

VMC based T2K Beamline Simulation Studies

B. Andrieu (LPNHE-Paris, IN2P3/CNRS)

Introduction

T2K simulation based on FLUKA (target) + GEANT3 (beamline)

- FLUKA problematic for various reasons (licence, old versions...)
- GEANT3 also not very convenient (old FORTRAN code, 32-bit compilation...)
- At some point, one should migrate all to GEANT4
- For transition process, extensive comparisons between FLUKA and GEANT4 (target) and between GEANT3 and GEANT4 (beamline) should be made
- Tool needed for easy comparisons between MCs
 - TNuBeam Virtual Monte Carlo

TNuBeam Virtual Monte Carlo

- VMC (Virtual Monte Carlo) is a Root-based C++ framework developed first for ALICE, providing a common interface to different MCs.
- Aimed to run in the same framework FLUKA, GEANT3 and GEANT4, but FLUKA interface not working at the moment
- User is supposed to provide some Classes for detector description, beam definition, output variables, then VMC manages event generation in the same way for GEANT3 and GEANT4.
- TNuBeam is a software developed at LPNHE by A. Robert, B. Popov and L. Zambelli in the VMC framework.
- It provides T2K (target and/or beamline) simulation based on GEANT3 and GEANT4, as well as simulation of various NA61 configurations (Thin Target, Replica Target, ...) and of HARP experiment for comparison with hadron measurements
- It can take FLUKA simulation as input for comparison with T2K (JNUBEAM) simulation

- Target simulation based on FLUKA for both simulations
- Comparison based on v flux in ND280 detector

Reminder problems observed in first studies

- Low energy
- Error calculation (error ratio, χ² fit)
 → not specific to GEANT3, same in GEANT4
- **Timing** (TNuBeam / JNUBEAM ~ 5)

Problems due to different GEANT3 settings?

- parameters PAIR, COMP, PHOT, PFIS, DRAY, ANNI, BREM, MUNU, LOSS
- cuts CUTNEU, CUTHAD, CUTMUO
 Different in TNuBeam vs JNUBEAM
 → now all set to identical values
- Low energy → solved
- Error → unchanged
- Timing → improved
 TNuBeam/JNUBEAM ~ 2

Check effect of double-precision on histogram weight calculation → No sizeable effect

One cut in JNUBEAM (not GEANT3 standard, indeed unspecified in TNuBeam) still different in previous studies:

- CUBD (cut-off on kinetic energy in Beam Dump) = 1.0 Gev in JNUBEAM

 → now set to 0.0001
- Low energy → no change, still OK
- Error ratio unchanged but χ² fit improved (far from perfect though)
 → see next slides
- Timing → improved (JNUBEAM slower -> TNuBeam/JNUBEAM ~ 1.5)
- But strange observation on JNUBEAM: cut-off value CUBD reduced → 5 % lower cross-section ???

TBC

In progress...

- Investigate CUBD change effect on JNUBEAM
- Test statistical self-compatibility of TNuBeam & JNUBEAM
- Compare TNuBeam vs JNUBEAM by process
- Compare MC predictions with latest NA61 (LT 2010) results
- Improvement of TNuBeam structure and user interface still under development.