

## **Astroparticle Theory**

#### **Francesca Calore**

<u>calore@lapth.cnrs.fr</u>







## Lecture 1

- 1. A short introduction to cosmology
- 2. The early Universe thermal history
- 3. Boltzmann equations for thermal relics

Main reference:

Kolb & Turner, "The Early Universe" (1988) Chapters 1-3, 5

### Hubble's law



Velocity (determined by Red Shift)

#### CMB Blackbody spectrum



#### The evolution of the Universe





## Cosmology Concordance

## Thermal decoupling (freeze-out)



Cold relic history very sensitive to details of decoupling because of rapid variation of  $Y_i$   $\longrightarrow$  Sensitivity to new physics through:

- Interaction rate, i.e. interaction type
- Number of relativistic d.o.f for the evolution of H(T)

## Thermal decoupling (freeze-out)

Three exceptions in the calculation of the relic abundance

- Co-annihilation with other particles degenerate in mass (5% 10%); coupled Boltzmann equations
- 2. Dark matter mass slightly below mass threshold to open up a new channel
- 3. Annihilation close to a pole of the cross section, i.e. resonant annihilation Griest & Seckel, Phys.Rev.D 43 (1991) 319

Edsjo & Gondolo, Phys.Rev.D 56 (1997) 1879[hep-ph/9704361]

#### How to...

MicrOMEGAS: a code for the calculation of Dark Matter Properties

including the relic density, direct and indirect rates in a general supersymmetric model and other models of New Physics

https://lapth.cnrs.fr/micromegas/



http://www.darksusy.org/

#### Lecture 2

- 1. Observational evidence for Dark Matter
- 2. Fundamental properties of Dark Matter
- 3. Searches for Dark Matter

References in the slides

# 1. Observational evidence for dark matter

## Dark matter gravitational evidence

#### **Rotation curves**



Galaxy clusters



Large Scale structures



Cosmic microwave background





#### Flat galactic rotation curves

RUBIN, FORD, AND THONNARD



Data are well described by an additional component, dominating the mass profile at distances much larger than the visible mass scale.

## Dark matter in the Coma Cluster



Pioneering application of the virial theorem in astronomy

F. Zwicky, Helvetica Physica Acta (1933) 6, 110–127; ApJ (1937) 86, 217

$$2\langle T \rangle + \langle U_{\text{tot}} \rangle = 0$$
  $U(r) \propto r^{-1}$ 

$$T = N \frac{m}{2} \langle v^2 \rangle$$
$$\langle U_{\rm tot} \rangle \sim -\frac{3}{5} \frac{G_N M^2}{R}$$

gravitational potential of a selfgravitating homogeneous sphere of radius R

$$M \sim \mathcal{O}(1) \frac{R \langle v^2 \rangle}{G_N} \sim 3 \times M_{\text{visible}}$$

## X-rays and gravitational lensing



**Figure 2.** An x-ray image of the Coma cluster obtained with the ROSAT satellite, showing both the main cluster and the NGC4839 group to the south-west. (Credit: S L Snowden, High Energy Astrophysics Science Archive Research Center, NASA.)

Mass in clusters is in the form of hot, intergalactic gas, which can be traced via X rays: X-luminosity and spectrum constrain the mass profile



Strong gravitational lensing around galaxy cluster CL0024+17, demonstrating at least three layers projected onto a single 2D image.

Massey, Kitching & Richard, Rept. Prog. Phys. 73 (2010)

Lewis, Buote & Stocke, ApJ (2003), 586, 135

## Segregation of matter in clusters

#### Bullet Cluster (1E 0657-56)

Clowe+, ApJ 604 (2004) 596-603; Clowe+ ApJ, 648 (2006) L109







James Jee+, ApJ 783 (2014) 78

## **Big Bang Nucleosynthesis**



Success of Big Bang hypothesis and thermal history of the Universe.

Accurate prediction of abundance of light elements.

Independent measure of abundance of baryonic matter in the Universe.

**T ~ MeV** nuclear physics (BBN)

$$\Omega_b h^2 \sim 0.02$$

#### **Cosmic Microwave Background**



$$\Omega_i \equiv \frac{\bar{\rho}_i}{\rho_c}$$

Abundance species i

Critical density (average density of a flat Universe)

$$\rho_{\rm c} \equiv \frac{3H_0^2}{8\pi G_N}$$

10 protons per cubic meter [1 GeV ~ 10<sup>-24</sup> g]

 $\bar{\rho}_{\rm DM} \simeq 0.3 \rho_c \qquad \longrightarrow \quad \bar{\rho}_{\rm DM} \sim 10^{10} \frac{M_{\odot}}{Mpc^3} \sim 10^{-6} \frac{\text{GeV}}{\text{cm}^3}$ 

Galaxy clusters: 10<sup>5</sup> denser! Galaxies: 10<sup>6</sup> denser!

$$\frac{\delta\rho}{\rho} \gg 1$$

The Universe today is highly non-linear!

## **Cosmic Microwave Background**

T > T<sub>CMB</sub> tight coupling between photons and baryons and presence of primordial overdensities  $\delta > 0$ 

Gravitational vs radiation pressure => acoustic oscillations

$$\begin{split} \frac{\delta n_{\gamma}}{n_{\gamma}} &\sim 3 \frac{\delta T}{T} \sim \frac{\delta n_b}{n_b} \equiv \delta & n_{\gamma} \propto T^3 \\ \frac{\Delta T}{T} &\sim 10^{-5} & \text{on Mpc scales @ $z_{\text{CMB}}$~1100} \\ \frac{\Delta n_b}{n_b} &\sim 10^{-5} (1 + z_{\text{CMB}})^{-1} \sim 0.01 & \text{in a matter dominated Universe} \end{split}$$

With baryonic matter only, structure formation would be very different! We need a non-baryonic component that decouples from photons early enough to create deep potential wells.

#### Growth of structures: cartoon



# 2. Fundamental properties of dark matter

## Properties of dark matter

What fundamental properties can we infer from this astro/cosmo evidence?

How much dark matter at cosmological scales?

 $\Omega_{\rm CDM} \sim 0.26$  Planck 2015, 68% CL

The dominant component of dark matter in the Universe should be:

- 1. Non-relativistic at decoupling, i.e. cold
- 2. Stable or long-lived
- 3. Sufficiently heavy, to behave "classically"
- 4. Smoothly distributed at cosmological scales
- 5. Dark and dissipationless
- 6. Collisionless, i.e. not very collisional

DM evidence requires new physics, beyond current theories => new d.o.f., appealing from a particle physics perspective

## Non-relativistic @ decoupling (CDM)

Primordial density fluctuations modified by non-linear effects: gravitation, pressure, dissipation, etc. => N-body simulations are needed to follow the growth in non-linear regime.

Collisions-less species (neutrinos, DM): free stream from overdense to underdense regions and wash out perturbations => damping of small scale density perturbations



## 3. Dark Matter in the Milky Way

## Galactic rotation curve





$$v_c^2(\langle R) = R \frac{d\phi_{\text{tot}}}{dR} = \frac{GM(\langle R)}{R}$$

 $v_{\rm LSR}^{\rm los}(R) = \left(\frac{v_c(R)}{R/R_{\odot}} - v_{\odot}\right)\cos b\sin l$ 

Doppler shift from masers, gas and stars

+ distance information (e.g. photospectroscopy for stars)

Visible components of the Milky Way

 $\phi_{\rm baryon} = \phi_{\rm bulge} + \phi_{\rm disk} + \phi_{\rm gas}$ 

Evidence for additional contribution to the total gravitational potential?

Credit: M. Pato

#### Galactic rotation curve

Iocco+ Nature Physics'15 100 Rotation curve data Baryonic bracketing Angular circular velocity (km s<sup>-1</sup> kpc<sup>-1</sup>) 50 20 .5 kpc 8  $\omega_c = v_c/R$ I II  $R_{\rm cut}$ 10<sup>1</sup>  $\chi^2/dof$ 5**σ** 100  $R_0 = 8 \text{ kpc}$  $v_0 = 230 \text{ km s}^{-1}$ 10-2 3 5 10 20 Galactocentric radius (kpc)

Comparison between expectation from visible matter and rotation curve data (new compilation) — Additional (dark) component needed within the solar circle.

## Reconstructing the dark matter distribution



Non-parametric reconstruction: approach free of profile assumptions, but uncertainties are large and hinder discrimination power between different radial behaviours. Pato&Iocco+ ApJ'15; Salucci+A&A'10

#### Reconstructing the dark matter distribution

$$\omega_{\rm dm}^2 = \frac{G}{R^3} \int_0^R dr \, 4\pi r^2 \, \rho_{\rm dm}(r)$$
$$\rho_{\rm dm}(R_\odot) \equiv \rho_\odot$$

 $\frac{\text{NFW}}{\rho_{\rm dm}} \propto (r/r_s)^{-\gamma} (1 + r/r_s)^{-3+\gamma}$ 

#### **Einasto**

 $\rho_{\rm dm} \propto \exp(-2((r/r_s)^{\alpha}-1)/\alpha)$ 



### Reconstructing the dark matter distribution



Parametric reconstruction: strong profile assumptions, "global" method to derive local DM density.

e.g: Pato+ JCAP'15; McMillan+ MNRAS'16; Iocco&Benito PDU'17

A full parametric reconstruction of the DM profile should properly account for correlations among parameters.

#### The local dark matter density



- Local measures use the vertical kinematics of stars (tracers) near the Sun: few assumptions but larger errors.
   e.g: Garbari+ MNRAS'12; Silverwood+MNRAS'16
- Global measures extrapolate DM mass profile from the rotation curve: small errors but strong assumptions on Galactic halo shape.
- Combined measurements can probe local shape (oblate/prolate halo)

#### The local dark matter density



Gaia will move us to precision measurement of the local DM density

## The MW dark matter distribution



Rotation curve can only probe DM spatial distribution down to a few kpc.

We need to rely on simulations of galaxy formation, which include baryon effects.



#### The standard halo model

WIMP in the halo of the Galaxy are expected to form a Maxwellian distribution of non-relativistic particles



[Thermal equilibrium reached during formation of Galaxy: WIMP are "frozen" into highest-entropy configuration when mixed by the violently changing gravitational potential during gravitational collapse, "violent relaxation". Confirmed lately by simulations] Lynden-Bell, MNRAS 126 (1967) 101

### The velocity distribution

$$f(\mathbf{v}) = \mathcal{F}(\mathbf{x}_{\odot}, \mathbf{v}) / \rho(\mathbf{x}_{\odot})$$

It is possible to infer f(v) under some symmetry conditions

Binney & Tremaine, "Galactic dynamics"

 $\rho_{\rm DM}({\bf x}) \equiv \int d^3 v F({\bf x},{\bf v})$  Invert and evaluate F at the solar position

$$v_{\text{tot}}^2 = \frac{GM_{\text{tot}}(r)}{r}$$
 Tot = Visible + DM

Steady state solution to collisionless Boltzmann equation. Jean's theorem: steady-state solutions depend on phase space only through integral of motions (E, angular momentum components)

In case of spherical symmetry:

 $F(\mathbf{x}, \mathbf{v}) \equiv F(E)$ 

## The Eddington's equation

Introducing two new variables (relative energy and potential) it is possible to invert the equation \* => Eddington's equation

$$\epsilon = \psi - \frac{1}{2}v^2$$

$$F(\epsilon) = \frac{1}{\sqrt{8}\pi^2} \frac{d}{d\epsilon} \int_0^\epsilon \frac{d\rho}{d\psi} \frac{d\psi}{\sqrt{\epsilon - \psi}}$$

Application to isothermal sphere:

$$\rho(r) = \rho_0 (r_0/r)^2 \qquad \qquad \psi = \sigma^2 \log(\frac{\rho}{\rho_0}) \qquad \longrightarrow \qquad \rho(\psi) = \rho_0 e^{\frac{\psi}{\sigma^2}}$$

Eddington's equation

Maxwell-Boltzmann distribution

$$F(v) \propto e^{-\frac{3}{2}\frac{v^2}{v_{\rm rms}^2}} = e^{-\frac{v^2}{v_c^2}} \qquad \langle v^2 \rangle \equiv v_{\rm rms}^2 \equiv 3\sigma^2$$

#### 4. Detection strategies for dark matter

## How to identify dark matter?

- In order to define a search strategy, we first need to better define the dark matter candidate of interest (input from theory) => **DM zoology**!
- Once the theoretical context is defined, we can engage in identification strategies which can be more or less model dependent (there is always some theoretical prejudice in DM searches)



Conrad & Reimer, Nature Physics 13 (2017) 224-231

#### WIMP detection strategies



Lewin & Smith, Astropart.Phys.6 (1996) 87(1996); Fitzpatrick+ JCAP 1302 (2013) 004



#### Direct detection: differential event rate

$$\frac{dR}{dE} \sim N_A \frac{\rho_{\rm DM}}{m_{\rm DM}} \int_{v > v_{\rm min}} d^3 v f(\mathbf{v}) v \frac{d\sigma}{dE}$$

#### Differential rate

 $E \equiv E_R \lesssim \mathcal{O}(100) \,\mathrm{keV}$ 

$$v_{\min} = \sqrt{\frac{E_R m_A}{2\mu}}$$



#### **Direct detection: exclusion limits**

Hp: Maxwellian velocity distribution

 $f(\mathbf{v}) \propto e^{-v^2/v_c^2} \qquad \longrightarrow \qquad \eta(v_{\min}) \propto e^{-v_{\min}^2/v_c^2}$ 

- For large DM masses, the halo integral is almost independent on the mass.
- For small DM masses, the expected rate decreases as exp(-1/m<sub>DM</sub>)
- Peak of sensitivity @ target mass

$$\frac{dR}{dE} = \rho_{\rm DM} \frac{\sigma_0 F^2(E)}{2m_{\rm DM}\mu^2} \int_{v > v_{\rm min}} d^3v \frac{f(\mathbf{v})}{v}$$



#### Two key-assumptions:

1) Dark matter exists and is the main responsible for the gravitational potential inferred in galaxies, clusters and cosmo.

2) Dark matter is non-gravitationally coupled to standard matter.



DM annihilation/decay leads to production of observable fluxes of stable particles.

#### Disclaimer:

- 1) Not necessarily signatures at the GeV-TeV-scale
- 2) DM at the electroweak scale is one among possible valuable solutions



#### **Indirect searches**





#### **Indirect searches**





#### **Indirect searches**





#### **Indirect searches**



## Indirect dark matter signals

Expected values? We know where to look for...



$$\langle \sigma v \rangle \,=\,3 imes 10^{-26}\,\mathrm{cm}^3\mathrm{s}^{-1}$$

Decay



$$\tau_{\rm DM} \sim 10^{26} \, {\rm s} \, \left( \frac{{
m TeV}}{m_{\rm DM}} \right)^5 \left( \frac{M}{10^{15} \, {
m GeV}} \right)^4$$

Eichler, PRL 1989

Connection with early Universe and observed relic abundance (not always trivial)

As for the proton, DM stability due to an accidental symmetry

# Dark matter source term $[\text{GeV}^{-1}\text{s}^{-1}]$

#### Annihilation

$$Q_{i}^{\mathrm{ann}}(r, E) = \langle \sigma_{\mathrm{ann}} v \rangle \times N_{\mathrm{pairs}}(r) \times \sum_{f} B_{f} \frac{dN_{i}^{f}}{dE}(E)$$
$$N_{\mathrm{pairs}}(r) = s \times N(r) = s \times \frac{\rho^{2}(r)}{m^{2}} \qquad s = \left\{\frac{1}{2}, \frac{1}{4}\right\}_{\mathrm{Majorana}}$$
Dirac

#### Decay

$$Q_i^{\text{dec}}(r, E) = \Gamma_{\text{dec}} \times N(r) \times \sum_f B_f \frac{dN_i^f}{dE}(E)$$
$$N(r) = \frac{\rho(r)}{m}$$

## Energy distribution into final state particles



Energy fraction going into photons and electrons (±) with respect to the total.
 Energy fraction into hadronic final states with respect to photons and electrons.





#### Prompt gamma-ray emission

- Production and decay of neutral pions
- Higher order radiative corrections
- Monochromatic line emission
- Other spectral features?



#### Prompt gamma-ray emission

- Production and decay of neutral pions
- Higher order radiative corrections
- Monochromatic line emission
- Other spectral features?

#### Radiative emission of electrons/positrons

- Inverse Compton scattering
- Synchrotron radiation
- Bremsstrahlung



#### Prompt gamma-ray emission

- Production and decay of neutral pions
- Higher order radiative corrections
- Monochromatic line emission
- Other spectral features?

#### Radiative emission of electrons/positrons

- Inverse Compton scattering
- Synchrotron radiation
- Bremsstrahlung

#### Multiwavelength emission

#### Spectra of prompt "secondary" photons

$$Q_i^{\mathrm{ann}}(r, E) = \langle \sigma_{\mathrm{ann}} v \rangle \times N_{\mathrm{pairs}}(r) \times \left( \sum_f B_f \frac{dN_i^f}{dE}(E) \right)$$

100% Branching ratio (independent on PP model)



## The prompt photon emission

Bringmann & Weniger (2012)



#### **DM sub halos**



|                                                             | Via Lactea II         | A quarius            |
|-------------------------------------------------------------|-----------------------|----------------------|
| $R_{ m vir}  [ m kpc]$                                      | 402                   | 433                  |
| $M_h \left[ M_\odot \right]$                                | $1.93 \times 10^{12}$ | $2.5 \times 10^{12}$ |
| $r_s  [{ m kpc}]$                                           | 21                    | 20                   |
| $ ho_s  [10^6 M_\odot \ { m kpc}^{-3}]$                     | 8.1                   | 2.8                  |
| ${\cal F}_0\left[M_\odot^{-1} ight]$                        | $10^{-6}$             | $3.6 \times 10^{-6}$ |
| $ ho_a \left[ M_\odot \ \mathrm{kpc}^{-3} \right]$          | -                     | 2840.3               |
| $R_a[ m kpc]$                                               | 85.5                  | 199                  |
| $\langle  ho_\odot  angle  [{ m GeV/cm}^3]$                 | 0.42                  | 0.57                 |
| $N_{ m sub}$                                                | $2.8 \times 10^{16}$  | $1.1 \times 10^{15}$ |
| $M_{ m sub}^{ m tot}(< R_{ m vir}) \left[ M_{\odot}  ight]$ | $1.05 \times 10^{12}$ | $4.2 \times 10^{11}$ |
| $f_{ m sub}^{ m tot}(< R_{ m vir})$                         | 0.53                  | 0.17                 |

#### How to...

Analytical fitting functions: Fornengo, Pieri, Scopel, PRD 2004 Cembranos et al., PRD 2011

Numerical codes for computation of DM spectra:

DarkSUSY <u>http://www.fysik.su.se/~edsjo/darksusy/</u> Gondolo+ JCAP'04

MicrOMEGAs <u>https://lapth.cnrs.fr/micromegas/</u> Belanger+ JCAP'05

PPC 4 DM ID <u>http://www.marcocirelli.net/PPPC4DMID.html</u> Cirelli+ JCAP 2012

For dependence on event Monte Carlo generators see, e.g., Cembranos+ JHEP'13

## **Radiative emission from leptons**

$$\chi \chi \to \begin{cases} ZZ, W^+W^-, \gamma \gamma \\ q\bar{q}, l^+l^-, \nu\bar{\nu} \end{cases} \overset{\text{hadronization}}{\underset{\text{decays}}{\longrightarrow}} \gamma (e^{\pm}, \mu^{\pm}, p/\bar{p}, \pi^{\pm}, \nu/\bar{\nu}, \dots$$



Inverse Compton scattering on CMB, star-light, infrared-light





Bremsstrahlung onto gas of interstellar medium

Synchrotron radiation magnetic field  $\mathscr{O}(\mu Gauss)$ for  $e^{\pm}$  of GeV-TeV -> MHz-GHz radio signal

G. Rybicki and A.P. Lightman, 1979, 'Radiative Processes in Astrophysics', John Wiley & Sons Inc. M. S. Longair, 2011, 'High Energy Astrophysics', Cambridge University Press.

### Multi-wavelength DM spectrum



Multi-wavelength spectrum from radio to gamma-ray given by the prompt and secondary DM-induced emissions.

## Multi-wavelength astronomy

















#### Wavelength (metres) Visible Gamma Ray Radio Microwave Infrared Ultraviolet X-Ray 10-12 103 10-2 10-5 10-10 10-6 10-8



Courtesy of E. Charles







#### THE ELECTRO MAGNETIC SPECTRUM