Les perspectives de la recherche directe (mais pas seulement) de la Matiere Noire

Luca Scotto Lavina CNRS

Sun

Avec le materiel et les idées de Romain, Claudio, Bertrand et apres plein de discussions avec tous

Biennale LPNHE, Montpellier

La recherche directe de la Matiere Noire

Scutu

Ce que on cherche

Dark Matter is required to be:

- Neutral
- Non-baryonic
 → weakly interacting
- Cold (non-relativistic) → large scale structure
- New Particle → neutralino, Kaluza-Klein particle, axion, gravitino …

Ce que on cherche

75.000 k

Dark Matter is required to be:

- Neutral
- Non-baryonic
 → weakly interacting
- Cold (non-relativistic) → large scale structure
- New Particle → neutralino, Kaluza-Klein particle, axion, gravitino …

 $\rho_{\chi} = 0.3 \pm 0.1 \text{ GeV/cm}^3$ (J. Bovy and S. Tramaine, Astrophys.J. 756 (2012) 89)

V_{sun} ~ 220 km/s (Klypin et al. Astrophys.J. 573 (2002) 597-613)

8 kpc

30.000 h

Voie lactée

June $V_{\parallel} = 15 \text{ km/s}$ 220 km/s 60° December $V_{\perp} = 15 \text{ km/s}$ nous sommes ici

Dark Matter might interact with known matter is many ways:

- Spin Independent/Dependent interaction
- With nuclei or with electrons
- Elastically or inelastically

US Cosmic Visions: New Ideas in Dark Matter 2017 arxiv:1707.04591

June 16th, 2019, Biennale LPNHE

The direct detection principle

June 16th, 2019, Biennale LPNHE

June 16th, 2019, Biennale LPNHE

Luca Scotto Lavina, CNRS/IN2P3

Current \rightarrow **Under design/construction** \rightarrow **Beyond**

- 1) DAMIC \rightarrow DAMIC-M \rightarrow DAMIC 10 kg?
- 2) DarkSide50 \rightarrow DarkSide-20k \rightarrow ARGO
- 3) XENON1T \rightarrow XENONNT \rightarrow DARWIN
 - → Cryogenic lab

4) nothing...

→ Synergy Direct, Indirect, Colliders

DAMIC-M

Objectifs scientifiques

- ➤ WIMP « legeres » (1-10GeV)
- Secteur caché (compétitif pour plusieurs scenarios)

Un détecteur innovant

- ► Une grande camera (1kg of CCD)
- Utilisation de la technologie skipper (bruit < 1e)
- Screening radioactif complet
- Potentiel unique d'identification des chaines
- ► Bruit de fond radioactif < 0.1 d.r.u.

- Antoine: Science coordinator
- Herve: Electronics Task leader

DAMIC-M schedule

Work Package	2019	2020	2021	2022	2023			
1: CCDs (LPNHE)								
2: Electronics, DAQ (LAL, LPNHE)								
3: Cryostat (PNNL)								
4: Shielding (LAL, LSM)								
5: Background mitigation (LSM, LAL, PNNL)								
6: Calibration (LPNHE)								
7: Simulation, data analysis (LPNHE)								
8: Installation (all)								
9: Data taking (LPNHE, LAL, LSM)								
Design, preparation Pre-production, design evaluation Production								

- Exploitation prévue jusqu'à 2023
- ► Le LPNHE impliqué dans la plupart des WP d'exploitation
- Coordination étroite avec d'autres labos IN2P3 (Nantes, Bordeaux, Orsay, LSM) (besoin d'un soutien au delà de l'ERC)

DAMIC-M calibration and installation

>	Integration	du	système	de	lecture
	(<2022)				

- Cartes filles (controle / ADC) avec ODILE (carte mere)
- Hardware/Firware avec DAQ (IPNO)

Optimisation du système de lecture (<2022)</p>

- ► Sequence Skipper CCD
- Bruit d'une fraction d'electron
 - propreté horloges
 - Caractérisation du bruit de l'ampli de lecture
- optimisation de la temperature du système

Développement d'un système de calibration sur site

- Bonding des CCD et CROC (chip de lecture) a Modane
- Systeme de test / selection à developper

DAMIC-M simulation and data analysis

- Experience avec DAMIC-100 (simu et analyse)
 - nouvelle Geometrie / système de lecture / bruit radioactif plus faible
 - Collaboration avec Subatech
 - ► nouveau PhD en Novembre au LPNHE

DÉTECTEUR SILICIUM HAUTE GRANULARITÉ BAS BRUIT BAS SEUIL

Efforts lancés (5-10 ans) par le DOE (pour Fermilab) pour les détecteurs Silicium de prochaine generation le LPNHE pourrait s'y associer

- ► DAMIC-10kg ?
- Detection de diffusion coherente de neutrinos
- ► Autres applications:
 - ► Nuclear forensic
 - ► Soft error rate

June 16th, 2019, Biennale LPNHE

DarkSide-20k

Expected sensitivities

June 16th, 2019, Biennale LPNHE

Discovery potential

*LAr only technique able to confirm signals seen in Xenon-detectors

*Excellent discovery potential in the next decade

2	20-	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
DS-50																		
DS-Proto				DS	LM													
DEAP-360	0																	
DS-20k																		
ARGO																		

June 16th, 2019, Biennale LPNHE

DarkSide France

- Calibration system being designed by French groups
 - LPNHE: Responsible for simulations (Olivier Dadoun)
 - * CPPM: design of the insertion system (Pierre Barillon, Pascal Pralavorio, Fabrice Hubaut)
- ♣Everything has to be inside a LAr bath → cryogenic temperatures
- Need to host ER calibration sources but also a D-D gun for NR calibration
- Design will be presented to the collaboration in June 2019
- *Hope to get approval by IN2P3 following positive recommandations from IN2P3 Conseil Scientifique

XENON Program

June 16th, 2019, Biennale LPNHE

Many analyses in XENON1T that will be done also in XENONnT:

- Limit on Spin-Independent WIMP-nucleon cross section
- Limit on Spin-Dependent WIMP-nucleon cross section
- Limit on Inelastic cross section
- Search for magnetic inelastic scattering
- Annual modulation
- Low-mass Dark Matter
- S2-only analysis
- Single electrons origins
- Search for SuperWIMPs
- Axions
- Search for double electron capture in ¹²⁴Xe
- $0\nu\beta\beta$ -decay

LPNHE contribution in XENON1T/nT

French contribution in XENON1T/nT

• . . .

A lot of **analysis work** with XENONnT data !!!

Darwin experiment

June 16th, 2019, Biennale LPNHE

XENON1T limit and expected sensitivity of XENONnT and DARWIN

June 16th, 2019, Biennale LPNHE

- Probe WIMP-nucleon interactions for WIMP masses above ~5 GeV/c2 (via spin-independent, spin-dependent and inelastic interactions)
- Probe even lower WIMP masses by using the charge signal alone (XENON10, XENON100, CDMS, EDELWEISS, DS-50)
- Coherent neutrino-nucleus scattering : ⁸B neutrinos from sun, galactic supernova neutrinos
- "Leptophilic DM" models : look for signatures of DM scattering off electrons
- Solar neutrinos: pp-neutrinos via nu-e scattering (precision <1% on flux)
- \bullet Search for the neutrinoless double beta decay in $^{136}\mbox{Xe}$
- Probe solar axions and axion-like particles models (axio-electric effect)
- Probe sterile neutrinos with masses in the > 10 keV range

Activities for XENONnT and DARWIN in France

Activity : Offline data quality monitoring tool Who : LPNHE

Contribution: software development

Goal : run analysis algorithms to datasets and show results in a web interface in order to provide a quick feedback on data quality and trigger alarms in case some observables deviate from standard values.

Activity : Cryogenics

Who : LPNHE, LAL, Subatech **Contribution:** design, R&D, interaction with industry

Goal : develop the cryogenic network of DARWIN (cooling, storage, purification, distillation, recovery, safety) in collaboration with other groups (mainly Germany and Switzerland)

Activity : Computing Who : LPNHE (+ CC-IN2P3) Contribution: analysis hub for the whole Collaboration Goal : offer to the DARWIN Collaboration a place where to process data and perform analysis remotely

Activity : Electrodes

Who : LAL (and eventually LPNHE, see next slides...) Contribution: design, R&D, interaction with industry Goal : improve the performances of electrodes for larger TPCs, reduce the generation of electrons, performing tests

Common timeline

	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
DAMIC-M											
XENONnT											
DarkSide-20k											
DARWIN											

Current \rightarrow **Under design/construction** \rightarrow **Beyond**

- 1) DAMIC \rightarrow DAMIC-M \rightarrow DAMIC 10 kg?
- 2) DarkSide50 \rightarrow DarkSide-20k \rightarrow ARGO
- 3) XENON1T \rightarrow XENONNT \rightarrow DARWIN
 - → Cryogenic lab

4) nothing...

→ Synergy Direct, Indirect, Colliders

Cryogenic laboratory in LPNHE

Cryogenie :

Cryostat (Costruzioni Generali) Xenon bottles (Air Liquide / Orano) Nitrogen (service Sorbonne) Heat exchanger (DATE) Purification system (SAES getter)

TPC :

SiPM and/or PMT

Slow Control :

Open source software

DAQ:

Very simple since not many channels are foreseen

Data processing :

Demanding very low CPU power

Goal: origin of single electrons signal

Electrons emitted by:

- electrodes
- impurities
- delayed extraction
- Very important for sub-GeV WIMP studies
- Nobody studied this so far
- Physics case common in xenon and argon
- No major technical challenges
- Sharing technical know-how with other
- activities (LSST, AXIS, DAMIC)
- Allows R&D on electrodes for DARWIN

June 16th, 2019, Biennale LPNHE

Synergies between several Dark Matter searches

Dark Matter Search: three different approaches, but (hopefully) the same mechanism

Possible actions :

- initial brainstorming (free access, no tickets....)
- monthly meetings with all groups working on dark matter
- organize seminars, mainly on common topics
- a couple of **discussions** in reunions du vendredi

So far no interaction among us, however there are several opportunities:

Phenomenology: better understanding of DM coupling with ordinary matter by cross-constraining science results (a sort of DMfit)

Perspective: developing internal discussions with (internal and external) speakers in order to have a deeper view on future research programs

Outreach: animating a better diffusion on dark matter field in many contexts (*fete de la science*, school lectures, conferences, expositions, but also in our university)

Backup

Solar neutrinos as NR background & Science Channel

 10^{-38} Cherent Elastic Neutrino-Nucleus Scattering EvNS) of high E astrophysical neutrinos poses e irreducible background for WIMP searches. ⁸B neutrinos set a strong discovery limit towards low WIMP masses atmospheric neutrinos dominate the limit for DAMIC 10 Coherent Elastic Neutrino-Nucleus Scattering ДАМАЛ 10^{-40} DAMA/N (CEvNS) of high E astrophysical neutrinos poses PICO-60 CF31 CRESST-II 10^{-4} the irreducible background for WIMP searches. PICO-60 C3P 10^{-42} 10^{-43} XENON10 10^{-44} 10^{-45} LUX Pa 10^{-46} XENONnT | LZ (pr 10^{-47} 10^{-48} 10^{-49} higher WIMP masses 100 200 500 WIMP mass [GeV/c2] JCAP 01, (2014) 044 10² Observation of CEvNS by solar ⁸B neutrinos WIMP 6 GeV/c² v: Sum 4×10-45 cm2 v: 8B Rate [evts \times t⁻¹ \times y⁻¹ \times keV⁻¹] $_{c}^{c}$ 01 $_{c}^{1}$ 01 $_{c}$ 10 is a science goal by itself WIMP 40 GeV/c² 2×10⁻⁴⁸ cm² DARWIN will observe v 8B-CNNS events, expected WIMP 100 GeV/c2 v: hep 2×10⁻⁴⁷ cm² rate depends strongly on the E_{NR} threshold. v: DSNB v: atm 10^{-3} 2 3 4 5 6 7 8 910 20 4×10^{-1}

Luca Scotto Lavina, CNRS/IN2P3

Energy [keV]

Xenon intrinsic radiogenic background

pp+⁷Be neutrinos as ER background & science channel

ER events from low energetic (pp + ⁷Be) solar neutrinos remain as background events and must be suppressed

ER/NR discrimination: 99.98% ER rejection → estimated 30% NR acceptance JCAP 10, 016 (2015)

➔ Solar neutrinos are an interesting science channel

- Highest flux from pp and ⁷Be
- → Several hundred v-induced events/year
- → Precision measurement of \$\phi_{pp}\$ and \$\phi_{7Be}\$ with ±0.3% and ±2.3% accuracy
- → Conclusion on the weak mixing angle and v-survival probability below 200keV

Science goal : SD WIMP-nucleon interactions

200 t·y exposure $E = 4-50 \text{ keV}_{nr}$ 30% NR acceptance 99.98% ER rejection LY = 8 PE/keV @ 122keV Complementarity with the LHC: minimal simplified DM model with Dirac fermion interacting with an axial-vector mediator $g \equiv g_q = g_{DM}$ *S. A. Malik et al., Phys. Dark Univ. 9-10 (2015) 51*

June 16th, 2019, Biennale LPNHE

WIMP spectroscopy

June 16th, 2019, Biennale LPNHE

Science goal : solar neutrinos

 $\nu + e^{-} \rightarrow \nu + e^{-}$

Expected rate at 2-30 keV_{ee}

- pp neutrinos : 7.2 events/day
- ⁷Be neutrinos : 0.9 events/day

More than 2000 neutrino pp events per year 2% precision in a year, 1% after 5 years Scoping neutrino and solar models

June 16th, 2019, Biennale LPNHE

Science goal : double beta decay

¹³⁶Xe:
$$Q_{\beta\beta} = 2458.7 \pm 0.6 \text{ keV}$$

Sensitivity to $0\nu\beta\beta$ by ¹³⁶Xe: • $T_{1/2} > 5.6 \cdot 10^{26}$ yr (95% CL) in 30 t y • $T_{1/2} > 8.5 \cdot 10^{27}$ yr (95% CL) in 140 t y

Assumptions:

•Fiducial mass 6 t ^{nat}Xe (needed stronger fiducialisation)

•²²²Rn: 0.1 μ Bq/kg (rate compatible with ⁸B)

•
$$\sigma_{\rm E}/E$$
 = 1-2% at $Q_{\beta\beta}$

•DARWIN "ultimate" assumes negligible background from detection therical s/IN2P3

Science goal : axions and axion-like particles

Assumptions:

- •200 t·y exposure
- •Similar energy threshold as in XENON100
- •30% better energy resolution

Dependency from exposure: $G^{\text{solar}}_{Ae} \propto (\text{MT})^{-1/8}$ $G^{\text{ALP}}_{Ae} \propto (\text{MT})^{-1/4}$

Dominating background: solar neutrinos and $2\nu\beta\beta^{136}Xe$

June 16th, 2019, Biennale LPNHE