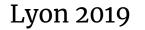
Scalar Leptoquarks to Solve Flavour Anomalies

Pere Arnan



Lepton Flavour Universality

• Neutral currents (b \rightarrow s transitions)

$$R_{K^{(*)}}^{[q_1^2, q_2^2]} = \frac{\mathcal{B}'(B \to K^{(*)} \mu \mu)}{\mathcal{B}'(B \to K^{(*)} ee)} \qquad \qquad R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{\mathrm{SM}}$$

• **Charged currents** (b \rightarrow c transitions)

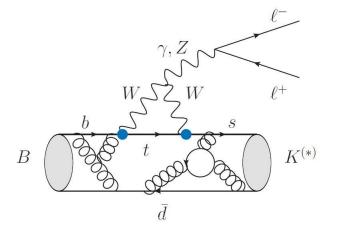
$$R_{D^{(*)}} = \left. \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} l \bar{\nu})} \right|_{l \in \{e, \mu\}}$$

$$R_{D^{(*)}}^{\rm exp} > R_{D^{(*)}}^{\rm SM}$$

Lepton Flavour Universality SM

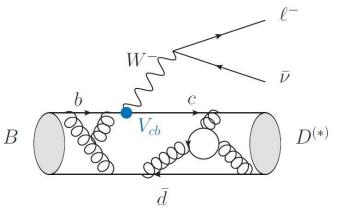
• Neutral currents (b \rightarrow s transitions)

$$R_{K^{(*)}}^{[q_1^2,q_2^2]} = \frac{\mathcal{B}'(B \to K^{(*)}\mu\mu)}{\mathcal{B}'(B \to K^{(*)}ee)}$$



• **Charged currents** (b→c transitions)

$$R_{D^{(*)}} = \left. \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} l \bar{\nu})} \right|_{l \in \{e, \mu\}}$$



Lepton Flavour Universality NP

• Neutral currents (b \rightarrow s transitions)

$$R_{K^{(*)}}^{[q_1^2,q_2^2]} = \frac{\mathcal{B}'(B \to K^{(*)}\mu\mu)}{\mathcal{B}'(B \to K^{(*)}ee)}$$

Di Luzio and Nardecchia
1706.01868

$$\frac{\Lambda_{NP}}{2} \sim 31 \text{ TeV}$$

 g_{NP}

• **Charged currents** (b→c transitions)

$$R_{D^{(*)}} = \left. \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} l \bar{\nu})} \right|_{l \in \{e, \mu\}}$$

$$\frac{\Lambda_{NP}}{g_{NP}} \sim 3.4 \text{ TeV}$$

$b \rightarrow s$ Effective Theory

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \left(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) \right) + \text{h.c.}$$

$$\mathcal{O}_9 = \frac{e^2}{(4\pi)^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \ell),$$
$$\mathcal{O}_{10} = \frac{e^2}{(4\pi)^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell),$$

$$\mathcal{O}_S = \frac{e^2}{(4\pi)^2} (\bar{s}P_R b)(\bar{\ell}\ell),$$

$$\mathcal{O}_P = \frac{e^2}{(4\pi)^2} (\bar{s}P_R b)(\bar{\ell}\gamma_5\ell),$$

$b \rightarrow s$ Effective Theory

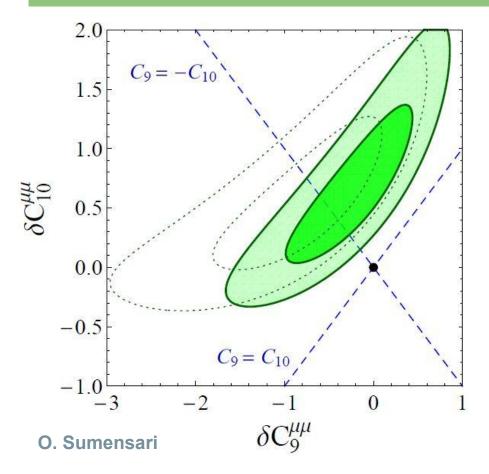
$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \left(C_i(\mu) \mathcal{O}_i(\mu) + C_i'(\mu) \mathcal{O}_i'(\mu) \right) + \text{h.c.}$$

$$\mathcal{O}_9 = \frac{e^2}{(4\pi)^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \ell),$$
$$\mathcal{O}_{10} = \frac{e^2}{(4\pi)^2} (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell),$$

$$\mathcal{O}_{S} = (\bar{s}P_{R} \bar{\psi}),$$

$$\mathcal{O}_{P} = (\bar{\tau})^{2} (\bar{\tau})^{3} (\bar{\tau})^{5} \ell,$$
Due to $\mathcal{B}(B_{s} \to \mu\mu)$

$b \rightarrow s$ fit with clean observables



Fit with clean observables

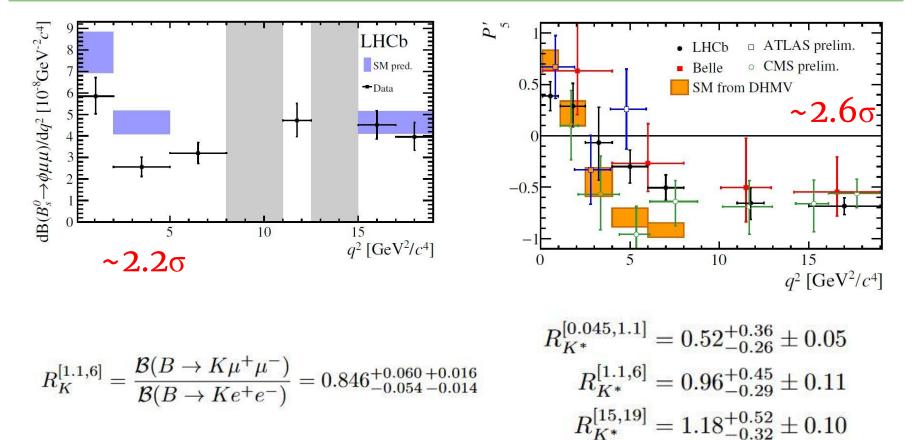
 $R_{K^{(*)}} \quad \mathcal{B}(B_s \to \mu \mu)$

 $C_9 = -C_{10}$ is a good scenario. Left handed NP.

Also global fits.

Fedele et al ,Capdevila et al, Arbey et al, Aebischer et al.

$b \rightarrow s$ fits with more observables



$b \rightarrow c$ Effective Theory

-

Angelescu et al.

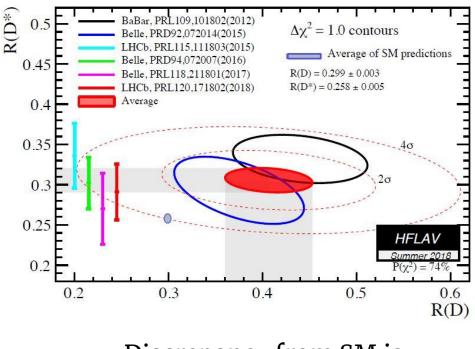
$$\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \left[(1 + g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R}(\bar{c}_R \gamma_\mu b_R)(\bar{\ell}_L \gamma^\mu \nu_L) \right. \\ \left. + g_{S_R} \left(\bar{c}_L b_R \right)(\bar{\ell}_R \nu_L) + g_{S_L} \left(\bar{c}_R b_L \right)(\bar{\ell}_R \nu_L) + g_T \left(\bar{c}_R \sigma_{\mu\nu} b_L \right)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \right] + \text{h.c.}$$

$$LFU \text{ at dimension 6}$$

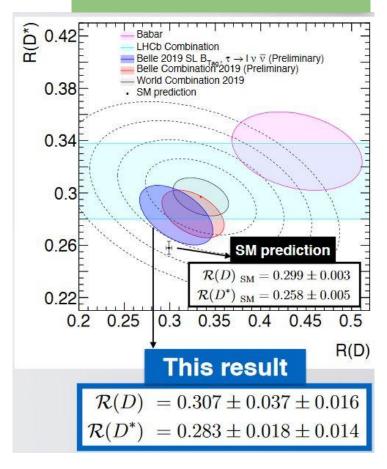
4 free parameters

Pre-Moriond

Post-Moriond



Discrepancy from SM is reduced from 3.8σ to 3.1σ



$b \rightarrow c$ fit

 $\mathcal{L}_{\text{eff}} = -2\sqrt{2}G_F V_{cb} \Big[(1+g_{V_L})(\bar{c}_L \gamma_\mu b_L)(\bar{\ell}_L \gamma^\mu \nu_L)$ $+ g_{S_R} (\bar{c}_L b_R)(\bar{\ell}_R \nu_L) + g_{S_L} (\bar{c}_R b_L)(\bar{\ell}_R \nu_L) + g_T (\bar{c}_R \sigma_{\mu\nu} b_L)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.}$

Angelescu et al.

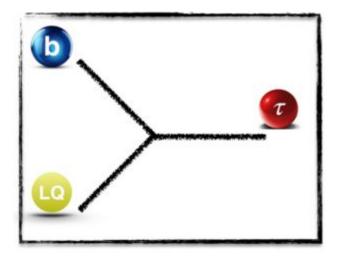
BEST FIT achieved via $g_{V_L} = (0.04, 0.11)$

Other possible scenarios $g_{S_L} = \pm 4g_T$ either real or imaginary

 $B \rightarrow D^*$ observables can help

Fedele et al. Murgui et al. Bordone et al.

Leptoquarks

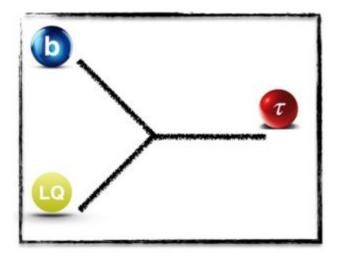


LQ can be scalar or vector particle

Carry color and fractional charge

Are predicted in many models GUT,PS,Compositeness...

Leptoquarks



LQ can be scalar or vector particle

Carry color and fractional charge

Are predicted in many models GUT,PS,Compositeness...

Scalar LQs: S_3, R_2, R_2, S_1

$$\begin{split} S_{3}(\bar{\mathbf{3}},\mathbf{3})_{1/3} \\ \mathcal{L}_{S_{3}} &= -y_{L}^{ij} \overline{d_{Li}^{C}} \nu_{Lj} S_{3}^{(1/3)} - \sqrt{2} y_{L}^{ij} \overline{d_{Li}^{C}} \ell_{Lj} S_{3}^{(4/3)} \\ &+ \sqrt{2} (V^{*} y_{L})_{ij} \overline{u_{Li}^{C}} \nu_{Lj} S_{3}^{(-2/3)} - (V^{*} y_{L})_{ij} \overline{u_{Li}^{C}} \ell_{Lj} S_{3}^{(1/3)} + \text{h.c.} \\ C_{9}^{kl} &= -C_{10}^{kl} = \frac{\pi v^{2}}{V_{ib} V_{ts}^{*} \alpha_{\text{em}}} \frac{y_{L}^{bk} (y_{L}^{sl})^{*}}{m_{S_{3}}^{2}} \qquad R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{\text{SM}} \qquad \textcircled{\circ}^{\circ} \\ g_{V_{L}} &= \underbrace{-\frac{v^{2} y_{L}^{b\ell'} (V y_{L}^{*})_{c\ell}}{4V_{cb} m_{S_{3}}^{2}}} = -\frac{v^{2}}{4m_{S_{3}}^{2}} y_{L}^{b\ell'} \left[(y_{L}^{b\ell})^{*} + \frac{V_{cs}}{V_{cb}} (y_{L}^{s\ell})^{*} + \frac{V_{cd}}{V_{cb}} (y_{L}^{d\ell})^{*} \right] \\ g_{V_{L}} & \text{Wrong sign.} \end{split}$$

 R_2 (3, 2)_{7/6}

$$\mathcal{L}_{R_2} = (Vy_R)_{ij} \,\overline{u}_{L\,i} \ell_{R\,j} \, R_2^{(5/3)} + (y_R)_{ij} \,\overline{d}_{L\,i} \ell_{R\,j} \, R_2^{(2/3)} + (y_L)_{ij} \,\overline{u}_{R\,i} \nu_{L\,j} \, R_2^{(2/3)} - (y_L)_{ij} \overline{u}_{R\,i} \ell_{L\,j} \, R_2^{(5/3)} + \text{h.c.}$$

$$C_{9}^{kl} = C_{10}^{kl} \stackrel{\text{tree}}{=} -\frac{\pi v^2}{2V_{tb}V_{ts}^* \alpha_{\text{em}}} \frac{y_R^{sl} (y_R^{bk})^*}{m_{R_2}^2}$$

$$C_{9}^{kl} = -C_{10}^{kl} \stackrel{\text{loop}}{=} \sum_{u,u' \in \{u,c,t\}} \frac{V_{ub}V_{u's}^*}{V_{tb}V_{ts}^*} y_L^{u'k} (y_L^{ul})^* \mathcal{F}(x_u, x_{u'}) \qquad R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{SM} \qquad \textcircled{\circ}$$

large muon couplings Direct searches.

 R_2 (3, 2)_{7/6}

$$\mathcal{L}_{R_2} = (Vy_R)_{ij} \,\overline{u}_{L\,i} \ell_{R\,j} \, R_2^{(5/3)} + (y_R)_{ij} \,\overline{d}_{L\,i} \ell_{R\,j} \, R_2^{(2/3)} + (y_L)_{ij} \,\overline{u}_{R\,i} \nu_{L\,j} \, R_2^{(2/3)} - (y_L)_{ij} \,\overline{u}_{R\,i} \ell_{L\,j} \, R_2^{(5/3)} + \text{h.c.}$$

$$g_{S_L} = 4 g_T = \frac{v^2}{4V_{cb}} \frac{y_L^{c\ell'}(y_R^{b\ell})^*}{m_{R_2}^2}$$

Good solution but in conflict with $\tau \rightarrow \mu \gamma$

Angelescu et al. 1808.08179

 $ilde{R}_2$ (3, 2)_{1/6} $\mathcal{L}_{\widetilde{R}_2} = -y_L^{ij} \,\overline{d_{Ri}} \widetilde{R}_2 i \tau_2 L_j + \text{h.c.} \,,$ $= -y_I^{ij} \overline{d_{Ri}} \ell_{Li} \widetilde{R}_2^{(2/3)} + y_I^{ij} \overline{d_{Ri}} \nu_{Li} \widetilde{R}_2^{(-1/3)}$

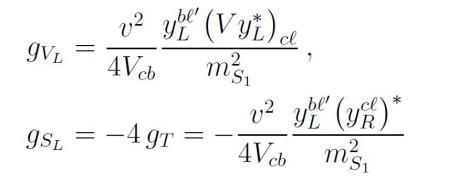
NOT generating CHARGED CURRENTS unless RH neutrino is included. But still small.

 ${{S_1}\left({{f{ar{3}}},{f{1}}}
ight)_{1/3}}$

$$\mathcal{L}_{S_1} = y_L^{ij} \overline{Q^C} i\tau_2 L_j S_1 + y_R^{ij} \overline{u_R^C} e_{Rj} S_1 + \text{h.c.}$$
$$= S_1 \Big[(V^* y_L)_{ij} \overline{u_L^C} \ell_{Lj} - y_L^{ij} \overline{d_L^C} \nu_{Lj} + y_R^{ij} \overline{u_R^C} \ell_{Rj} \Big] + \text{h.c.}$$

0 0

0 0



RD can be accommodated with the two solutions

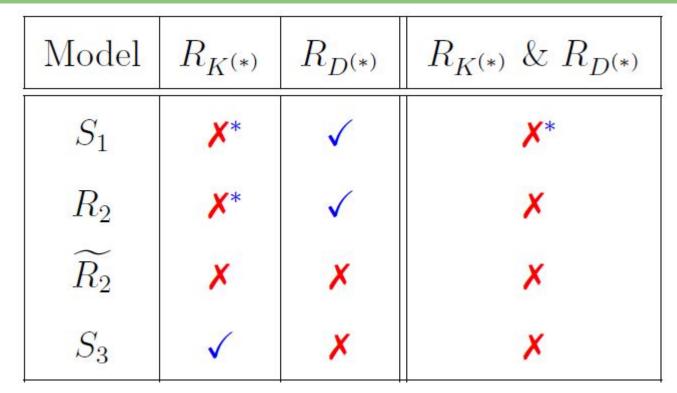
 ${{S_1}\left({{f \overline 3},{f 1}}
ight)_{1/3}}$

$$\mathcal{L}_{S_1} = y_L^{ij} \overline{Q^C} i \tau_2 L_j S_1 + y_R^{ij} \overline{u_R^C} e_{Rj} S_1 + \text{h.c.}$$
$$= S_1 \Big[(V^* y_L)_{ij} \overline{u_L^C} \ell_{Lj} - y_L^{ij} \overline{d_L^C} \nu_{Lj} + y_R^{ij} \overline{u_R^C} \ell_{Rj} \Big] + \text{h.c.}$$

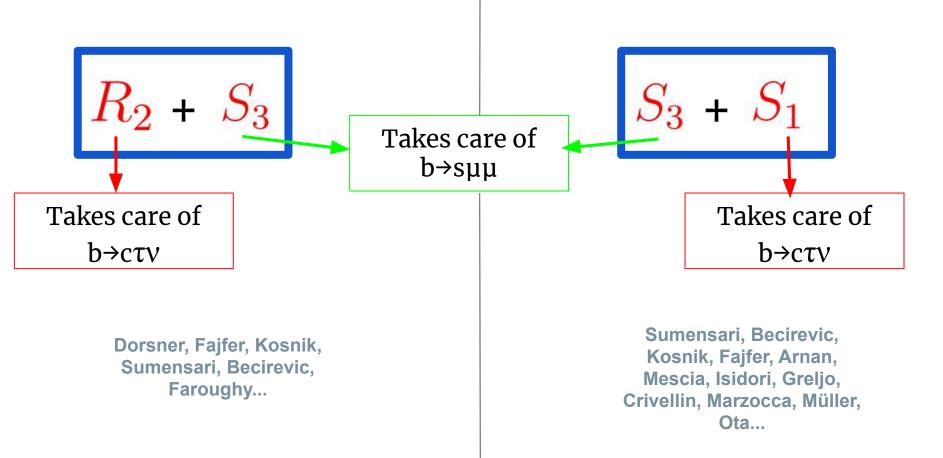
 $C_9 = -C_{10}$ can be generated via box diagrams \bigcirc

-This would involve large masses and very large couplings in the muon sector.

-Problems with $RD\mu/e$ due to muon enhancement.



No need UV theory to cancel divergences



Buttazzo et al. 1706.07808

 $S_{3} + S_{1}$ $y_{S_{1}}^{L} = g_{S_{1}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta_{s\mu} & \beta_{s\tau}^{S_{1}} \\ 0 & \beta_{b\mu} & 1 \end{pmatrix} \qquad y_{S_{3}}^{L} = g_{S_{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta_{s\mu} & \beta_{s\tau}^{S_{3}} \\ 0 & \beta_{b\mu} & 1 \end{pmatrix}$

Buttazzo et al. 1706.07808

$$y_{S_{1}}^{L} = g_{S_{1}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta_{s\mu} & \beta_{s\tau}^{S_{1}} \\ 0 & \beta_{b\mu} & 1 \end{pmatrix} \qquad y_{S_{3}}^{L} = g_{S_{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta_{s\mu} & \beta_{s\tau}^{S_{3}} \\ 0 & \beta_{b\mu} & 1 \end{pmatrix}$$

equal for simplicity.

-6 parameters

S

- -Left-handed: C9=-C10 and gV
- $-B \rightarrow Kvv$, RDµe and Z poles at LLA $-m\Delta=2$ TeV

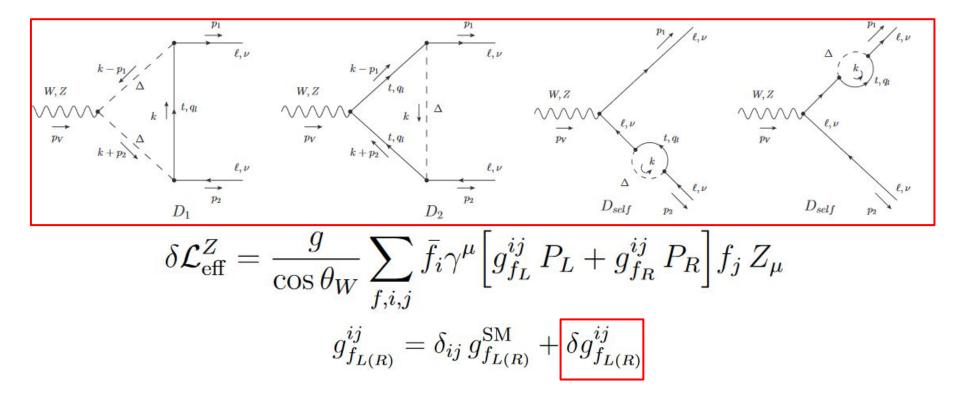
$S_3 + S_1$ 0.0F $m\Delta = 2 \text{ TeV}$ Scalar LQ **BEFORE MORIOND** -0.2-0.4C10 $\Delta C_{9} = -\Delta ($ -0.6-0.8No radiative Z constraints -1.0-1.21.3 1.1 1.01.2 1.4 $R_{D^{(*)}}$

Z-pole obs are in LLA, is it worth it to compute NLL?

Buttazzo et al. 1706.07808

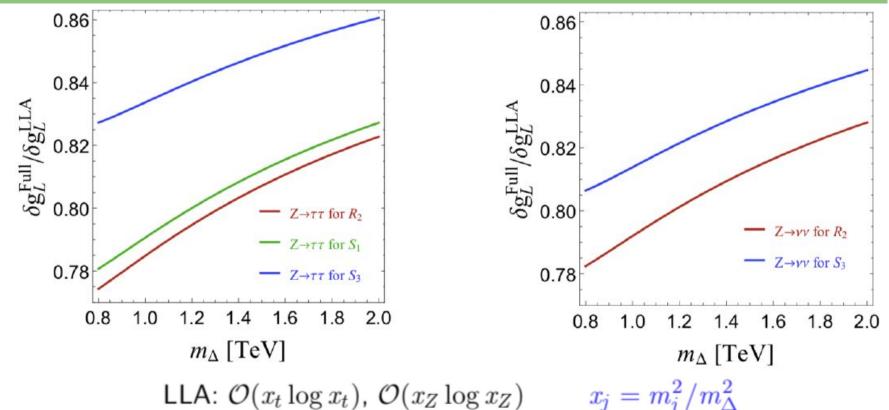
Z-pole parenthesis

Arnan et al. 1901.06315



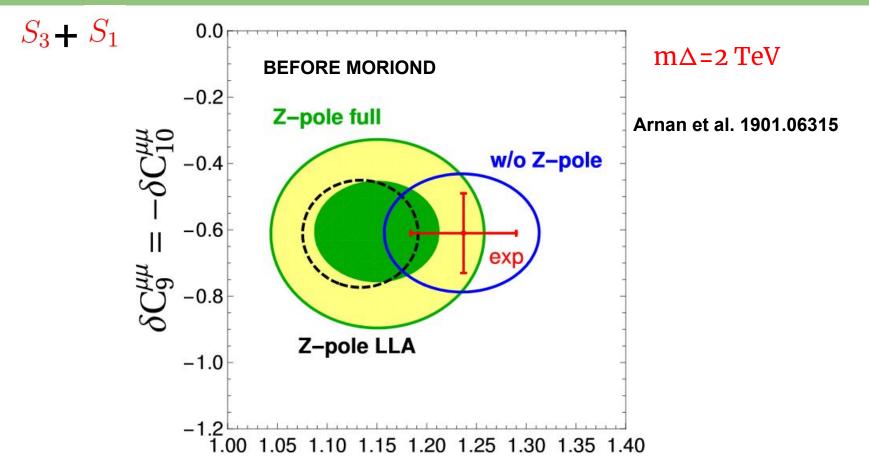
Z-pole parenthesis

Arnan et al. 1901.06315



Full: most significant $\mathcal{O}(x_Z \log x_t)$

Two Scalar Leptoquarks with full Z-pole



Two Scalar Leptoquarks Crivellin et al. 1703.09226

 $S_3 + S_1$

$$y_{S_1}^L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda_{s\mu} & \lambda_{s\tau} \\ 0 & \lambda_{b\mu} & \lambda_{b\tau} \end{pmatrix} \qquad y_{S_3}^L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda_{s\mu} & \lambda_{s\tau} \\ 0 & -\lambda_{b\mu} & -\lambda_{b\tau} \end{pmatrix}$$

- -5 parameters
- -Left-handed: C9=-C10 and gV
- Specially thought to pass $B \rightarrow Kvv$
- -Aiming to explain (g-2) with RH coupling but not possible due

to chiral enhancement in $\tau \rightarrow \mu \gamma$

-Predictions in $b \rightarrow s\tau\tau$ and LFV $b \rightarrow s\tau\mu$ -m Δ =1 TeV

In preparation

 $S_3 + S_1$

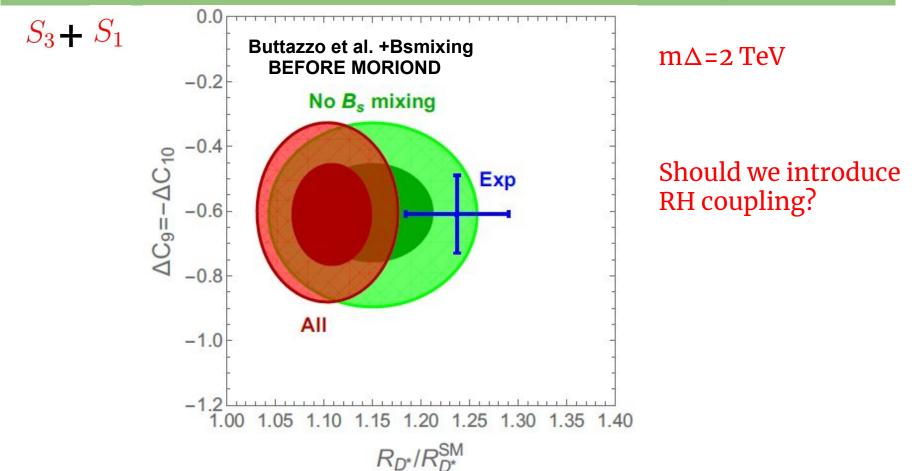
$$y_{S_1}^L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & y_{s\tau}^{S_1} \\ 0 & 0 & y_{b\tau}^{S_1} \end{pmatrix} \quad y_{S_3}^L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{s\mu}^{S_3} & y_{s\tau}^{S_3} \\ 0 & y_{b\mu}^{S_3} & y_{b\tau}^{S_3} \end{pmatrix}$$

- -6 parameters
- -Left-handed: C9=-C10 and gV

-Assuming no muon couplings in S1 since it only contributes to RD.

-m∆=1.5 TeV

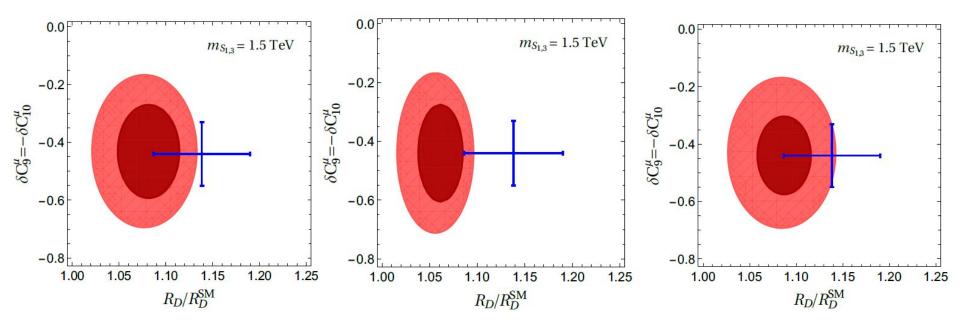
Two Scalar Leptoquarks with Bs mixing



AFTER MORIOND 2019

In preparation

 $S_3 + S_1$



Average RD reduced. Models work fine.

$$\begin{aligned} & \mathcal{T} \text{Wo Scalar Leptoquarks Becirevic et al. 1806.05689} \\ & \mathcal{L} \supset + (VY_R E_R^{\dagger})^{ij} \bar{u}_{Li} \ell_{Rj} R_2^{\frac{5}{3}} + (Y_R E_R^{\dagger})^{ij} \bar{d}_{Li} \ell_{Rj} R_2^{\frac{5}{3}} \\ & + (U_R Y_L U)^{ij} \bar{u}_{Ri} \nu_{Lj} R_2^{\frac{5}{3}} - (U_R Y_L)^{ij} \bar{u}_{Ri} \ell_{Lj} R_2^{\frac{5}{3}} \\ & - (YU)^{ij} \bar{d}_{Li}^C \nu_{Lj} S_3^{\frac{1}{3}} + 2^{\frac{1}{2}} (V^* Y U)^{ij} \bar{u}_{Li}^C \nu_{Lj} S_3^{-\frac{2}{3}} \\ & - 2^{\frac{1}{2}} Y^{ij} \bar{d}_{Li}^C \ell_{Lj} S_3^{\frac{4}{3}} - (V^* Y)^{ij} \bar{u}_{Li}^C \ell_{Lj} S_3^{\frac{1}{3}}, \\ \\ \text{Assume } Y_R E_R^{\dagger} = (Y_R E_R^{\dagger})^T, \quad Y = -Y_L \quad \text{viable embedding in SU(5)} \\ & Y_R E_R^{\dagger} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_R^{b\tau} \end{pmatrix}, \quad U_R Y_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_L^{c\mu} & y_L^{c\tau} \\ 0 & 0 & 0 \end{pmatrix} \\ & U_R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \\ \\ & \text{6 parameters } M_{R_2}, \quad M_{S_3}, \quad y_R^{b\tau}, \quad y_L^{c\mu}, \quad y_L^{c\tau} \text{ and } \theta \end{aligned}$$

Two Scalar Leptoquarks Becirevic et al. 1806.05689

 $R_2 S_3$

b→cτν

$$\propto \frac{y_L^{c\tau} y_R^{b\tau *}}{m_{R_2}^2} \left[(\bar{c}_R b_L) (\bar{\tau}_R \nu_L) + \frac{1}{4} (\bar{c}_R \sigma_{\mu\nu} b_L) (\bar{\tau}_R \sigma^{\mu\nu} \nu_L) \right] \quad \underbrace{\bullet \bullet}$$

$$\propto s_{2 heta} rac{|y_L^{c\mu}|^2}{m_{S_3}^2} (ar{s}_L \gamma^\mu b_L) (ar{\mu}_L \gamma_\mu
u_L)$$

sin2θ suppression

Bs mixing also suppressed by $sin^2 2\theta$.

Fit results
$$egin{array}{c} hetapprox\pi/2,\,m_{R_2}^2 < m_{S_3}^2,\,y_R^{b au}\in\mathbb{C} \end{array}$$

One single scalar LQ cannot accommodate successfully B anomalies.

Two LQ such as S1+S3 or can explain data in light of New RD.

R2+S3 is also able to explain flavour data and can be based in a SU(5) gauge theory

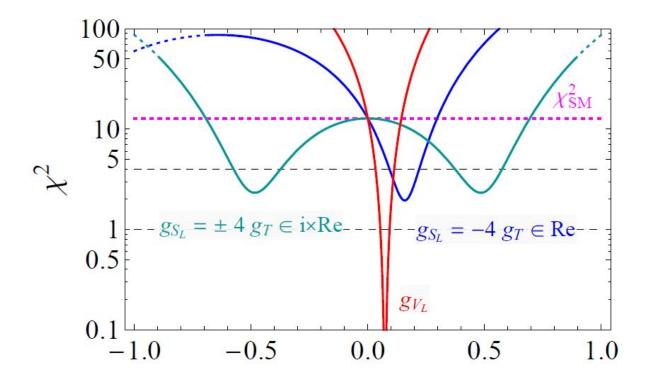
These models might be tested with observables involving tau or LFV. Such as $B \rightarrow K \mu \tau$.

BR($\tau \rightarrow 3 \mu$) phenomenolgy

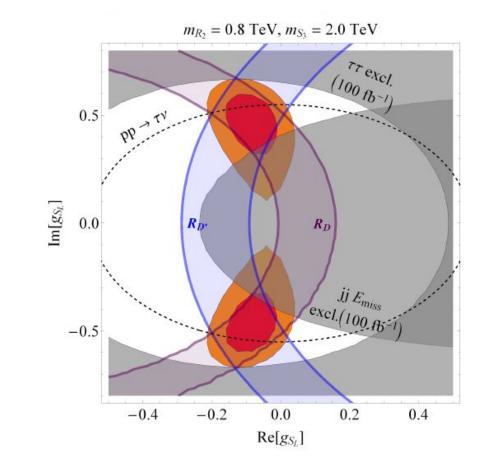
Backup Pair production

Decays	LQs	Scalar LQ limits	Vector LQ limits	$\mathcal{L}_{\rm int}$ / Ref.
$jj auar{ au}$	S_1, R_2, S_3, U_1, U_3	1000	<u>199</u>	-
$b\bar{b}\tau\bar{\tau}$	R_2, S_3, U_1, U_3	$850~(550)~{\rm GeV}$	1550 (1290) ${\rm GeV}$	$12.9 \text{ fb}^{-1} [49]$
$t\bar{t}\tau\bar{ au}$	S_1, R_2, S_3, U_3	$900~(560)~{\rm GeV}$	1440 (1220) GeV	$35.9 \text{ fb}^{-1} [50]$
$jj\muar\mu$	S_1, R_2, S_3, U_1, U_3	1530 (1275) ${\rm GeV}$	2110 (1860) ${\rm GeV}$	35.9 fb^{-1} [51]
$b\bar{b}\mu\bar{\mu}$	R_2, U_1, U_3	1400 (1160) ${\rm GeV}$	1900 (1700) ${\rm GeV}$	$36.1 \text{ fb}^{-1} [52]$
$t \bar{t} \mu \bar{\mu}$	S_1, R_2, S_3, U_3	1420 (950) ${\rm GeV}$	$1780 (1560) { m GeV}$	$36.1 \text{ fb}^{-1} [53, 54]$
$jj \nu \overline{ u}$	R_2, S_3, U_1, U_3	$980~(640)~{\rm GeV}$	1790 (1500) ${\rm GeV}$	$35.9 \text{ fb}^{-1} [55]$
$b\bar{b}\nu\bar{\nu}$	S_1, R_2, S_3, U_3	$1100 (800) { m GeV}$	1810 (1540) ${\rm GeV}$	$35.9 \text{ fb}^{-1} [55]$
$t\bar{t}\nu\bar{\nu}$	R_2, S_3, U_1, U_3	1020 (820) GeV	$1780 (1530) { m GeV}$	35.9 fb^{-1} [55]

Backup fit b→cτv



Backup S3+R2 model



Backup Bs mixing

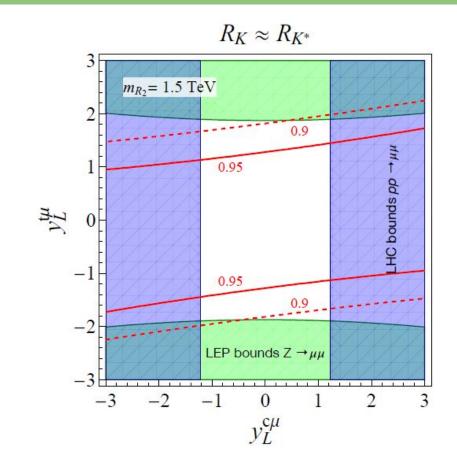
$$C_{BB}^{\rm NP} = \frac{1}{128\pi^2 m_{S_1}^2} (y_{s\mu}^{S_1 *} y_{b\mu}^{S_1} + y_{s\tau}^{S_1 *} y_{b\tau}^{S_1})^2 + \frac{5}{128\pi^2 m_{S_3}^2} (y_{s\mu}^{S_3 *} y_{b\mu}^{S_3} + y_{s\tau}^{S_3 *} y_{b\tau}^{S_3})^2 \\ + \frac{1}{32\pi^2 (m_{S_1}^2 - m_{S_3}^2)} (y_{s\mu}^{S_1 *} y_{b\mu}^{S_3} + y_{s\tau}^{S_1 *} y_{b\tau}^{S_3}) (y_{s\mu}^{S_3 *} y_{b\mu}^{S_1} + y_{s\tau}^{S_3 *} y_{b\tau}^{S_1}) \log\left(\frac{m_{S_1}}{m_{S_3}}\right)$$

$$\frac{\Delta M_S^{\rm NP}}{\Delta M_S^{\rm SM}} = \left|1 + \frac{\langle \mathcal{H}_{B\bar{B}}^{\rm NP} \rangle}{\langle \mathcal{H}_{B\bar{B}}^{\rm SM} \rangle}\right| = \left|1 + \frac{C_{B\bar{B}}^{\rm NP}(\mu_b)}{C_{B\bar{B}}^{\rm SM}(\mu_b)}\right| = \left|1 + \frac{U(\mu_t, \mu_{\rm LQ})C_{B\bar{B}}^{\rm NP}}{\frac{G_F^2 M_W^2}{4\pi^2}\lambda_t^2 S_0(x_t)}\right|$$

where

$$C_{B\bar{B}}^{\rm SM}(\mu_b) = \frac{G_F^2 M_W^2}{4\pi^2} \lambda_t^2 U(\mu_b, \mu_t) S_0(x_t) \text{ and } C_{B\bar{B}}^{\rm SM}(\mu_b) = U(\mu_b, \mu_{\rm LQ}) C_{B\bar{B}}^{\rm NP}(\mu_b)$$

Backup R2 2019



Backup tau->3mu

