Angular distributions of rare baryon decays

Martín Novoa Brunet

Laboratoire de Physique Théorique (UMR8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

September 6, 2019

What about baryonic decays?

We've already studied the $b \rightarrow s \ell \ell$ transition for mesons, but until now not much for baryons.

Why are we just studying them now?

We don't find this decays in B-factories, but now LHCb can provide this.

What is new?

- Different systematics from different hadrons (experiment and theory)
- Spin, an extra degree of freedom.

Where do we start?

Lightest decays:

- $\Lambda_{b} \rightarrow \Lambda(\rightarrow p \pi) \ell^{+} \ell^{-}$
- $\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow K p) \ell^{+} \ell^{-}$

Experimental status of $\Lambda_{b} \rightarrow \Lambda(\rightarrow p \pi) \ell^{+} \ell^{-}$

LHCb is able to test rare Λ_{b} semileptonic decays, in particular $\Lambda_{b} \rightarrow \Lambda(1115) \mu \mu$

- $\Lambda(1115)$ is the lightest baryon as
a final state for $b \rightarrow s \ell^{+} \ell^{-}$ transition.
- $J^{P}=1 / 2^{+}$
- Decays mainly into $p \pi$ through weak interaction
- Branching ratio [1503.07138]

[1503.07138]

Experimental status of $\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow K p) \ell^{+} \ell^{-}$

$b \rightarrow s \ell^{+} \ell^{-}:$Effective Hamiltonian

Local operator effective theory for $b \rightarrow s$ transitions. Non-local high energy processes are reduce to local operators as in Fermi Theory.

$$
\mathcal{H}_{\mathrm{eff}}\left(b \rightarrow s \ell^{+} \ell^{-}\right)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} \mathcal{C}_{i} \mathcal{O}_{i}
$$

With the SM operators relevant for this analysis

$$
\mathcal{O}_{7}=\frac{e}{g^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu} \quad \mathcal{O}_{9}=\frac{e^{2}}{g^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \quad \mathcal{O}_{10}=\frac{e^{2}}{g^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
$$

- Wilson coefficients $\left(\mathcal{C}_{i}\right)$ contain short distance dynamics.
- They are accurately computed in SM and would deviate in presence of NP. Operators absent or suppressed in the SM, can by introduced by NP.

$c \bar{c}$ contributions

Two contributions:

- Resonant (Charmonia, non perturbative QCD)
- Non-Resonant (Approximated with perturbative QCD)
- This contributions go to \mathcal{C}_{9}, they are q^{2} dependent and depend on external states.
- For now we include only perturbative QCD
- LCSR could be used to determine corrections near the $q^{2}=0$ region.
- We could also follow the strategy used by Bobeth et al. [1707.07305] to parametrize $c \bar{c}$ contributions and obtain these parameters from experiment at J / Ψ and $\Psi(2 S)$ poles where we expect NP to be negligible.

What has been done until now?

$\Lambda_{b} \rightarrow \Lambda(\rightarrow p \pi) \ell^{+} \ell^{-}$

- An angular analysis has been done by Böer et al. [1410.2115] and an extension for polarized Λ_{b} was done by Blake et al. [1710.00746]
- Form factors for the $\Lambda_{b} \rightarrow \Lambda$ transition have been obtained via Lattice QCD by Detmold et al. [1602.01399]
$\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow K p) \ell^{+} \ell^{-}$
- An angular analysis as been done by Descotes-Genon et al. [1903.00448]
- In the case of the $\Lambda_{b} \rightarrow \Lambda^{*}$ transition preliminary results are available from Lattice by Meinel et al. [1608.08110]
We will explain first the analysis for $\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow K p) \ell^{+} \ell^{-}$and then show the differences with $\Lambda_{b} \rightarrow \Lambda(\rightarrow p \pi) \ell^{+} \ell^{-}$since they both share many features.

Angular analysis of $\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow K p) \ell^{+} \ell^{-}$

Kinematics of $\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow K p) \ell^{+} \ell^{-}$

$$
\begin{gathered}
\Lambda_{b}\left(p, s_{\Lambda}\right) \rightarrow \Lambda^{*}\left(k, s_{\Lambda^{*}}\right)\left[\rightarrow K\left(k_{1}\right) p\left(k_{2}, s_{p}\right)\right] \ell^{+}\left(q_{1}\right) \ell^{-}\left(q_{2}\right) \\
q \equiv q_{1}+q_{2}=p-k
\end{gathered}
$$

Kinematics of $\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow K p) \ell^{+} \ell^{-}$

Effective Hamiltonian Formalism Helicity Amplitudes
Hadronic Amplitudes and Form Factors

Explicit spin 1/2 solutions Helicity Amplitudes

Propagation of Spin 3/2 Particle Breitt Wigner + Narrow Width Interaction of Spin 3/2 with Kp

Outline of the calculations

We separate the decay into differents steps

$$
\begin{aligned}
\mathcal{M}\left(\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow K p) \ell^{+} \ell^{-}\right) & =\left\langle\Lambda^{*}(\rightarrow K p) \ell^{+} \ell^{-}\right| \mathcal{H}_{i n t}\left|\Lambda_{b}\right\rangle \\
& =\sum_{s_{\Lambda^{*}}} \frac{\langle K p| \mathcal{H}_{i n t}^{3 / 2}\left|\Lambda^{*}\left(s_{\Lambda^{*}}\right)\right\rangle\left\langle\Lambda^{*}\left(s_{\Lambda^{*}}\right) \ell^{+} \ell^{-}\right| \mathcal{H}_{e f f}\left|\Lambda_{b}\right\rangle}{k^{2}-m_{\Lambda^{*}}^{2}+i m_{\Lambda^{*}} \Gamma_{\Lambda^{*}}}
\end{aligned}
$$

- Step 1: Separation of hadronic and leptonic parts using the helicity amplitude approach.
- Step 2: Expression of $\Lambda_{b} \rightarrow \Lambda^{*}$ transition in terms of form factors.
- Step 3: $\Lambda^{*} \rightarrow K p$ decay, narrow width approximation, propagation and explicit solutions U_{α} for Λ^{*} (not trivial for spin 3/2).
- Step 4: Take the modulus square and multiply by the phase space.

Helicity Amplitudes

Separate the hadronic and leptonic parts

$$
\left\langle\Lambda^{*} \ell^{+} \ell^{-}\right| \mathcal{H}_{\text {eff }}\left|\Lambda_{b}\right\rangle=\sum_{X=V, A, T, T 5} \mathcal{C}_{X} H^{X}\left[\bar{u}_{\ell^{-}} J^{X} v_{\ell^{+}}\right]
$$

The helicity amplitude approach is particularly convenient in this case (Lorentz invariance, physical interpretation in chain decays)

$$
\begin{aligned}
& H_{m}^{V}\left(s_{\Lambda_{b}}, s_{\Lambda^{*}}\right) \equiv \varepsilon_{\mu}^{*}(m)\left\langle\Lambda^{*}\left(k, s_{\Lambda^{*}}\right)\right| \bar{s} \gamma^{\mu} b\left|\Lambda_{b}\left(p, s_{\Lambda_{b}}\right)\right\rangle \\
& L_{m}^{V}\left(s_{\ell^{+}}, s_{\ell^{-}}\right) \equiv \varepsilon_{\mu}(m) \bar{v}_{\ell^{-}} \gamma^{\mu} u_{\ell^{+}} \\
& \left\langle\Lambda^{*} \ell^{-} \ell^{+}\right| \bar{\ell} \gamma_{\mu} \ell \bar{s} \gamma^{\mu} b\left|\Lambda_{b}\right\rangle=\sum_{m} L_{m}^{V}\left(s_{\ell^{+}}, s_{\ell^{-}}\right) H_{m}^{V}\left(s_{\Lambda_{b}}, s_{\Lambda^{*}}\right)
\end{aligned} \quad m \in\{0,+,-, t\}
$$

They are frame independent, thus we can obtain the hadronic and leptonic amplitudes each on the simplest frame.

Hadronic Amplitudes

- Written as a function of form factors and all the Lorentz tensors available.

$$
\left\langle\Lambda^{*}\right| \bar{s} \gamma^{\mu} b\left|\Lambda_{b}\right\rangle=\bar{U}_{\alpha}\left(k, s_{\Lambda^{*}}\right)\left\{p^{\alpha}\left[F_{1}\left(q^{2}\right) p^{\mu}+F_{2}\left(q^{2}\right) k^{\mu}+F_{3}\left(q^{2}\right) \gamma^{\mu}\right]+F_{4}\left(q^{2}\right) g^{\alpha \mu}\right\} u\left(p, s_{\Lambda_{b}}\right)
$$

- Usually chosen on a base that simplifies the Helicity amplitudes.

$$
\begin{aligned}
\left\langle\Lambda^{*}\right| \bar{s} \gamma^{\mu} b\left|\Lambda_{b}\right\rangle=\bar{U}_{\alpha}\left(k, s_{\Lambda^{*}}\right)\{ & p^{\alpha}\left[f_{t}^{V}\left(q^{2}\right)\left(M_{\Lambda_{b}}-m_{\Lambda^{*}}\right) \frac{q^{\mu}}{q^{2}}+f_{\perp}^{V}\left(q^{2}\right)\left(\gamma^{\mu}-2 \frac{m_{\Lambda^{*}}}{s_{+}} p^{\mu}-2 \frac{M_{\Lambda_{b}}}{s_{+}} k^{\mu}\right)\right. \\
& \left.+f_{0}^{V}\left(q^{2}\right) \frac{M_{\Lambda_{b}}+m_{\Lambda^{*}}}{s_{+}}\left(p^{\mu}+k^{\mu}-\frac{q^{\mu}}{q^{2}}\left(M_{\Lambda_{b}}^{2}-m_{\Lambda^{*}}^{2}\right)\right)\right] \\
& \left.+f_{g}^{V}\left(q^{2}\right)\left[g^{\alpha \mu}+m_{\Lambda^{*}} \frac{p^{\alpha}}{s_{-}}\left(\gamma^{\mu}-2 \frac{k^{\mu}}{m_{\Lambda^{*}}}+2 \frac{m_{\Lambda^{*}} p^{\mu}+m_{\Lambda_{b}} k^{\mu}}{s_{+}}\right)\right]\right\} u\left(p, s_{\Lambda_{b}}\right)
\end{aligned}
$$

$\Lambda_{b} \rightarrow \Lambda^{*}$ form factors

- 14 form factors in total
- Only preliminary results are available from lattice simulations [1608.08110]
- Quark model from [1108.6129] used for numerical illustration (educated guess of the errors).

Transversity Amplitudes

The $\Lambda_{b} \rightarrow \Lambda^{*} \ell^{+} \ell^{-}$decay is described by 12 transversity amplitudes.

$$
\begin{gathered}
T A=\left\{B_{\perp 1}^{L(R)}, B_{\| 1}^{L(R)}, A_{\perp 1}^{L(R)}, A_{\| 1}^{L(R)}, A_{\perp 0}^{L(R)} A_{\| 0}^{L(R)}\right\} \\
B_{\perp 1}^{L(R)} \propto\left(\mathcal{C}_{9,10,+}^{L(R)} H_{+}^{L}(-1 / 2,-3 / 2)-\frac{2 m_{b}\left(\mathcal{C}_{7}+\mathcal{C}_{7^{\prime}}\right)}{q^{2}} H_{+}^{T}(-1 / 2,-3 / 2)\right) \\
\vdots \\
A_{\| 0}^{L(R)} \propto\left(\mathcal{C}_{9,10,-}^{L(R)} H_{0}^{A}(+1 / 2,+1 / 2)+\frac{2 m_{b}\left(\mathcal{C}_{7}-\mathcal{C}_{7^{\prime}}\right)}{q^{2}} H_{0}^{T 5}(+1 / 2,+1 / 2)\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{C}_{9,10,+}^{L(R)}=\left(\mathcal{C}_{9} \mp \mathcal{C}_{10}\right)+\left(\mathcal{C}_{9^{\prime}} \mp \mathcal{C}_{10^{\prime}}\right) \\
& \mathcal{C}_{9,10,-}^{L(R)}=\left(\mathcal{C}_{9} \mp \mathcal{C}_{10}\right)-\left(\mathcal{C}_{9^{\prime}} \mp \mathcal{C}_{10^{\prime}}\right)
\end{aligned}
$$

And their normalization is such that:

$$
\frac{d \Gamma\left(\Lambda_{b} \rightarrow \Lambda^{*} \ell^{+} \ell^{-}\right)}{d q^{2}}=\sum_{X \in T A}|X|^{2}
$$

$s_{\Lambda_{b}}$	$s_{\Lambda^{*}}$	Amplitudes	
$\pm \frac{1}{2}$	$\pm \frac{1}{2}$	$A_{\perp 0}^{L(R)}, A_{\\| 0}^{L(R)}$	
$\pm \frac{1}{2}$	$\mp \frac{1}{2}$	$A_{\perp 1}^{L(R)}, A_{\\| 1}^{L(R)}$	
$\pm \frac{1}{2}$	$\pm \frac{3}{2}$	$B_{\perp 1}^{L(R)}, B_{\\| 1}^{L(R)}$	

Angular Observables of $\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow K p) \ell^{+} \ell^{-}[1903.00448]$

$$
\frac{d^{4} \Gamma\left(\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow K p) \ell^{+} \ell^{-}\right)}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{\Lambda} d \phi}=\frac{3}{8 \pi} L\left(q^{2}, \theta_{\ell}, \theta_{\Lambda}, \phi\right)
$$

$$
\begin{aligned}
L\left(q^{2}, \theta_{\ell}, \theta_{\Lambda}, \phi\right)= & \cos ^{2} \theta_{\Lambda}\left(L_{1 c} \cos \theta_{\ell}+L_{1 c c} \cos ^{2} \theta_{\ell}+L_{1 s s} \sin ^{2} \theta_{\ell}\right) \\
& +\sin ^{2} \theta_{\Lambda}\left(L_{2 c} \cos \theta_{\ell}+L_{2 c c} \cos ^{2} \theta_{\ell}+L_{2 s s} \sin ^{2} \theta_{\ell}\right) \\
& +\sin ^{2} \theta_{\Lambda}\left(L_{3 s s} \sin ^{2} \theta_{\ell} \cos ^{2} \phi+L_{4 s s} \sin ^{2} \theta_{\ell} \sin \phi \cos \phi\right) \\
& +\sin \theta_{\Lambda} \cos \theta_{\Lambda} \cos \phi\left(L_{5 s} \sin \theta_{\ell}+L_{5 s c} \sin \theta_{\ell} \cos \theta_{\ell}\right) \\
& +\sin \theta_{\Lambda} \cos \theta_{\Lambda} \sin \phi\left(L_{6 s} \sin \theta_{\ell}+L_{6 s c} \sin \theta_{\ell} \cos \theta_{\ell}\right)
\end{aligned}
$$

- Angular structure in agreement with Gratrex et al. [1506.03970].
- $\theta_{\Lambda} \rightarrow \theta_{\Lambda}+\pi$ symmetry related to P -conserving nature of strong decays.
- HQET and SCET limits simplify the form factors, f_{g} and B amplitudes vanish.
- 3 independent observables in both limits.
- Does not allow us to derive non trivial ratios of observables only sensitive to Wilson coefficients.

$$
\begin{aligned}
L_{1 c} & \propto\left(\operatorname{Re}\left(A_{\perp 1}^{L} A_{\| 1}^{L *}\right)-(L \leftrightarrow R)\right) \\
L_{3 s s} & \propto\left(\operatorname{Re}\left(B_{\| 1}^{L} A_{\| 1}^{L *}\right)-\operatorname{Re}\left(B_{\perp 1}^{L} A_{\perp 1}^{L *}\right)+(L \leftrightarrow R)\right)
\end{aligned}
$$

$\Lambda_{b} \rightarrow \Lambda^{*}(\rightarrow K p) \mu^{+} \mu^{-}$results [1903.00448]

Differences of $\Lambda_{b} \rightarrow \Lambda(\rightarrow p \pi) \ell^{+} \ell^{-}[1410.2115]$

- Only 8 transversity amplitudes present.
- 10 form factors in total, results by Detmold et al. [1602.01399].
- $\Lambda(1115)$ decays mainly through weak interaction.

Λ decay

The hadronic matrix element which determines the $\Lambda \rightarrow N \pi$ decay can be parametrized as

$$
\left\langle p\left(k_{1}, s_{N}\right) \pi^{-}\left(k_{2}\right)\right|\left[\bar{d} \gamma_{\mu} P_{L} u\right]\left[\bar{u} \gamma^{\mu} P_{L} s\right]\left|\Lambda\left(k, s_{\Lambda}\right)\right\rangle=\left[\bar{u}\left(k_{1}, s_{N}\right)\left(\xi \gamma_{5}+\omega\right) u\left(k, s_{\Lambda}\right)\right]
$$

where we find a parity violating term (not present for the strong decay studied before) parametrized by

$$
\alpha=\frac{-2 \operatorname{Re}\{\omega \xi\}}{\sqrt{\frac{r_{-}}{r_{+}}}|\xi|^{2}+\sqrt{\frac{r_{+}}{r_{-}}}|\omega|^{2}} \approx 0.7-0.75 \text {. }
$$

Angular Observables for $\Lambda_{b} \rightarrow \Lambda(\rightarrow p \pi) \ell^{+} \ell^{-}[1410.2115]$

- Angular structure in agreement with Gratrex et al. [1506.03970]
- $\theta_{\Lambda} \rightarrow \theta_{\Lambda}+\pi$ symmetry not present because of P -violating nature of weak decays (recovered whe $\alpha \rightarrow 0$).
- Full analysis including polarized Λ_{b} from Blake et al. also available [1710.00746]

$$
\frac{d^{4} \Gamma\left(\Lambda_{b} \rightarrow \Lambda(\rightarrow p \pi) \ell^{+} \ell^{-}\right)}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{\Lambda} d \phi}=\frac{3}{8 \pi} K\left(q^{2}, \theta_{\ell}, \theta_{\Lambda}, \phi\right)
$$

$$
K\left(q^{2}, \cos \theta_{\ell}, \cos \theta_{\Lambda}, \phi\right)=\left(K_{1 s s} \sin ^{2} \theta_{\ell}+K_{1 c c} \cos ^{2} \theta_{\ell}+K_{1 c} \cos \theta_{\ell}\right)
$$

$$
\begin{aligned}
& K_{1 c c}\left(q^{2}\right)=\frac{1}{2}\left[\left|A_{\perp_{1}}^{R}\right|^{2}+\left|A_{1}^{R}\right|^{2}+(R \leftrightarrow L)\right] \\
& K_{2 c c}\left(q^{2}\right)=+\alpha \operatorname{Re}\left\{A_{\perp_{1}}^{R} A_{1}^{* R}+(R \leftrightarrow L)\right\}
\end{aligned}
$$

$$
+\left(K_{2 s s} \sin ^{2} \theta_{\ell}+K_{2 c c} \cos ^{2} \theta_{\ell}+K_{2 c} \cos \theta_{\ell}\right) \cos \theta_{\Lambda}
$$

$$
+\left(K_{3 s c} \sin \theta_{\ell} \cos \theta_{\ell}+K_{3 s} \sin \theta_{\ell}\right) \sin \theta_{\Lambda} \sin \phi
$$

$$
+\left(K_{4 s c} \sin \theta_{\ell} \cos \theta_{\ell}+K_{45} \sin \theta_{\ell}\right) \sin \theta_{\Lambda} \cos \phi
$$

Angular Observables for $\Lambda_{b} \rightarrow \Lambda(\rightarrow p \pi) \ell^{+} \ell^{-}[1410.2115]$

Exploiting Form-Factor Symmetries at Low Recoil (HQET)

$$
X_{1} \equiv \frac{K_{1 c}}{K_{2 c c}}=-\frac{\operatorname{Re}\left\{\rho_{2}\right\}}{\alpha \operatorname{Re}\left\{\rho_{4}\right\}},
$$

If we assume the absence of chirality-flipped operators (including $\mathcal{C}_{7^{\prime}} \rightarrow 0$ in the SM), we obtain

$$
X_{1} \rightarrow-\frac{2 \rho_{2}}{\alpha \rho_{1}}, \quad X_{2} \equiv \frac{K_{1 c c}}{K_{2 c}}=-\frac{2 \alpha \rho_{2}}{\rho_{1}}
$$

For the commonly used large recoil bin $1 \mathrm{GeV}^{2} \leq q^{2} \leq 6 \mathrm{GeV}^{2}$, by taking $\mathcal{C}_{9}^{\mathrm{BM} 1}=\mathcal{C}_{9}^{\mathrm{SM}}-1$ and $\mathcal{C}_{9^{\prime}}^{\mathrm{BM} 1}=1$, we find

$$
\begin{array}{ll}
\left\langle X_{1}\right\rangle^{S M}=+0.08_{-0.09}^{+0.12}, & \left\langle X_{1}\right\rangle^{B M 1}=-0.49_{-0.08}^{+0.07} \\
\left\langle X_{2}\right\rangle^{S M}=+0.17_{-0.17}^{+0.04}, & \left\langle X_{2}\right\rangle^{B M 1}=-0.22_{-0.03}^{+0.03}
\end{array}
$$

$$
\begin{array}{lll}
\rho_{1}^{ \pm}=\frac{1}{2}\left(\left|\mathcal{C}_{ \pm}^{R}\right|^{2}+\left|\mathcal{C}_{ \pm}^{L}\right|^{2}\right) & \rho_{3}^{ \pm}=\frac{1}{2}\left(\left|\mathcal{C}_{ \pm}^{R}\right|^{2}-\left|\mathcal{C}_{ \pm}^{L}\right|^{2}\right) & \mathcal{C}_{+}^{R(L)}=\left(\left(\mathcal{C}_{9}+\mathcal{C}_{9^{\prime}}\right)+\frac{2 \kappa m_{b}}{q^{2}}\left(\mathcal{C}_{7}+\mathcal{C}_{7^{\prime}}\right) \pm\left(\mathcal{C}_{10}+\mathcal{C}_{10^{\prime}}\right)\right) \\
\rho_{2}=\frac{1}{4}\left(\mathcal{C}_{+}^{R} \mathcal{C}_{-}^{R *}-\mathcal{C}_{-}^{L} \mathcal{C}_{+}^{L *}\right) & \rho_{4}=\frac{1}{4}\left(\mathcal{C}_{+}^{R} \mathcal{C}_{-}^{\mathcal{R}_{-}^{* *}}+\mathcal{C}_{-}^{L} \mathcal{C}_{+}^{L *}\right) & \mathcal{C}_{-}^{R(L)}=\left(\left(\mathcal{C}_{9}-\mathcal{C}_{9^{\prime}}\right)+\frac{2 \kappa m_{b}}{q^{2}}\left(\mathcal{C}_{7}-\mathcal{C}_{7^{\prime}}\right) \pm\left(\mathcal{C}_{10}-\mathcal{C}_{10^{\prime}}\right)\right)
\end{array}
$$

$\Lambda_{b} \rightarrow \Lambda(\rightarrow p \pi) \mu^{+} \mu^{-}$results [1602.01399]

- Differential branching fraction deviation not yet statistically (1.6 σ) but in the opposite direction of $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$and $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$deviations (could be explained by quark-hadron duality violation or Λ_{b} prod fraction).
- A negative shift in \mathcal{C}_{9} alone (simplest scenario for mesonic observables) would further lower the predicted $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$differential branching fraction.
- Bayesian analysis by Meinel et al. [1603.02974] shows in detail how global fits could be affected.

Connection with $\Lambda_{b} \rightarrow \Lambda^{(*)} \gamma$

The branching ratio for radiative decay $\Lambda_{b} \rightarrow \Lambda^{*} \gamma$ is proportional to

$$
\lim _{q^{2} \rightarrow 0}\left(q^{2} \sum_{X=A, B}|X|^{2}\right)
$$

- At $q^{2} \rightarrow 0$ limit only two spin configuration contributes $\left(\mathcal{C}_{7}^{(\prime)}\right)$
- Number of independent form factors reduced.

$$
\begin{aligned}
& f_{\perp}^{T 5}\left(q^{2}\right), f_{\perp}^{T}\left(q^{2}\right) \underset{q^{2} \rightarrow 0}{\longrightarrow} f_{\perp}^{T}(0) \\
& f_{g}^{T 5}\left(q^{2}\right), f_{g}^{T}\left(q^{2}\right) \underset{q^{2} \rightarrow 0}{\longrightarrow} f_{g}^{T}(0)
\end{aligned}
$$

- Possibility to extract information about the form factors normalization (multiplied by $\mathcal{C}_{7}^{(\prime)}$) from this decay.

[1904.06697]
- The same should be true for $\Lambda_{b} \rightarrow \Lambda(\rightarrow p \pi) \gamma$

Conclusions

- Rare baryon decays are another way to test $b \rightarrow s \ell^{+} \ell^{-}$and exploit LHCb data.
- Sensitivity mainly for \mathcal{C}_{9} and \mathcal{C}_{9}^{\prime}.
- Connection with $\Lambda_{b} \rightarrow \Lambda^{(*)} \gamma$ to be exploited.
- We hope to stimulate the study of $\Lambda_{b} \rightarrow \Lambda^{*} \ell^{+} \ell^{-}$on LHCb and by Lattice QCD people.
- Charmonium contribution is an open question both at low and high q^{2}.

Angular distributions of rare baryon decays

Martín Novoa Brunet

Laboratoire de Physique Théorique (UMR8627), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

September 6, 2019

Back up

B-physics anomalies

Deviations from the SM expectations in $b \rightarrow s \ell^{+} \ell^{-}$:

- Branching ratios and angular observables in $b \rightarrow s \mu \mu B \rightarrow K \mu \mu, B \rightarrow K^{*} \mu \mu, B_{s} \rightarrow \phi \mu \mu$

B-physics anomalies

Deviations from the SM expectations in $b \rightarrow s \ell^{+} \ell^{-}$:

- Branching ratios and angular observables in $b \rightarrow s \mu \mu B \rightarrow K \mu \mu, B \rightarrow K^{*} \mu \mu, B_{s} \rightarrow \phi \mu \mu$
- Lepton-flavour universality ratio comparing $b \rightarrow s \mu \mu$ and $b \rightarrow$ see $B \rightarrow K \ell^{+} \ell^{-}$, $B \rightarrow K^{*} \ell^{+} \ell^{-}$

[1406.6482]

[1705.05802]

Spin 3/2 Field treatement

Rarita-Schwinger Equations

Equation for a $3 / 2$ spin field obtained combining $1 \otimes \frac{1}{2}=\frac{3}{2} \oplus \frac{1}{2}$

$$
\begin{gathered}
\left(\square-m^{2}\right) \Psi^{\nu}(x)=0 \quad \partial_{\nu} \Psi^{\nu}(x)=0 \quad(\not \partial+m) \Psi^{\nu}(x)=0 \\
\gamma_{\nu} \Psi^{\nu}(x)=0 \rightarrow \text { Preserve only the } 3 / 2 \text { spin part }
\end{gathered}
$$

$$
U_{3 / 2, m}^{\nu}(\vec{p})=\sum_{\lambda=-1}^{1} \sum_{r=-1 / 2}^{1 / 2} \epsilon_{\lambda}^{\nu}(\vec{p}) u_{r}(\vec{p})\left\langle 1, \lambda ; \frac{1}{2}, r \left\lvert\, \frac{3}{2}\right., m\right\rangle
$$

[10.1140/epjc/s2002-01026-1]

Λ^{*} propagation and decay

3/2 spin Propagator

$$
P_{R S}^{\alpha \beta}=\frac{k+M}{k^{2}-M^{2}}\left(g^{\alpha \beta}-\frac{1}{3} \gamma^{\alpha} \gamma^{\beta}-\frac{2 k^{\alpha} k^{\beta}}{3 M^{2}}+\frac{\gamma^{\beta} k^{\alpha}-\gamma^{\alpha} k^{\beta}}{3 M}\right)
$$

[nucl-th/9812043]

$\Lambda K p$ interaction

$$
\mathcal{L}_{i n t}^{3 / 2}=g \varepsilon^{\mu \nu \alpha \beta}\left(\partial_{\mu} \Psi_{\nu}\right) \gamma_{\alpha} \psi \partial_{\beta} \phi+\text { h.c. }
$$

[10.1103/PhysRevD.58.096002]

- Lowest order lorentz invariant coupling for a $3 / 2$ spin field.
- Preserves only the $3 / 2$ spin component.
- Done in analogy with $\Delta \rightarrow \pi N$

Low- and large- recoil limits (HQET and SCET)

- SCET and HQET approximations reduce the number of form factors on leading order $\left(\mathcal{O}\left(\alpha_{s}, \frac{\Lambda_{Q C D}}{m_{b}}\right)\right)$:
$\mathrm{d} \Gamma / \mathrm{dq}^{2}$

- SCET $\rightarrow 1$ Form factor (ξ)
- HQET $\rightarrow 2$ Form factor $\left(\zeta_{1}, \zeta_{2}\right)$
- Corrections on $\mathcal{O}\left(\alpha_{s}\right)$ are computable and they don't affect the amount of form factors.
- Corrections on $\mathcal{O}\left(\frac{\Lambda_{Q C D}}{m_{b}}\right)$ will add new form factors to consider.
- These limits can be used to identify combinations of angular observables with smaller hadronic uncertanties

Simple Observables

- Differential decay width

Simple Observables

- Forward-Backward asymmetry for the leptonic scattering angle

$$
A_{F B}^{\ell}=\frac{3\left(L_{1 c}+2 L_{2 c}\right)}{2\left(L_{1 c c}+2\left(L_{1 s s}+L_{2 c c}+2 L_{2 s s}+L_{3 s s}\right)\right)}
$$

- Baryonic and combined Forward-backward asymmetry

$$
A_{\digamma B}^{\wedge}=0 \quad A_{\digamma B}^{\ell \wedge}=0
$$

Simple Observables

- CP-averages and CP-assymetry

$$
\begin{gathered}
S_{i}=\frac{L_{i}+\bar{L}_{i}}{d(\Gamma+\bar{\Gamma}) / d q^{2}} \quad A_{i}=\frac{L_{i}-\bar{L}_{i}}{d(\Gamma+\bar{\Gamma}) / d q^{2}} \\
S_{1 c} \propto \operatorname{Re}\left(A_{\perp 1}^{R} A_{\| 1}^{R *}\right)-(L \leftrightarrow R) \\
S_{3 s s} \propto \sum_{R(L)} \operatorname{Re}\left(B_{\| 1}^{R(L)} A_{\| 1}^{R(L) *}\right)-\operatorname{Re}\left(B_{\perp 1}^{R(L)} A_{\perp 1}^{R(L) *}\right) \\
S_{2 c c}-\frac{S_{1 c c}}{4} \propto \sum_{R(L)}\left|B_{\| 1}^{R(L)}\right|^{2}+\left|B_{\perp 1}^{R(L)}\right|^{2} \\
S_{5 s c} \propto \sum_{R(L)} \operatorname{Re}\left(B_{\| 1}^{R(L)} A_{\| 0}^{R(L) *}\right)-\operatorname{Re}\left(B_{\perp 1}^{R(L)} A_{\perp 0}^{R(L) *}\right)
\end{gathered}
$$

Simple Observables

$S_{1 c} \propto \operatorname{Re}\left(A_{\perp 1}^{R} A_{\| 1}^{R *}\right)-(L \leftrightarrow R)$

Simple Observables

$$
S_{3 s s} \propto \sum_{R(L)} \operatorname{Re}\left(B_{\| 1}^{R(L)} A_{\| 1}^{R(L) *}\right)-\operatorname{Re}\left(B_{\perp 1}^{R(L)} A_{\perp 1}^{R(L) *}\right)
$$

Simple Observables

$$
S_{2 c c}-\frac{S_{1 c c}}{4} \propto \sum_{R(L)}\left|B_{\| 1}^{R(L)}\right|^{2}+\left|B_{\perp 1}^{R(L)}\right|^{2}
$$

Simple Observables

$$
S_{5 s c} \propto \sum_{R(L)} \operatorname{Re}\left(B_{\| 1}^{R(L)} A_{\| 0}^{R(L) *}\right)-\operatorname{Re}\left(B_{\perp 1}^{R(L)} A_{\perp 0}^{R(L) *}\right)
$$

$b \rightarrow s \ell^{+} \ell^{-}$transition

- Consistent pattern of deviations from the SM
- FCNC process, which is loop supressed in the SM (potential sensitivity to NP)
- Several studies have been done for this transition on the meson side $\left(B \rightarrow K^{(*)} \ell^{+} \ell^{-}, B_{s} \rightarrow \phi \ell^{+} \ell^{-}\right)$.

Separating the different $\Lambda_{b} \rightarrow K p \ell^{+} \ell^{-}$signals

- Highly complex to compute all different contributions, we would need to compute FF for each of them and understand how they interfere (relative strong phase).
- Possibility to separate the signals because of their different nature (spin).
- We can build observables that would differ strongly for spin $1 / 2$ and $3 / 2$ (this can be used to check the selection is correctly done)
[1507.03414]

$$
\begin{aligned}
& \Lambda(1115) \longrightarrow 1 / 2^{+} \\
& \Lambda(1405) \longrightarrow 1 / 2^{-}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda(1520) \longrightarrow 3 / 2^{-} \\
& \Lambda(1600) \longrightarrow 1 / 2^{+}
\end{aligned}
$$

$$
\Lambda(1670) \longrightarrow 1 / 2^{-}
$$

$$
\Lambda(1690) \longrightarrow 3 / 2^{-}
$$

Form Factors

$\Lambda_{b} \rightarrow \Lambda$ form factors

- 10 form factors in total
- Results are available from lattice simulation [1602.01399]
$\Lambda_{b} \rightarrow \Lambda^{*}$ form factors
- 14 form factors in total
- Only preliminary results are available from lattice simulations [1608.08110]

