

Dark Matter Direct Detection (XENON1T world best sensitivity)

Julien Masbou

Subatech – Université de Nantes

What Dark Matter it not

 \rightarrow Barnard 68 : cold molecular cloud \sim 500 ly. Transparent in infrared

Definition

By « Dark Matter » we mean non-luminous matter : no associated emission of light (visible, UV, IR, radio, etc...)

... But we assume its existence by its gravitational effect in:

- 1) Galaxies 2) Galaxy clusters
- 3) Cosmology

Galaxies

In galaxies, stars are not statics but turns around the galactic center. Thanks to the rotation, the centrifugal force compensates the gravitational force, which prevents stars to collapse in the core.

Galaxies

Distance du centre

Galaxies

Vera Rubin ~1970

Rotation velocity almost constant at all radius !

 \rightarrow Presence of a halo of invisible matter, 5-10 times heavier than standard matter

Gravitational lenses

Gravitational lenses

Dark Matter 3D-map

Colliding clusters

Energy composition of the universe

5% of Standard Matter

25% of Dark Matter

70% of Dark Energy

Characteristics of Dark Matter Particles

-
-
- Weak interaction Non-baryonic Matter Stable - Non relativistic

Direct dark matter detection principle

- **Direct detection**
- Indirect detection
- Production

Direct dark matter detection principle

Cinematic

$$
E_r = \left(\frac{m_\chi}{2}v^2\right) \times \frac{4m_Nm_\chi}{\left(m_N + m_\chi\right)^2} \times \cos^2\vartheta_r
$$

 $~1 - 100$ keV

Expected rate for terrestrial detector

Julien Masbou, GraSPA 2019, 22nd July 2019

How is evolving the field of Direct Detection ?

Julien Masbou, GraSPA 2019, 22nd July 2019 ¹⁷

Direct detection : progress over time

- ultra-low background experimental environment
- low energy threshold to detect small recoil energy signals
- good discrimination power against particle that might mimic WIMP collision
- large detector mass to enhance the interaction probability inside the target

The fight against the background

• **Avoid background**

- **External y's from natural radioactivity**
- Material screening
- Self shielding (fiducialization)

• **External neutrons** muon-induced (α, n) and fission reaction

- Material screening (low U and Th)
- Underground experiments
- Shield & active veto
- **Internal contamination**
- ⁸⁵Kr : removed by cryogenic distillation
- ²²²Rn : removed by cryogenic distillation
- $-$ ¹³⁶Xe : $\beta\beta$ decay, long lifetime (T_{1/2} = 2.2x10²¹ years)

• **Use WIMP properties**

- No double scatter
- Homogeneously distributed
	- à *Position reconstruction*
- Nuclear recoils
	- à *ER/NR Discrimination*

Cosmic Rays

To increase the sensitivity of the experiments, we need:

- To hide under a mountain to be protected from cosmic rays (100 per second across ou body),

- To be protected from natural radioactivity from rocks

- To purify from materials of the detector

XENON1T experiment site

PERIODIC TABLE OF ELEMENTS

Why Xenon ?

- Large mass number A (131) (Interaction cross section \propto A²)
- 50% odd isotopes $(129Xe, 131Xe)$ for Spin-Dependent interactions
- Kr can be reduced to ppt levels
- High stopping power, i.e. active volume is self-shielding
- Efficient scintillator (178 nm)
- Scalable to large target masses
- Electronic recoil discrimination with simultaneous measurement of scintillation and ionization

Dual phase TPC: principle

TPC = Time Projection Chamber

S1:

- \rightarrow Photon (λ = 178 nm) from Scintillation process
- \rightarrow Dectected by PMTs (mainly botton array)

S2:

- \rightarrow Electrons drift
- \rightarrow Extraction in gaseous phase
- \rightarrow Proportional scintillation light

Julien Masbou, GraSPA 2019, 22nd July 2019 ²⁵

Dual phase TPC: real life

X and Y position from S2 hit pattern on the top PMTs

XENON World

XENON1T facility

Water shield: deionized water as passive radiation shield **Muon veto:** Active muon veto against muon induced neutrons (84 PMTs)

Cryogenics: Stable conditions(3.2t LXe) **Purification:** LXe flow through getters, remove impurities

DAQ: Each channel has its own threshold, Flexible software algorithms **Readout:** Up to 300MB/s for high rate calibrations

ReStoX: Emergency recovery up to 7.6 tons of LXe

Passive: No active cooling required to keep Xe contained

Kr Distillation: Remove Kr from system during fill or online **Rn Distillation:** Initial tests show promising reduction for Rn

Julien Masbou, GraSPA 2019, 22nd July 2019

XENON1T Data Taking

- DM total exposure SR0+SR1: 278.8 Live days
	- \rightarrow Largest exposure reported to-date with this type of detector
- Calibration Data:
	- 83mKr \rightarrow Spacial Response (electron lifetime,...)
	- $220Rn \rightarrow ER-Band$
	- 241AmBe & NG→ NR-Band
	- LED \rightarrow PMT gain monitoring

Calibrations

Electronic Recoils

²²⁸Th source emanates **220Rn** into LXe

- ^b**-decay** of 212Pb to 212Bi \rightarrow **low energy** events $(2 - 20 \,\text{keV})$
- Decay of activity dominated by 212Pb half-life (10.6 h)

Nuclear Recoils

- External **241AmBe** source mounted on a belt
	- \circ The α particles emitted by the decay of the Am collide with the light Be nuclei producing fast neutrons

• **Neutron Generator**

Julien Masbou, GraSPA 2019, 22nd July 2019

Internal source

Dark Matter Search Data

- **Blinding** \rightarrow to avoid biases in event selection and signal/background modeling
- **Salting** (addition of fake events) \rightarrow to protect against post-unbliding tuning of the cuts and background models

Julien Masbou, GraSPA 2019, 22nd July 2019

Fiducial Volume Optimization

Optimize fiducial volume before unblinding by using improved understanding

- position reconstruction
- detector response
- correlations between spectral and spacial distribution
- include knowledge on background distributions in statistical framework
- MC simulations

Julien Masbou, GraSPA 2019, 22nd July 2019

XENON1T Expectations

50 GeV/c2

Background models

In 4-dimensional space: S1, S2, r, z

Statistical inference

Done with PLR analysis in 1.3 t fiducial volume and full (S1,S2) space, corresponding to [4.9, 40.9] keV_{nr} and [1.4, 10.6] keV_{ee}.

NR reference region

Between NR median and -2 σ quantile. Numbers in table are for illustration; final results from complete PLR statistical inference.

Dark Matter Search Results

- Results interpreted with unbinned profile likelihood analysis in cs1, cs2, ^R space
- Piechart indicate the relative probabilities of this event to be of a certain class for a best fit to a 200 GeV/ c^2 WIMPs with a cross-secI on of 4.6 x 10^{-47} cm2

Spacial Distribution of Dark Matter Search Results

- Core volume to distinguish WIMPs over neutron background
- Yellow shaded regions display the 1σ (dark), and 2σ (light) probability density percentiles of the radiogenic neutron background component

• **Spin-independent WIMP-nucleon cross section**

Strongest exclusion limits (at 90% CL) on WIMPs > 6 GeV/c2.

• **1 sigma upper fluctuation at higher WIMP masses**

No significant excess (>3 sigma) is observed.

Phys. Rev. Lett. 121, 111302 (2018)

Phases of the XENON Program

XENON10 2005 – 2007 15 cm drift TPC Total: 25 kg Target: **14** kg Fiducial: 5.4 kg

Achieved (2007) $\sigma_{\text{SI}} = 8.8 \cdot 10^{-44} \text{ cm}^2$ @ 100 GeV/c2

XENON100

2008 – 2016 30 cm drift TPC Total: 161 kg Target: **62** kg Fiducial: 34/48 kg

Achieved (2016) $\sigma_{\text{SI}} = 1.1 \cdot 10^{-45} \text{ cm}^2$ @ 55 GeV/c2

XENON1T 2012 – 2019 100 cm drift TPC Total: 3 200 kg Target: **2 000** kg Fiducial: 1 000 kg

Achieved (2018) $\sigma_{\text{SI}} = 4.1 \cdot 10^{-47} \text{ cm}^2$ @ 30 GeV/c2

XENONnT 2017 (R&D) – 2023 144 cm drift TPC Total: 8 000 kg Target: **6 000** kg Fiducial: 4 500 kg

Projected (2022) σ_{SI} = 1.6 x 10⁻⁴⁸ cm² @ 50 GeV/c2

Double electron capture (DEC) with 124Xe

- $124Xe + 2e^-$ → $124Te + 2v_e$
- Vacancies on the K shell : Detectable cascade of X-rays and Auger electrons in the **keV-range (64.3 keV)**
- Large half-lives : $> 10^{12}$. T_{univers}
- Needs very **low background** experiment

XENON1T

 $124Xe - 1$ kg / t

Double electron capture (DEC) with XENON1T

Double electron capture (DEC) Results

- Blinded region from 56 keV to 72 keV
- Ellipsoidal 1.5 t inner fiducial volume
- Peak at $E = (64.2 \pm 0.5)$ keV and $σ = (2.6 \pm 0.3)$ keV
- Significance 4.4σ

Half-life $T_{1/2}$ = $(1.8\pm0.5_{\rm stat}\pm0.1_{\rm sys})\times10^{22}$ y

Conclusions

- **Liquid Xenon is the world leading technique of DM searches**
- First multi-ton scale LXe-TPC successfully operated for more than 1 year
- **Strongest limit** on WIMP-nucleon SI cross-section above 6 GeV/c²: minimum at $4.1 \cdot 10^{-47}$ cm² for a WIMP of 30 GeV/c²
- Double Electron Capture detection : longest half-life ever measured directly
- Proof that xenon-based Dark Mater search experiments are sensitive for rare event searches

- *Dark matter is highly searched*
- *Solution to an astrophysics / particle physics / Cosmological problem*

Other XENON1T analysis:

- S2 only analysis channel
- Annual modulation
- Migdal effect
- Light dark matter searches

