cherenkov
‘ a telescope
array

jctapipe

7/

NIVERSITY OF

Jason J. Watson

SGSO Simulation Workshop
March 4, 2019




Contents

What is ctapipe?

Python as a Pipeline Framework

Github Workflow



What is ctapipe?

Intention:

A pipeline for the offline low-level processing of CTA Cherenkov Shower data from cameras and Monte
Carlo simulations

Currently:
Alpha development stage (v0.6.2)
No full, single pipeline implemented yet
A library of methods useful for IACT data processing

Can read data from cameras and sim_telarray

Python

Open source: https://github.com /cta-observatory /ctapipe

Utilises packages maintained by the large Python data science and astronomy community


https://github.com/cta-observatory/ctapipe

What is the scope of ctapipe?

Original lllustration Credit: Richard White
3. Reconstruct properties of
.- Cherenkov shower progenitor

2 qudmeterlse |moge of
Cherenkov shower

4 Prowde event |ISTS to. ’rhe saence
tools (e.g. ctools, gammopy)
From's,lmulq’rlons. Produce.-senS|Tivifry-
& Instrument Response Functions ®

1. Extract charge from each
pixel’s waveform stored on disk

E? x Flux Sensitivity (erg cm? s

1
Energy ER (TeV)




Python as a Pipeline Framework

Bottom-Up approach Top-Down approach

start
here

start
here

Pipeline frameworks often adopt a "Bottom-Up” approach, with the aim of creating statically-compiled optimised code from the start, which
may be wrapped with a higher-level Python interface

1IcDue to its dynamically typed nature, Python is often considered slow. It is therefore unusual to use Python as the core language for a pipeline
ramework

However, Python is easy to learn, easy to contribute to, and has intuitive syntax
Python can also be extended with static compiled languages (such as C, C++ or Fortran)
There is an extensive amount of scientific computing resources available in Python, utilising optimised low-level C and Fortran operations

ctapipe has therefore adopted the “Top-Down” approach, writing Python code which utilises these extensive resources to achieve processing
speeds matching (and often surpassing) hand-written static code.

Areas requiring further optimisation are identified via profiling, and static code is written to remove bottleneck
“premature optimization is the root of all evil”



Python Scientific Resources

* NumPy: the fundamental package for scientific processing in Python, providing a contiguous, n-dimensional array object, used
to pass data between statically-typed extensions.

“ SciPy: expands on the operations one can perform with the NumPy array, providing extensive functionality useful for scientific
computing, including statistical operations, interpolation, and signal processing.

= Astropy: developed by the astronomy community to consolidate various common astronomy procedures into a single package.

“ Matplotlib: supplies extensive 2D plotting capabilities for Python, similar to those found in MATLAB, and is compatible with
NumPy arrays.

scikit
W\ pipeline release &

A Pﬁhon package for tools d e p loy me nt

gamma-ray astronomy (batCh
executables)

—_— >
astropy .
ommunity Python Library for Astronomy Ctaplpe
_—— package /framework advanced
* ™~ pipeline
applications p COMGEN
- - ackage + Virtua
m A o 2 (onlln.e, streaming, e gontaining
DAQ interface, ... fixed versions of all
" dependences
L H (compiler / python
% matp I Otl I b interpreter included)
EventlO

wrapper I L

algorithms

(python) § algorithms

(C/C++) pyte St

J. ). Watson ctapipe 5



Extending Python with (

Many options!

https: / /intermediate-and-advanced-software-carpentry.readthedocs.io /en/latest /c++-wrapping.html

Numba & Cython
Python or ”"Python-like” code which is compiled into C code, allowing for an improvement in speed

https:/ /jakevdp.github.io /blog/2012/08 /24 /numba-vs-cython/

By hand
Python is itself written in C (CPython)

https: / /docs.python.org /3 /extending /extending.html

SWIG (Simplified Wrapper and Interface Generator)
Wraps low-level code such that methods can be called from high-level code
Entire libraries can easily be wrapped

ctypes

Easy interface to C-written methods

https: / /pgi-jcns.fz-juelich.de /portal /pages /using-c-from-python.html


https://intermediate-and-advanced-software-carpentry.readthedocs.io/en/latest/c++-wrapping.html
https://jakevdp.github.io/blog/2012/08/24/numba-vs-cython/
https://docs.python.org/3/extending/extending.html
https://pgi-jcns.fz-juelich.de/portal/pages/using-c-from-python.html

Github Version Control

ctapipe is open source, and is on Github: https://github.com /cta-observatory /ctapipe

There are two typical Github workflows (that | am aware of):

Push/Pull Pull Request

Fast integration of new code New code is reviewed before acceptance into main repository

No/limi’red review procedure Contributions can be discussed

No dedicated place for discussion of contribution Coding standards can be enforced

No enforcement of coding standards Possibility for automated unit tests to ensure new code works, and

No ensuring of working code does not break existing code

However, can be slow. Requires manpower to review new pull
requests

@ ‘master’ branch
Merge ‘feature’ branchinto ‘master’

Create ‘feature’ branch from ‘master’

Vo F o | ™\ £\ F a1
- - - - -

Commit changes Submit Pull Request Discuss proposed changes

https://guides.github.com/introduction/flow/

ctapipe (alongside the majority of open-source projects) operates with the “Pull Request” workflow


https://github.com/cta-observatory/ctapipe
https://guides.github.com/introduction/flow/

Github Workflow (Fork & Pull Request)

Git and GitHub

@) Clone/Pull

€) Fork Original Repo

) Pull Request

GitHub Account Original Repo Project

Development Linode & Forked Repo & Repo Creator’s GitHub

Modified from: https://www.linode.com/docs/development/version-control/how-to-install-git-and-clone-a-github-repository/



https://www.linode.com/docs/development/version-control/how-to-install-git-and-clone-a-github-repository/

Using the Github Workflow in ctapipe

The automated unit tests (TravisCl) and Pull request discussion have been paramount in a cohesive development
Integration of new code was very slow to begin with - Only one person had permissions to accept Pull Requests
We now (recently in the last few months) have a core-developer team (~5 people) who can review Pull Requests

Pull requests are checked for unit tests (TravisCl), coverage (codecov), and coding standards (Codacy)

. L]
Each Pull Request requires 2 reviews before merge @ cranges approve Hide el reviewers
2 approving reviews by reviewers with write access. Learn more.
v 2 watsonjj approved these changes See review Dismiss review Re-request review
v a MaxNoe approved these changes See review Dismiss review Re-request review
K h d | L f i I Hide all check
ey to a smooth development: Lots of reviewers! ) Ailchecks have passed ide all checks
4 successful checks
v @ Codacy/PR Quality Review — Up to standards. A positive pull request. Details
v codecov/patch — 100% of diff hit (target 78.93%) Details
v codecov/project — 78.95% (+0.02%) compared to 7a40dba Details
v & continuous-integration/travis-ci/pr — The Travis Cl build passed Details

° This branch has no conflicts with the base branch

Merging can be performed automatically.

Merge pull request a4 You can also open this in GitHub Desktop or view command line instructions.



Summary

Utilising Python for a pipeline framework in a “Top-Down” design is proving to be successful for ctapipe

The scientific resources available in Python are extensive, impressive, and easy to use

The “Pull-Request” Github workflow is extremely reliable for collaborative development

Ensuring high quality and working code

It is important to have multiple trusted reviewers of code

Ensuring speedy acceptance of contributions



