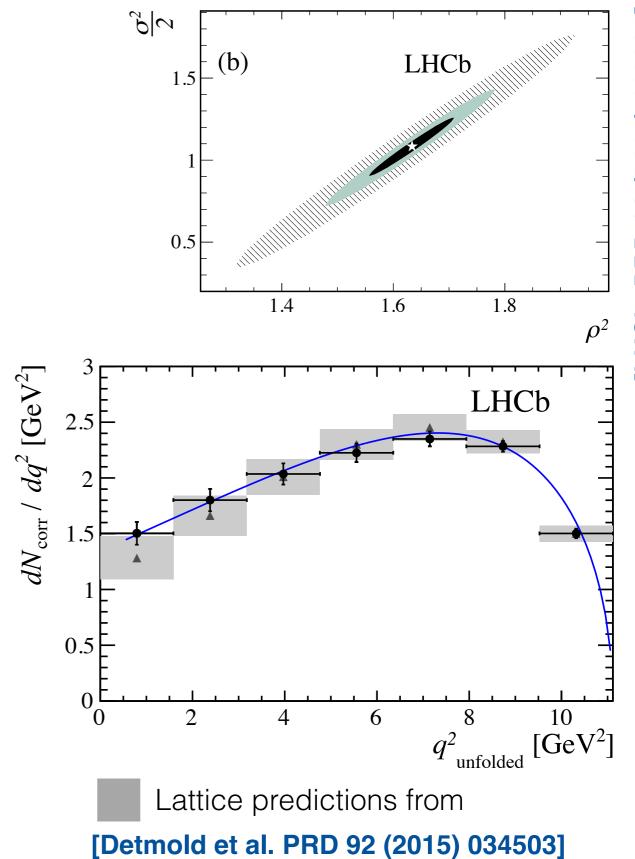
assuming

$$f_{\text{baryon}} = f_{\Lambda_b} \left(1 + 2 \frac{f_{\Xi_b^-}}{f_{\Lambda_b}} + \frac{f_{\Omega_b^-}}{f_{\Lambda_b}} \right) ,$$

where
$$\dfrac{f_{\Xi_b^-}}{f_{\Lambda_b}}=0.167\pm0.037\pm0.012\;,$$
 [PDG 2018] $\dfrac{f_{\Omega_b^-}}{f_{\Lambda_b}}=0.045\pm0.017\pm0.004\;,$

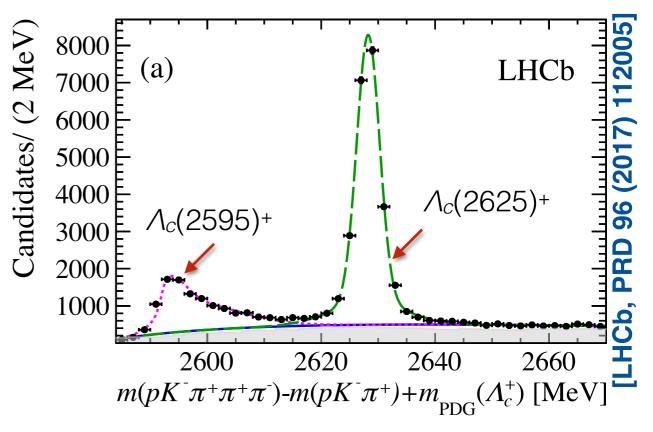
$\Lambda_b \rightarrow \Lambda_c + l - v$

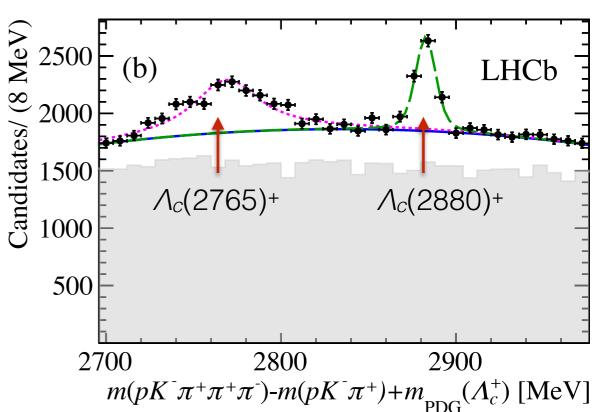
- Only existing measurement is of $\Lambda_b \rightarrow \Lambda_c + l v$ form-factors.
- Reconstruct neutrino
 momentum up-to two-fold
 ambiguity by exploiting
 large Λ_b flight distance.
- Unfold q² and Isgur-Wise parameters.
- Good agreement between data/HQET/lattice.



$\Lambda_b \rightarrow \Lambda_c(*)l-V$

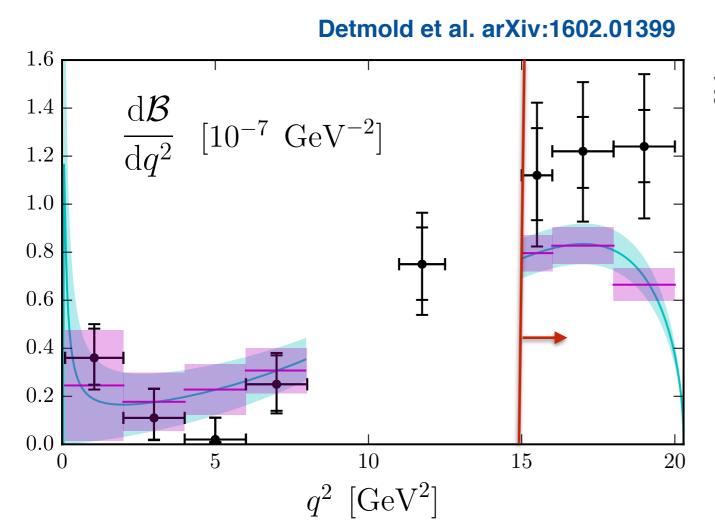
- Background studies show large number of different Λ_c^* states in the data.
- Next steps are to:
 - → perform an angular analysis of $\Lambda_b \to \Lambda_c^{(*)} l^- v$.
 - \rightarrow measure R(Λ_c).



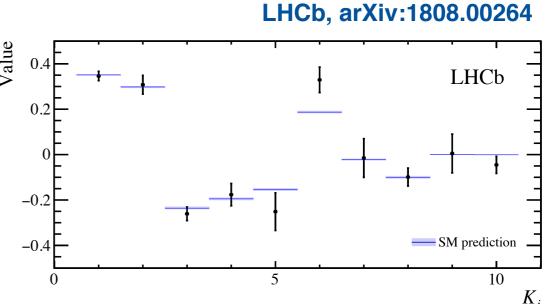


$\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$

• Large number (34) of angular observables, 24 require Λ_b to be polarised at production and are consistent with zero in current dataset.



• $\Lambda_b \to D\bar{D}\Lambda$ can provide useful input on long-distance contributions.



- SM predictions use external on α_{Λ} and production polarisation (small at the LHC).
- Branching fraction uncertainty currently dominated by knowledge of $\mathcal{B}(\Lambda_b \to J/\psi \Lambda)$.