Interplay between $\Delta\,M_{\!\scriptscriptstyle S}$ and flavour anomalies

Matthew Kirk

(based on 1909.xxxxx – Di Luzio, MK, Lenz, Rauh)

bsll 2019 – Lyon

Overview of ΔM_s

 $\frac{\partial}{\partial t} \begin{pmatrix} B_s \\ \overline{B}_s \end{pmatrix} = \left(\hat{M} - \frac{i}{2} \hat{\Gamma} \right) \begin{pmatrix} B_s \\ \overline{B}_s \end{pmatrix}$

Overview of ΔM_s

- $\Delta M_{s} \equiv M_{B_{H}} M_{B_{L}}$
- Calculated as $2|M_{12}|$

•
$$M_{12}^q = \frac{G_F^2}{16\pi^2} \lambda_t^2 M_W^2 S_0(x_t) \hat{\eta}_B \frac{\langle \overline{B}_q | Q_1 | B_q \rangle}{2M_{B_q}}$$

• The matrix element $\langle \overline{B}_q | Q_1 | B_q \rangle$ is generally parameterised as $f_B^2 B_Q$, and this is the largest uncertainty.

Linking R_{K^*} and ΔM_{s}

- There is a generic connection between the two observables for explanations of R_{K^*} (e.g. Z', LQs)
- Z': two insertions of bs coupling
- LQ: 1-loop box diagram

Linking R_{K^*} and ΔM_s

• Z':

Status of ΔM_s

- Exp: $(17.757 \pm 0.021) \text{ ps}^{-1}$
- SM (FLAG '13): $(18.3 \pm 2.7) \text{ ps}^{-1}$ (from 1511.09466)
- SM (FNAL/MILC): $(20.01 \pm 1.25) \text{ ps}^{-1}$
- Discussion in "One Constraint to Kill Them All" (1712.06572)

What has happened since?

- Moriond 2019: $R_K: 0.75 \pm 0.12 \rightarrow 0.85 \pm 0.06$
- Still ~ $2.5\,\sigma$
- Currently $R_{K^*} < R_K < 1$
- Favours RH quark currents

New for ΔM_s

- Sum rules calculation of B_s bag parameters (1904.00940 – King, Lenz, Rauh) – based on 1711.02100 (MK, Lenz, Rauh) and 1606.06054 (Seigen)
- HPQCD calculation of B_s bag parameters (1907.01025)

New for ΔM_{s}

- Also slight updates to CKM fits
 - Between CKMfitter 2016 and 2018 results, error on $V_{cb}\,$ roughly doubled

Update of ΔM_s

• Using FLAG '19 (~= FNAL/MILC)

-
$$\Delta M_s^{\text{FLAG'19}} = (20.1^{+1.2}_{-1.6}) \text{ps}^{-1}$$

Using average of FNAL/MILC, HPQCD, KLR SR

$$\Delta M_s^{\text{Avg.'19}} = (18.4^{+0.7}_{-1.2}) \text{ps}^{-1}$$

Bounds on Z' mass

- ΔM_s rules out (at 2σ) Z' above 5 TeV in the simplest case (only LH quark and lepton coupling, no new phases, lepton coupling = 1)
- What if we relax these restrictions?

Complex coupling

- $\Delta M_s \sim \Delta M_s^{SM} \left| 1 + g_{NP}^2 \right|$
- So new CP violating phases allow for negative contribution

Complex coupling

 $\lambda_{22}^L = 1, M_{Z'} = 5 \text{ TeV}$

Complex coupling

 $\lambda_{22}^L = 1, M_{Z'} = 5 \text{ TeV}$ 0.10 J $R_{K^{(*)}}$ $\Delta M_s^{\text{Avg. '19}}$ 0.05 $\Delta M_s^{\mathrm{FLAG '19}}$ $A_{\rm mix}^{CP}$ 0.00 -0.05flavio -0.10-0.08-0.06-0.04-0.02-0.100.00 $\operatorname{Re}\lambda_{23}^Q$

RH quark coupling

• Get interference term with opposite sign

$$\frac{\Delta M_s^{\rm SM+NP}}{\Delta M_s^{\rm SM}} \approx \left| 1 + 200 \left(\frac{5 \,\text{TeV}}{M_{Z'}} \right)^2 \left[\left(\lambda_{23}^Q \right)^2 + \left(\lambda_{23}^d \right)^2 - 9\lambda_{23}^Q \lambda_{23}^d \right] \right|$$

RH quark coupling

 $\lambda_{22}^L = 1, M_{Z'} = 5 \text{ TeV}$ flavio 0.040.02 λ^d_{23} 0.00-0.02 $R_{K^{(*)}}$ $\Delta M_s^{
m Avg.~'19}$ -0.04 - $\Delta M_s^{\mathrm{FLAG}~'19}$ $0.00 \\ \lambda_{23}^Q$ -0.04-0.020.020.04

Look to the future

- By 2025, LHCb expects to have much better precision on R_K (down to 0.025) and R_{K^*} (down to 0.031)
- Implies $6 \sigma \ln R_{K}$, $10 \sigma \ln R_{K^{*}}$

- What will ΔM_s look like?
- Take matrix element forecasts from LHCb Upgrade II report (1808.08865)
 - Lattice error on matrix element down to 3%
 - We also assume a similar improvement in sum rules
 - Combination at 2%

- What will ΔM_s look like?
- Take V_{cb} from Belle II physics book (1808.10567)
- 1% uncertainty (vs ~3% today)
- Everything else the same

- What will ΔM_s look like?
- We expect that the error on ΔM_s can be reduced to $\pm 0.5 \, {\rm ps}^{-1}$

- Lower central value corresponding to current average, with higher precision, is MORE constraining than the FNAL/MILC result is now.
- Entering the age of precision for ΔM_s
- And precision is what kills you (/ your models)

Linking R_{K^*} and ΔM_s

- LHCb expects their data on R_{K^*} alone will be enough to fit C_9 with uncertainty ~ 0.12
- So what ΔM_s value is compatible with a Z' explanation?

Summary

- New determinations of $B_{\!\scriptscriptstyle S}$ mixing matrix elements bring us towards precision era of $B_{\!\scriptscriptstyle S}$ mixing
- CP violating, or right handed quark coupling loopholes don't give a great improvement
- By 2025 precision will be good enough to exceed strong FNAL/MILC constraints from mixing

EXTRAS

CKM inputs

- CKMfitter Summer 2018:
 - Vcb = $(42.40 + 0.30 1.15) \times 10^{-3}$
- CKMfitter tree-only Summer 2018:
 - Vcb = $(42.41 + 0.40 1.50) \times 10^{-3}$
- CKMlive (excluding ΔM_s and ΔM_d from the fit): Vcb = (42.40 + 0.40 - 1.17)* 10^-3

SR improvement

Neutrino trident

- $\nu \rightarrow \nu \mu^+ \mu^-$
- Assumes SU(2)L invariance of our NP, so muon coupling implies neutrino coupling too
- CCFR data on cross-section can be used to bound Z' mass / lepton coupling
- Don't expect much better from DUNE

Linking R_{K^*} and ΔM_{S}

- R_{K^*} (and other $b \rightarrow s11$) anomalies require $(\overline{s} b)(\overline{1} l)$ effective coupling.
- So even at the EFT level, expect $(\overline{s} b)(\overline{s} b)$ coupling via lepton loop
- (But actually this is totally negligable)