

Dark Matter Direct Detection (XENON1T world best sensitivity)

Julien Masbou

Subatech – Université de Nantes

What Dark Matter it not

➔ Barnard 68 : cold molecular cloud ~ 500 ly. Transparent in infrared

Definition

By « Dark Matter » we mean non-luminous matter : no associated emission of light (visible, UV, IR, radio, etc...)

... But we assume its existence by its gravitational effect in:

- Galaxies
 Galaxy clusters
 Galaxy clusters
- 3) Cosmology

Galaxies

In galaxies, stars are not statics but turns around the galactic center. Thanks to the rotation, the centrifugal force compensates the gravitational force, which prevents stars to collapse in the core.

Galaxies

Distance du centre

Galaxies

Vera Rubin ~1970

Rotation velocity almost constant at all radius !

➔ Presence of a halo of invisible matter, 5-10 times heavier than standard matter

Gravitational lenses

Gravitational lenses

Dark Matter 3D-map

Colliding clusters

Energy composition of the universe

5% of Standard Matter

25% of Dark Matter

70% of Dark Energy

Characteristics of Dark Matter Particles

- Weak interaction
- Stable

Non-baryonic MatterNon relativistic

Direct dark matter detection principle

- Direct detection
- Indirect detection
- Production

Direct dark matter detection principle

Cinematic

$$E_r = \left(\frac{m_{\chi}}{2}v^2\right) \times \frac{4m_N m_{\chi}}{\left(m_N + m_{\chi}\right)^2} \times \cos^2 \vartheta_r$$

~ 1 - 100 keV

Expected rate for terrestrial detector

Julien Masbou, GraSPA 2019, 22nd July 2019

How is evolving the field of Direct Detection ?

Julien Masbou, GraSPA 2019, 22nd July 2019

Direct detection : progress over time

- ultra-low background experimental environment
- low energy threshold to detect small recoil energy signals
- good discrimination power against particle that might mimic WIMP collision
- large detector mass to enhance the interaction probability inside the target

The fight against the background

Avoid background

- **External** γ's from natural radioactivity
- Material screening
- Self shielding (fiducialization)

Use WIMP properties

- No double scatter
- Homogeneously distributed
 - \rightarrow Position reconstruction
- Nuclear recoils

→ ER/NR Discrimination

External neutrons muon-induced (α ,n) and fission reaction

- Material screening (low U and Th)
- Underground experiments
- Shield & active veto
- Internal contamination
- ⁸⁵Kr : removed by cryogenic distillation
- ²²²Rn : removed by cryogenic distillation
- ¹³⁶Xe : $\beta\beta$ decay, long lifetime (T_{1/2} = 2.2x10²¹ years)

Cosmic Rays

To increase the sensitivity of the experiments, we need:

 To hide under a mountain to be protected from cosmic rays (100 per second across ou body),

 To be protected from natural radioactivity from rocks

- To purify from materials of the detector

XENON1T experiment site

PERIODIC TABLE OF ELEMENTS

Why Xenon ?

- Large mass number A (131) (Interaction cross section ∝ A²)
- 50% odd isotopes (¹²⁹Xe, ¹³¹Xe) for Spin-Dependent interactions
- Kr can be reduced to ppt levels
- High stopping power, i.e. active volume is self-shielding
- Efficient scintillator (178 nm)
- Scalable to large target masses
- Electronic recoil discrimination with simultaneous measurement of scintillation and ionization

Dual phase TPC: principle

TPC = Time Projection Chamber

<u>S1:</u>

- → Photon (λ = 178 nm) from Scintillation process
- → Dectected by PMTs (mainly botton array)

<u>S2:</u>

- \rightarrow Electrons drift
- \rightarrow Extraction in gaseous phase
- \rightarrow Proportional scintillation light

Dual phase TPC: real life

X and Y position from S2 hit pattern on the top PMTs

XENON World

XENON1T facility

Water shield: deionized water as passive radiation shield Muon veto: Active muon veto against muon induced neutrons (84 PMTs)

Cryogenics: Stable conditions(3.2t LXe) **Purification:** LXe flow through getters, remove impurities

DAQ: Each channel has its own threshold, Flexible software algorithms **Readout:** Up to 300MB/s for high rate calibrations

ReStoX: Emergency recovery up to 7.6 tons of LXe **Passive:** No active cooling required to keep Xe contained

Kr Distillation: Remove Kr from system during fill or online **Rn Distillation:** Initial tests show promising reduction for Rn

Julien Masbou, GraSPA 2019, 22nd July 2019

XENON1T Data Taking

- DM total exposure SR0+SR1: 278.8 Live days
 - → Largest exposure reported to-date with this type of detector
- Calibration Data:
 - 83mKr → Spacial Response (electron lifetime,...)
 - 220Rn \rightarrow ER-Band
 - 241AmBe & NG→ NR-Band
 - LED → PMT gain monitoring

Calibrations

Electronic Recoils

- ²²⁸Th source emanates ²²⁰Rn into LXe
- β-decay of ²¹²Pb to ²¹²Bi
 →low energy events (2–20 keV)
- Decay of activity dominated by ²¹²Pb half-life (10.6 h)

Nuclear Recoils

- External ²⁴¹AmBe source mounted on a belt
 - The α particles emitted by the decay of the Am collide with the light Be nuclei producing fast neutrons

Neutron Generator

Julien Masbou, GraSPA 2019, 22nd July 2019

Internal source

Dark Matter Search Data

- Blinding
 → to avoid biases in event selection and signal/background modeling
- Salting (addition of fake events) → to protect against post-unbliding tuning of the cuts and background models

Julien Masbou, GraSPA 2019, 22nd July 2019

Fiducial Volume Optimization

Optimize fiducial volume before unblinding by using improved understanding

- position reconstruction
- detector response
- correlations between spectral and spacial distribution
- include knowledge on background distributions in statistical framework
- MC simulations

Julien Masbou, GraSPA 2019, 22nd July 2019

XENON1T Expectations

In 4-dimensional space: S1, S2, r, z

Statistical inference

Done with PLR analysis in 1.3 t fiducial volume and full (S1,S2) space, corresponding to [4.9, 40.9] keV_{nr} and [1.4, 10.6] keV_{ee}.

NR reference region

Between NR median and -2σ quantile. Numbers in table are for illustration; final results from complete PLR statistical inference.

Dark Matter Search Results

- Results interpreted with unbinned profile likelihood analysis in cs1, cs2, R space
- Piechart indicate the relative probabilities of this event to be of a certain class for a best fit to a 200 GeV/c² WIMPs with a cross-secl on of 4.6 x 10⁻⁴⁷ cm2

Spacial Distribution of Dark Matter Search Results

- Core volume to distinguish WIMPs over neutron background
- Yellow shaded regions display the 1σ (dark), and 2σ (light) probability density percentiles of the radiogenic neutron background component

• Spin-independent WIMP-nucleon cross section

Strongest exclusion limits (at 90% CL) on WIMPs > 6 GeV/ c^2 .

1 sigma upper fluctuation at higher WIMP masses

No significant excess (>3 sigma) is observed.

Phys. Rev. Lett. 121, 111302 (2018)

Phases of the XENON Program

XENON10 2005 – 2007 15 cm drift TPC Total: 25 kg Target: **14** kg Fiducial: 5.4 kg

Achieved (2007) $\sigma_{\rm SI} = 8.8 \cdot 10^{-44} \, {\rm cm}^2$ @ 100 GeV/c²

XENON100

2008 - 2016

30 cm drift TPC

Total: 161 kg

Target: 62 kg

Fiducial: 34/48 kg

Achieved (2016)

 $\sigma_{\rm SI} = 1.1 \cdot 10^{-45} \, \rm cm^2$

@ 55 GeV/c²

XENON1T 2012 – 2019 100 cm drift TPC Total: 3 200 kg Target: **2 000** kg Fiducial: 1 000 kg

Achieved (2018) $\sigma_{SI} = 4.1 \cdot 10^{-47} \text{ cm}^2$ @ 30 GeV/c²

XENONnT 2017 (R&D) – 2023 144 cm drift TPC Total: 8 000 kg Target: **6 000** kg Fiducial: 4 500 kg

Projected (2022) $\sigma_{SI} = 1.6 \times 10^{-48} \text{ cm}^2$ @ 50 GeV/c²

Double electron capture (DEC) with ¹²⁴Xe

- 124 Xe + 2e⁻ \rightarrow 124 Te + 2 ν_e
- Vacancies on the K shell : Detectable cascade of X-rays and Auger electrons in the keV-range (64.3 keV)
- Large half-lives : > 10¹². T_{univers}
- Needs very <u>low background</u> experiment

XENON1T

¹²⁴Xe ~ 1 kg / t

Double electron capture (DEC) with XENON1T

Double electron capture (DEC) Results

- Blinded region from 56 keV to 72 keV
- Ellipsoidal 1.5 t inner fiducial volume
- Peak at E = (64.2 ± 0.5) keV and $\sigma = (2.6 \pm 0.3)$ keV
- Significance 4.4σ

Half-life $T_{1/2} =$ (1.8±0.5_{stat}±0.1_{sys})×10²² y

Conclusions

- Liquid Xenon is the world leading technique of DM searches
- First multi-ton scale LXe-TPC successfully operated for more than 1 year
- Strongest limit on WIMP-nucleon SI cross-section above 6 GeV/c²: minimum at 4.1·10⁻⁴⁷cm² for a WIMP of 30 GeV/c²
- Double Electron Capture detection : longest half-life ever measured directly
- Proof that xenon-based Dark Mater search experiments are sensitive for rare event searches

- Dark matter is highly searched
- Solution to an astrophysics / particle physics / Cosmological problem

Other XENON1T analysis:

- S2 only analysis channel
- Annual modulation
- Migdal effect
- Light dark matter searches

