Rethinking the QCD Axion

Federico Mescia

FQA & ICC, Universitat de Barcelona

- Outline -
 - ✓ Introduction: The strong CP problem
 - **✓ Experimental Searches:**

Axion Landscape couplings: model independent vs. model dependent

✓ Model Building: Re-opening the axion window

Introduction: Strong CP problem

- **Experimentally:** η' mass much larger than the π one
 - \rightarrow U(1)_A is an anomalous symmetry of QCD
 - → The QCD vacuum is not trivial
 - \rightarrow add a θ -term to the usual QCD Lagrangian

$$\mathcal{L}_{e\!f\!f}^{QCD} = \mathcal{L}^{QCD} + \theta \frac{\alpha_s}{16\pi} G_a^{\mu\nu} G_{a,\mu\nu}$$

Now, QCD violates T and P, namely CP!

Strong CP Problem: the non-trivial QCD Vacuum

The strong CP problem

□ QCD is defined in terms of two dimensionless parameters, which are not predicted by the theory.

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \overline{q} \left(i \not \! D - m_{q} e^{i\theta_{q}} \right) q - \frac{1}{4} G_{a}^{\mu\nu} G_{\mu\nu}^{a} - \theta \frac{\alpha_{s}}{8\pi} G_{a}^{\mu\nu} \tilde{G}_{\mu\nu}^{a}$$

$$\mathbf{1} \quad \alpha_s \sim O(0.1\text{-}1)$$

 $\bar{\theta}$

$$\overline{\theta} = \theta - \sum_{q} \theta_q$$
 has physical meaning

$$\theta_q \to \theta_q + 2\alpha$$

because of chiral anomaly

$$\theta \to \theta + 2\alpha$$

The strong CP problem

□ QCD is defined in terms of two dimensionless parameters, which are not predicted by the theory.

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \overline{q} \left(i \not \! D - \frac{m_q}{q} \right) q - \frac{1}{4} G_a^{\mu\nu} G_{\mu\nu}^a - \frac{\overline{\theta}}{8\pi} \frac{\alpha_s}{8\pi} G_a^{\mu\nu} \tilde{G}_{\mu\nu}^a$$

$$\mathbf{1} \quad \alpha_s \sim O(0.1\text{-}1)$$

$$\bar{\theta}$$

Experimentally: no CP violation in the strong sector found!

$$d \le 610^{-26} {
m e \ cm}$$

$$d \le 610^{-26} \text{e cm}$$
 $d \approx e\theta m_q/M_N^2$

$$\bar{\theta} < 10^{-10}$$

 $\bar{\theta}$ < 10⁻¹⁰ Why so small?

The strong CP problem

□ QCD is defined in terms of two dimensionless parameters, which are not predicted by the theory.

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \overline{q} \left(i \cancel{D} - \frac{m_q}{q} \right) q - \frac{1}{4} G_a^{\mu\nu} G_{\mu\nu}^a - \frac{\overline{\theta}}{8\pi} \frac{\alpha_s}{8\pi} G_a^{\mu\nu} \tilde{G}_{\mu\nu}^a$$

Why so small?

$$ar{ heta} < 10^{\text{-}10}$$
 from the exp. bound of the neutron EDM.

- Qualitatively different from other "small value" problems of the SM
 - $\overline{\theta}$ is radiatively stable (unlike $m_H^2 \ll \Lambda_{
 m UV}^2$) [Ellis, Gaillard (1979)]
 - it evades explanations based on environmental selection

(unlike
$$y_{e,u,d} \sim 10^{-6} \div 10^{-5}$$
) [Ubaldi, 0811.1599]

The strong CP problem: Solution $1 \rightarrow m_u = 0$

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \overline{q} \left(i \not \! D - \frac{m_q}{q} \right) q - \frac{1}{4} G_a^{\mu\nu} G_{\mu\nu}^a - \frac{\overline{\theta}}{8\pi} \frac{\alpha_s}{8\pi} G_a^{\mu\nu} \tilde{G}_{\mu\nu}^a$$

■ Again if we chiral transform a quark:

If
$$m=0$$
,
 $\theta \to \theta - 2\alpha$

$$q \to e^{i\gamma_5\alpha}q: \int (-m_{\overline{A}} q + \frac{\theta}{32\pi^2} G\widetilde{G})$$

$$\to \int (-m_{\overline{A}} z^{2i\nu - \gamma} q + \frac{\theta - 2\alpha}{32\pi^2} G\widetilde{G})$$

- Thus, setting $\alpha = \theta/2$, $\theta_{total} = \theta-2\alpha = 0$. θ could be rotated away! There is no strong CP problem.
 - ❖ In the SM, no massless quarks $\rightarrow m_{\rm u}/m_{\rm d}$ =0.5 at 20 σ by Lattice QCD
 - ❖ BSM, new family of quarks with *m*=0 would imply new hadrons!

The strong CP problem: Solution $2 \rightarrow CP$ spontaneously broken

If CP is a symmetry of nature (but spontaneously broken) then we can set $\theta=0$ at the Lagrangian level

_

However....

The strong CP problem: Solution $2 \rightarrow CP$ spontaneously broken

Experimental data are in excellent agreement with the CKM Model – a model where CP is explicitly broken

In the CKM model, CP violated by an explicit weak phase η in the off diagonal phases of Y

The strong CP problem: Solution $3 \rightarrow U(1)_{PQ}$ and Axion

The third Solution: an additional symmetry

Peccei & Quinn '77 Weinberg; Wilczek '78

$$\mathcal{L}_{\theta} = \overline{\theta} \frac{\alpha_{s}}{8\pi} G_{a}^{\mu\nu} G_{a,\mu\nu} \qquad \qquad \mathcal{L}_{a}^{eff} = \left(\overline{\theta} + \frac{a}{f_{a}}\right) \frac{\alpha_{s}}{8\pi} G_{a}^{\mu\nu} G_{a,\mu\nu} + \frac{\left(\partial_{\mu} a\right)^{2}}{2} + \mathcal{L}\left(\partial_{\mu} a, q\right)$$

Shift Symmetry!

a(x) is GB

$$a(x) \rightarrow a(x) - \alpha f_a$$

$$\alpha = \theta$$
 θ rotated away!

There is no strong
CP problem.

$$\mathcal{L}_{a}^{eff} = \frac{\left(\partial_{\mu} a\right)^{2}}{2} + \frac{a}{f_{a}} \frac{\alpha_{s}}{8\pi} G_{a}^{\mu\nu} G_{a,\mu\nu} + \mathcal{L}\left(\partial_{\mu} a, q\right)$$

New particle, Axion, to solve the Strong CP Problem

The strong CP problem: Solution $3 \rightarrow U(1)_{PQ}$ and Axion!

Peccei & Quinn '77; Weinberg; Wilczek '78

$$a(x) \rightarrow a(x) - \alpha f_a$$

$$\mathcal{L}_{a}^{\text{eff}} = \frac{\left(\partial_{\mu} a\right)^{2}}{2} + \frac{a}{f_{a}} \frac{\alpha_{s}}{8\pi} G_{a}^{\mu\nu} G_{a,\mu\nu} + \mathcal{L}\left(\partial_{\mu} a, q\right)$$

- a non-linearly realized U(1) symmetry:
- → U(1): spontaneously broken!

$$\varphi = f_a e^{ia/f_a} \Longrightarrow \varphi' = e^{-i\alpha} \varphi$$

- No strong CP problem
- U(1) broken by QCD anomaly (chiral rotation for fermions)!
- ❖ $H(0) < H(a) \Rightarrow a=0$ min. stable

a(x) is PGB

Axion EFT: Model Independent Feature

Consequences of
$$\frac{a}{f_a} \frac{\alpha_s}{8\pi} G_a^{\mu\nu} \tilde{G}_{\mu\nu}^a$$

- generate axion mass

$$-\frac{a}{r}$$
 -QCD $-\frac{a}{r}$ $\sim \frac{\Lambda_{\rm QCD}^4}{f_a^2}$

$$-\frac{a}{100} - \frac{a}{100} \sim \frac{\Lambda_{\rm QCD}^4}{f_a^2} \qquad m_a \sim \Lambda_{\rm QCD}^2 / f_a \simeq 0.1 \text{ eV} \left(\frac{10^8 \text{ GeV}}{f_a}\right)$$

- generates axion couplings to photons, nucleons, electrons.

$$-\frac{a}{-} \cdot \left(QCD \right) \cdot \frac{\pi^0}{-} \cdot \left(\frac{\pi^0}{2} \right)$$

$$-\frac{a}{-}$$
 QCD \overline{p}

$$-\frac{a}{-}$$
 QCD $\frac{n}{n}$

$$-\frac{a}{-QCD} + \frac{\pi^0}{2} + \frac{a}{\sqrt{QCD}} + \frac{a}{\sqrt{Q$$

✓ All axion couplings: $\sim 1/f_a$

$$\sim 1/f_a$$

Axion EFT: Model Independent Feature

☐ Consequences of

$$\frac{a}{f_a} \frac{\alpha_s}{8\pi} G_a^{\mu\nu} \tilde{G}_{\mu\nu}^a$$

✓ Axion mass:

$$m_a \approx 0.1 \text{ eV} \frac{10^8 \text{GeV}}{f_a}$$

✓ All axion couplings: $\sim 1/f_a$

The lighter is the axion, the weaker are its interactions!

Invisible (light) particle (not yet measured)

Search Strategies and current limits

Astrophysical bounds

Ringwald, Rosenberg, Rybka, PDG (2016)

- Star evolution, RG lifetime
- White dwarf cooling
- Supernova SN1987A

$$g_{a\gamma\gamma} \lesssim 6.6 \times 10^{-11} \,\mathrm{GeV^{-1}}$$

$$g_{aee} \lesssim 1.3 \times 10^{-13} \, \text{GeV}^{-1}$$

 $g_{aNN} \lesssim 3 \times 10^{-7} \text{ GeV}^{-1}$

 $f_a \gtrsim 2 \times 10^8 \text{ GeV}$

ullet Most laboratory search techniques are sensitive to $g_{a\gamma\gamma}$

$$\mathcal{L}_{a\gamma\gamma} = -\frac{1}{4} g_{a\gamma\gamma} \, a \, F \cdot \tilde{F} = g_{a\gamma\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

- Light Shining trough Walls

Photon conversion into Axions, reconverted back into photons after passing a wall

- Haloscopes

Search for Axion Dark Matter

- Helioscopes

Search for Axions produced in the Sun

Helioscopes: CAST (CERN), IAXO (DESY)

The Sun is a potential source of a copious axion flux

 macroscopic transverse B-field over a large volume triggers axion to photon (x-ray) conversion

Ringwald, Rosenberg, Rybka, PDG (2016)

Lab exclusions

Astro/cosmo exclusions

DM explained / Astro Hints

Exp. sensitivities

Ringwald, Rosenberg, Rybka, PDG (2016)

 f_A (GeV) $10^{17}10^{16}10^{15}10^{14}10^{13}10^{12}10^{11}10^{10}\ 10^9\ 10^8\ 10^7\ 10^6\ 10^5\ 10^4\ 10^3\ 10^2\ 10^1\ 10^0$

Lab exclusions

Astro/cosmo exclusions

DM explained / Astro Hints

Exp. sensitivities

$$rac{lpha}{8\pi}rac{C_{\gamma}}{f_{a}}aF_{\mu
u} ilde{F}^{\mu
u}$$

Ringwald, Rosenberg, Rybka, PDG (2016)

 $\mathsf{f_A} \, (\text{GeV}) \\ 10^{17} 10^{16} 10^{15} 10^{14} 10^{13} 10^{12} 10^{11} 10^{10} \, 10^9 \, 10^8 \, 10^7 \, 10^6 \, 10^5 \, 10^4 \, 10^3 \, 10^2 \, 10^1 \, 10^0$

Lab exclusions

Astro/cosmo exclusions

DM explained / Astro Hints

Exp. sensitivities

White Dwarfs luminosity function (cooling)

Ringwald, Rosenberg, Rybka, PDG (2016)

 $\mathsf{f_A} \, (\text{GeV}) \\ 10^{17} 10^{16} 10^{15} 10^{14} 10^{13} 10^{12} 10^{11} 10^{10} \, 10^9 \, 10^8 \, 10^7 \, 10^6 \, 10^5 \, 10^4 \, 10^3 \, 10^2 \, 10^1 \, 10^0$

Lab exclusions

Astro/cosmo exclusions

DM explained / Astro Hints

Exp. sensitivities

Red Giants evolution in globular clusters

Ringwald, Rosenberg, Rybka, PDG (2016)

f_A (GeV) $10^{17}10^{16}10^{15}10^{14}10^{13}10^{12}10^{11}10^{10}10^{9}10^{8}10^{7}10^{6}10^{5}10^{4}10^{3}10^{2}10^{1}10^{0}$ Dark Matter (pre-inflation PQ phase transition) LUX (gAee, DFSZ) Hot-DM / CMB / BBN Dark Matter (post-inflation PQ phase transition) Telescope/EBL Beam Dump $C_n=0$ $C_p=-0.5$ **Burst Duration** Counts in SuperK RGs in GCs (gAee DFSZ) Stellar Hints WDLF (gAee DFSZ) HB Stars in GCs (GAW DFSZ) **Black Holes** CASPEr ADMX CAST ADMX G2: IAXO. $10^{-11}10^{-10}10^{-9}10^{-8}10^{-7}10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}10^{4}10^{5}10^{6}$ Axion Mass m_△ (eV)

Lab exclusions

Astro/cosmo exclusions

DM explained / Astro Hints

Exp. sensitivities

Burst duration of SN1987A nu signal

$$C_n m_n rac{a}{f_a} [iar{n}\gamma_5 n] \ C_p m_p rac{a}{f_a} [iar{p}\gamma_5 p]$$

Ringwald, Rosenberg, Rybka, PDG (2016)

Lab exclusions

Astro/cosmo exclusions

DM explained / Astro Hints

Exp. sensitivities

- Bound on axion mass is of <u>practical</u> convenience, but misses model dependence!
- since 2016 we start to critically revise this bound!

Axion EFT

All you need is (to solve the strong CP problem)

a new spin-0 boson with pseudo-shift symmetry $a \rightarrow a + \alpha f_a$

broken by
$$\frac{a}{f_a} \frac{\alpha_s}{8\pi} G_a^{\mu\nu} \tilde{G}_{\mu\nu}^a$$

- generates "model independent" axion couplings to photons, nucleons, electrons.

$$C_{\gamma} = -1.92(4)$$

$$C_p = -0.47(3)$$
 $C_n = -0.02(3)$

$$C_n = -0.02(3)$$

$$C_e \simeq 0$$

$$-\frac{a}{-} \cdot \left(QCD\right) - \frac{\pi^0}{-} \cdot \left(QCD\right)$$

$$-\frac{a}{-}$$
QCD \overline{p}

$$-\frac{a}{-}$$
 QCD \overline{n}

$$-\frac{a}{-} \left(QCD \right) - \frac{\pi^0}{-} \left(\frac{\pi^0}{e} \right)$$

Theoretical errors from NLO Chiral Lagrangian, Grilli di Cortona et al., 1511.02867

Axion EFT

All you need is (to solve the strong CP problem)

a new spin-0 boson with pseudo-shift symmetry $a \rightarrow a + \alpha f_a$

broken by
$$rac{a}{f_a}rac{lpha_s}{8\pi}G_a^{\mu
u} ilde{G}_{\mu
u}^a$$

- generates "model independent" axion couplings to photons, nucleons, electrons.
- EFT breaks down at energies of order fa

UV completion can still affect low-energy axion properties!

Lab experiments 2011

Redondo 17

Lab experiments 2017

Axion: PGB of QCD-anomalous global U(1)_{PO}

Anomalous breaking (quark) + Spontaneously breaking (scalar)

$$U(1)_{PQ} \times SU(3)_c^2$$

Axion: PGB of QCD-anomalous global U(1)_{PQ}

Anomalous breaking (quark) + Spontaneously breaking (scalar)

$$U(1)_{\mathrm{PQ}} \times SU(3)_{c}^{2}$$

SM quark

Higgs

SM

Impossible to endow directly the SM with the $U(1)_{PQ}$: \Rightarrow no anomalous $U(1)_{PQ} \in SU(2)_{L} \times U(1)_{Y}$

Minimal Setup: SM with only axion excluded!

⇒ Axion phase belongs to BSM fields!

Axion: PGB of QCD-anomalous global U(1)_{PQ}

Anomalous breaking (quark) + Spontaneously breaking (scalar)

$$U(1)_{\rm PQ}\times SU(3)_c^2$$
 \$\int \text{SM quark}\$\$ 2 Higgs

Peccei, Quinn '77, Weinberg '78, Wilczek '78

PQWW

Axion: PGB of QCD-anomalous global U(1)_{PQ}

Anomalous breaking (quark) + Spontaneously breaking (scalar)

$$U(1)_{\rm PQ} \times SU(3)_c^2$$

SM quark

2 Higgs

PQWW

Peccei, Quinn '77, Weinberg '78, Wilczek '78

Ruled out

Possible to have in 2HDM an anomalous $U(1)_{PQ} \perp U(1)_{Y}$

PQWW ruled out by experiment since $f_a = v$!

$$Br(K^+ \to \pi^+ + a) \sim 10^{-5} \left(\frac{v}{f_a}\right)^2$$

$$Br(K^+ \to \pi^+ + inv.) < 10^{-7}$$

Axion: PGB of QCD-anomalous global U(1)_{PQ}

Anomalous breaking (quark) + Spontaneously breaking (scalar)

$$U(1)_{PQ} \times SU(3)_c^2$$
 SM quark
$$2 \text{ Higgs} \qquad 2 \text{ Higgs} + \text{Singlet}$$
 PQWW
$$\mathbf{DFSZ}$$

Peccei, Quinn '77, Weinberg '78, Wilczek '78

Ruled out

"Visible" axions

Zhitnitsky '80, Dine, Fischler, Srednicki '81

 $\langle \text{Singlet} \rangle \gg v$

Axion: PGB of QCD-anomalous global U(1)_{PQ}

Anomalous breaking (quark) + Spontaneously breaking (scalar)

"Visible" axions "Invisible" axion models: $f_a \gg v$

"Visible" axions

Axion: PGB of QCD-anomalous global U(1)_{PQ}

Anomalous breaking (quark) + Spontaneously breaking (scalar)

"Invisible" axion models: $f_a \gg v$

Axion: PGB of QCD-anomalous global U(1)_{PQ}

Anomalous breaking (quark) + Spontaneously breaking (scalar)

Model dependence from UV completions

Di Luzio, F. M, Nardi 1610.07593 (PRL)+1705.05370 (PRD)

Field content KSVZ

Field	Spin	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{PQ}$
Q_L	1/2	\mathcal{C}_Q	\mathcal{I}_Q	\mathcal{Y}_Q	\mathcal{X}_L
Q_R	1/2	\mathcal{C}_Q	${\mathcal I}_Q$	\mathcal{Y}_Q	\mathcal{X}_R
Φ	0	1	1	0	1

[Kim (1979), Shifman, Vainshtein, Zakharov (1980)]

- ❖ PQ charges carried by SM-vectorlike quarks Q = QL + QR
 - Original model assumes $Q \sim (3,1,0)$

However in general:

$$\partial^{\mu}J_{\mu}^{PQ} = \frac{N\alpha_{s}}{4\pi}G\cdot\tilde{G} + \frac{E\alpha}{4\pi}F\cdot\tilde{F}$$

$$N = \sum_{Q} (\mathcal{X}_L - \mathcal{X}_R) \ T(\mathcal{C}_Q)$$

$$E = \sum_{Q} (\mathcal{X}_L - \mathcal{X}_R) \ \mathcal{Q}_Q^2$$
 anomaly coeff.

lacktriangle and by a SM singlet Φ containing the "invisible" axion ($V_a\gg v_{
m EW}$)

$$\Phi(x) = \frac{1}{\sqrt{2}} \left[\rho(x) + V_a \right] e^{ia(x)/V_a}$$

Field content KSVZ

Field	Spin	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{PQ}$
Q_L	1/2	\mathcal{C}_Q	\mathcal{I}_Q	\mathcal{Y}_Q	\mathcal{X}_L
Q_R	1/2	\mathcal{C}_Q	\mathcal{I}_Q	\mathcal{Y}_Q	\mathcal{X}_R
Φ	0	1	1	0	1

[Kim (1979), Shifman, Vainshtein, Zakharov (1980)]

• Generic QCD axion Lagrangian: $\mathcal{L}_a = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{PQ}} - V_{H\Phi} + \mathcal{L}_{Qq} \qquad |\mathcal{X}_L - \mathcal{X}_R| = 1$

$$\mathcal{L}_a = \mathcal{L}_{SM} + \mathcal{L}_{PQ} - V_{H\Phi} + \mathcal{L}_{Qq}$$

$$|\mathcal{X}_L - \mathcal{X}_R| = 1$$

-
$$\mathcal{L}_{PQ} = |\partial_{\mu}\Phi|^2 + \overline{Q}i \not \!\!\!D Q - (y_Q \overline{Q}_L Q_R \Phi + \text{H.c.})$$
 $m_Q = y_Q V_a / \sqrt{2}$

$$m_Q = y_Q V_a / \sqrt{2}$$

$$-V_{H\Phi} = -\mu_{\Phi}^{2} |\Phi|^{2} + \lambda_{\Phi} |\Phi|^{4} + \lambda_{H\Phi} |H|^{2} |\Phi|^{2} \qquad m_{\rho} \sim V_{a}$$

 \mathcal{L}_{Qq} : d \leq 4 couplings to SM quarks, depend on Q-gauge quantum numbers,

Accidental Symmetries in KSVZ: *Q* stability issue!

Symmetry of the BSM Quark kinetic term -> Accidental Symmetries

$$U(1)_{Q_L} \times U(1)_{Q_R} \times U(1)_{\Phi} \xrightarrow{y_Q \neq 0} U(1)_{PQ} \times U(1)_{Q}$$

$$\mathcal{L}_{PQ} = |\partial_{\mu}\Phi|^2 + \overline{Q}i \not D Q - (y_Q \overline{Q}_L Q_R \Phi + \text{H.c.})$$

- U(1)_Q is Q-baryon number. Exact U(1)_Q \Rightarrow Q stability. [E.g. Q ~ (3,1,0)]

Original KSVZ model, '79, '80

Colored stable/meta-stable particles are severely bounded by cosmology

Accidental Symmetries in KSVZ: *Q* stability issue!

☐ Symmetry of the BSM Quark kinetic term -> Accidental Symmetries

$$U(1)_{Q_L} \times U(1)_{Q_R} \times U(1)_{\Phi} \xrightarrow{y_Q \neq 0} U(1)_{PQ} \times U(1)_{Q}$$

$$\mathcal{L}_{PQ} = |\partial_{\mu}\Phi|^2 + \overline{Q}i \not D Q - (y_Q \overline{Q}_L Q_R \Phi + \text{H.c.})$$

- $U(1)_Q$ is Q-baryon number. Exact $U(1)_Q \Rightarrow Q$ stability.
 - if $\mathcal{L}_{Qq} \neq 0$ U(I)_Q is further broken and Q-decay is possible
 - decay also possible via d>4 operators (e.g. Planck-induced)

stability depends on Q representations

Phenomenologically preferred Q's

R_Q	\mathcal{O}_{Qq}	$\Lambda_{\rm Landau}^{\rm 2-loop} [{\rm GeV}]$	E/N
(3,1,-1/3)	$\overline{Q}_L d_R$	$9.3 \cdot 10^{38}(g_1)$	2/3
(3,1,2/3)	$\overline{Q}_L u_R$	$5.4 \cdot 10^{34}(g_1)$	8/3
(3, 2, 1/6)	$\overline{Q}_R q_L$	$6.5 \cdot 10^{39}(g_1)$	5/3
(3, 2, -5/6)	$\overline{Q}_L d_R H^\dagger$	$4.3 \cdot 10^{27} (g_1)$	17/3
(3, 2, 7/6)	$\overline{Q}_L u_R H$	$5.6 \cdot 10^{22}(g_1)$	29/3
(3, 3, -1/3)	$\overline{Q}_R q_L H^\dagger$	$5.1 \cdot 10^{30}(g_2)$	14/3
(3, 3, 2/3)	$\overline{Q}_R q_L H$	$6.6 \cdot 10^{27} (g_2)$	20/3
(3, 3, -4/3)	$\overline{Q}_L d_R H^{\dagger 2}$	$3.5 \cdot 10^{18}(g_1)$	44/3
$(\overline{6}, 1, -1/3)$	$\overline{Q}_L \sigma_{\mu\nu} d_R G^{\mu\nu}$	$2.3 \cdot 10^{37}(g_1)$	4/15
$(\overline{6}, 1, 2/3)$	$\overline{Q}_L \sigma_{\mu\nu} u_R G^{\mu\nu}$	$5.1 \cdot 10^{30}(g_1)$	16/15
$(\overline{6}, 2, 1/6)$	$\overline{Q}_R \sigma_{\mu\nu} q_L G^{\mu\nu}$	$7.3 \cdot 10^{38}(g_1)$	$^{2/3}$
(8, 1, -1)	$\overline{Q}_L \sigma_{\mu\nu} e_R G^{\mu\nu}$	$7.6 \cdot 10^{22}(g_1)$	8/3
(8,2,-1/2)	$\overline{Q}_R \sigma_{\mu\nu} \ell_L G^{\mu\nu}$	$6.7 \cdot 10^{27}(g_1)$	4/3
(15, 1, -1/3)	$\overline{Q}_L \sigma_{\mu\nu} d_R G^{\mu\nu}$	$8.3 \cdot 10^{21}(g_3)$	1/6
(15, 1, 2/3)	$\overline{Q}_L \sigma_{\mu\nu} u_R G^{\mu\nu}$	$7.6 \cdot 10^{21}(g_3)$	2/3

$$g_{a\gamma\gamma} = \frac{m_a}{\text{eV}} \frac{2.0}{10^{10} \text{ GeV}} \left(\frac{E}{N} - 1.92(4)\right)$$
$$\frac{E}{N} = \frac{\sum_Q Q_Q^2}{\sum_Q T(C_Q)}$$

Q short lived + no Landau poles < Planck

Phenomenologically preferred Qs

	R_Q	\mathcal{O}_{Qq}	$\Lambda_{\rm Landau}^{\rm 2-loop} [{\rm GeV}]$	E/N	
	(3,1,-1/3)	$\overline{Q}_L d_R$	$9.3 \cdot 10^{38}(g_1)$	2/3	
	(3,1,2/3)	$\overline{Q}_L u_R$	$5.4 \cdot 10^{34}(g_1)$	8/3	
R_Q^w	(3, 2, 1/6)	$\overline{Q}_R q_L$	$6.5 \cdot 10^{39}(g_1)$	5/3	
	(3, 2, -5/6)	$\overline{Q}_L d_R H^\dagger$	$4.3 \cdot 10^{27}(g_1)$	17/3	
	(3, 2, 7/6)	$\overline{Q}_L u_R H$	$5.6 \cdot 10^{22}(g_1)$	29/3	
	(3,3,-1/3)	$\overline{Q}_R q_L H^{\dagger}$	$5.1 \cdot 10^{30}(g_2)$	14/3	
_	(3, 3, 2/3)	$\overline{Q}_R q_L H$	$6.6 \cdot 10^{27} (g_2)$	20/3	Li
R_Q^s	(3, 3, -4/3)	$\overline{Q}_L d_R H^{\dagger 2}$	$3.5 \cdot 10^{18}(g_1)$	44/3	
_	$(\overline{6}, 1, -1/3)$	$\overline{Q}_L \sigma_{\mu\nu} d_R G^{\mu\nu}$	$2.3 \cdot 10^{37}(g_1)$	4/15	Γi
	$(\overline{6}, 1, 2/3)$	$\overline{Q}_L \sigma_{\mu\nu} u_R G^{\mu\nu}$	$5.1 \cdot 10^{30}(g_1)$	16/15	
	$(\overline{6}, 2, 1/6)$	$\overline{Q}_R \sigma_{\mu\nu} q_L G^{\mu\nu}$	$7.3 \cdot 10^{38}(g_1)$	2/3	
	(8, 1, -1)	$\overline{Q}_L \sigma_{\mu\nu} e_R G^{\mu\nu}$	$7.6 \cdot 10^{22}(g_1)$	8/3	
	(8,2,-1/2)	$\overline{Q}_R \sigma_{\mu\nu} \ell_L G^{\mu\nu}$	$6.7 \cdot 10^{27}(g_1)$	4/3	
	(15, 1, -1/3)	$\overline{Q}_L \sigma_{\mu\nu} d_R G^{\mu\nu}$	$8.3 \cdot 10^{21}(g_3)$	1/6	
	(15, 1, 2/3)	$\overline{Q}_L \sigma_{\mu\nu} u_R G^{\mu\nu}$	$7.6 \cdot 10^{21}(g_3)$	2/3	

 R_Q^s

$$g_{a\gamma\gamma} = \frac{m_a}{\text{eV}} \frac{2.0}{10^{10} \text{ GeV}} \left(\frac{E}{N} - 1.92(4)\right)$$

• The weakest coupling is obtained for $R_Q^w = (3, 2, 1/6)$ for which $E_w/N_w-1.92 \sim -0.25$ is about 3.5 times larger than the usual lower value of 0.07.

• The strongest coupling is obtained for $R_Q^s = (3, 3, -4/3)$ that gives $E_s/N_s - 1.92 \sim 12.75$, almost twice the usually adopted value of 7.0

$$\frac{E}{N} = \frac{\sum_{Q} \mathcal{Q}_{Q}^{2}}{\sum_{Q} T(\mathcal{C}_{Q})}$$

Q short lived + no Landau poles < Planck

Redefining Axion Windows for a->γγ: KSVZ

Redefining Axion Windows: KSVZ $(N_o=1)$

Additional Q representations: KSVZ + N_O >1

Axion-Photon Summary (Revised)

$$C_{\gamma} = E/N - 1.92(4)$$

- I. The QCD axion might already be in the reach of your experiment!
- Don't stop at E/N = 0 (go deeper if you can)

Di Luzio, F.M, Nardi 1610.07593 (PRL), 1705.05370

Model building and Pheno

Based on Di Luzio, F.M. Nardi, Panci, Ziegler, 1712.04940 (PRL) Björkeroth, Di Luzio, F.M. Nardi, 1811.09637 (JHEP).

Axion Couplings to fermions

- Is it possible to decouple the axion both from nucleons and electrons?
 - nucleophobia + electrophobia = astrophobia
- Why interested in such constructions?
 - 1. is it possible at all?
 - 2. It would allow to relax the upper bound on axion mass by \sim 1 order of magnitude
 - 3. would improve visibility at IAXO (axion-photon)
 - 4. unexpected connection with flavour

Axion Couplings to fermions

- Is it possible to decouple the axion both from nucleons and electrons?
 - nucleophobia + electrophobia* = astrophobia
- Why interested in such constructions?
 - 1. is it possible at all?
 - 2. It would allow to relax the upper bound on axion mass by ~ 1 order of magnitude
 - 3. would improve visibility at IAXO (axion-photon)
 - 4. unexpected connection with flavour

*conceptually easy (e.g. couple the electron to 3rd Higgs uncharged under PQ)

Axion-nucleon couplings

UV-theory PQ invariant

$$\mathcal{L}_q = rac{\partial_\mu a}{2f_a} c_q \, \overline{q} \gamma^\mu \gamma_5 q \qquad \qquad q = (u,d,s,\ldots)$$
 EFT-I: quarks and gluons

$$q=(u,d,s,\ldots)$$

$$\mathcal{L}_N = rac{\partial_\mu a}{2f_a} C_N \overline{N} S^\mu N$$
 $N = (p,n)$ EFT-II: non-relativistic nucleons

$$N = (p, n)$$

Axion-nucleon couplings

$$\langle p|\mathcal{L}_q|p
angle = \langle p|\mathcal{L}_N|p
angle$$

$$C_p + C_n = (c_u + c_d) (\Delta_u + \Delta_d) - 2\delta_s \quad [\delta_s \approx 5\%]$$

$$C_p - C_n = (c_u - c_d) (\Delta_u - \Delta_d)$$

independently of matrix elements:

$$(1): \quad C_p + C_n \approx 0 \quad \text{if} \quad c_u + c_d = 0$$

(2):
$$C_p - C_n = 0$$
 if $c_u - c_d = 0$

$$\mathcal{L}_{a} \supset \frac{a}{f_{a}} \frac{\alpha_{s}}{8\pi} G \tilde{G} + \frac{\partial_{\mu} a}{v_{PQ}} \left[X_{u} \, \overline{u} \gamma^{\mu} \gamma_{5} u + X_{d} \, \overline{d} \gamma^{\mu} \gamma_{5} d \right]$$

$$\downarrow$$

$$\left(f_{a} = \frac{v_{PQ}}{2N} \right) \qquad \frac{\partial_{\mu} a}{2f_{a}} \left[\frac{X_{u}}{N} \, \overline{u} \gamma^{\mu} \gamma_{5} u + \frac{X_{d}}{N} \, \overline{d} \gamma^{\mu} \gamma_{5} d \right]$$

$$\mathcal{L}_{a} \supset \frac{a}{f_{a}} \frac{\alpha_{s}}{8\pi} G \tilde{G} + \frac{\partial_{\mu} a}{v_{PQ}} \left[X_{u} \, \overline{u} \gamma^{\mu} \gamma_{5} u + X_{d} \, \overline{d} \gamma^{\mu} \gamma_{5} d \right]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\left(f_{a} = \frac{v_{PQ}}{2N} \right) \qquad \qquad \frac{\partial_{\mu} a}{2f_{a}} \left[\frac{X_{u}}{N} \, \overline{u} \gamma^{\mu} \gamma_{5} u + \frac{X_{d}}{N} \, \overline{d} \gamma^{\mu} \gamma_{5} d \right]$$

$$\mathcal{L}_q = rac{\partial_{\mu} a}{2 f_a} rac{oldsymbol{c_q}}{2 q} \, \overline{q} \gamma^{\mu} \gamma_5 q$$

$$rac{X_u}{N}
ightarrow c_u = rac{X_u}{N} - rac{m_d}{m_d + m_u} \qquad \qquad rac{X_d}{N}
ightarrow c_d = rac{X_d}{N} - rac{m_u}{m_d + m_u}$$

$$\mathcal{L}_{a} \supset \frac{a}{f_{a}} \frac{\alpha_{s}}{8\pi} G \tilde{G} + \frac{\partial_{\mu} a}{v_{PQ}} \left[X_{u} \, \overline{u} \gamma^{\mu} \gamma_{5} u + X_{d} \, \overline{d} \gamma^{\mu} \gamma_{5} d \right]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\left(f_{a} = \frac{v_{PQ}}{2N} \right) \qquad \qquad \frac{\partial_{\mu} a}{2f_{a}} \left[\frac{X_{u}}{N} \, \overline{u} \gamma^{\mu} \gamma_{5} u + \frac{X_{d}}{N} \, \overline{d} \gamma^{\mu} \gamma_{5} d \right]$$

$$\mathcal{L}_q = rac{\partial_{\mu} a}{2 f_a} rac{oldsymbol{c_q}}{2 q} \, \overline{q} \gamma^{\mu} \gamma_5 q$$

$$rac{X_u}{N}
ightarrow c_u = rac{X_u}{N} - rac{m_d}{m_d + m_u} \qquad \qquad rac{X_d}{N}
ightarrow c_d = rac{X_d}{N} - rac{m_u}{m_d + m_u}$$

$$\mathcal{L}_a \supset rac{a}{f_a} rac{lpha_s}{8\pi} G ilde{G} + rac{\partial_{\mu} a}{v_{PQ}} \left[X_u \, \overline{u} \gamma^{\mu} \gamma_5 u + X_d \, \overline{d} \gamma^{\mu} \gamma_5 d
ight] \ \left(f_a = rac{v_{PQ}}{2N}
ight) \qquad \qquad rac{\partial_{\mu} a}{2f_a} \left[rac{X_u}{N} \, \overline{u} \gamma^{\mu} \gamma_5 u + rac{X_d}{N} \, \overline{d} \gamma^{\mu} \gamma_5 d
ight]$$

$$rac{X_u}{N}
ightarrow c_u = rac{X_u}{N} - rac{m_d}{m_d + m_u} \qquad \qquad rac{X_d}{N}
ightarrow c_d = rac{X_d}{N} - rac{m_u}{m_d + m_u}$$

$$\frac{X_d}{N}
ightarrow c_d = \frac{X_d}{N} - \frac{m_u}{m_d + m_u}$$

$$\mathcal{L}_q = rac{\partial_{\mu} a}{2 f_a} rac{oldsymbol{c_q}}{2 q} \, \overline{q} \gamma^{\mu} \gamma_5 q \, .$$

$$0 = c_u + c_d = \frac{X_u + X_d}{N} - 1$$

2nd condition
$$0 = c_u - c_d = \frac{X_u - X_d}{N} - \underbrace{\frac{m_d - m_u}{m_d + m_u}}_{\simeq 1/3}$$

$$\mathcal{L}_{a} \supset \frac{a}{f_{a}} \frac{\alpha_{s}}{8\pi} G \tilde{G} + \frac{\partial_{\mu} a}{v_{PQ}} \left[X_{u} \, \overline{u} \gamma^{\mu} \gamma_{5} u + X_{d} \, \overline{d} \gamma^{\mu} \gamma_{5} d \right]$$

$$\downarrow \qquad \qquad \downarrow$$

$$\left(f_{a} = \frac{v_{PQ}}{2N} \right) \qquad \qquad \frac{\partial_{\mu} a}{2f_{a}} \left[\frac{X_{u}}{N} \, \overline{u} \gamma^{\mu} \gamma_{5} u + \frac{X_{d}}{N} \, \overline{d} \gamma^{\mu} \gamma_{5} d \right]$$

$$rac{X_u}{N}
ightarrow c_u = rac{X_u}{N} - rac{m_d}{m_d + m_u} \qquad \qquad rac{X_d}{N}
ightarrow c_d = rac{X_d}{N} - rac{m_u}{m_d + m_u}$$

$$\frac{X_d}{N} \rightarrow c_d = \frac{X_d}{N} - \frac{m_u}{m_d + m_u}$$

$$\mathcal{L}_q = rac{\partial_{\mu} a}{2 f_a} rac{oldsymbol{c_q}}{2 q} \, \overline{q} \gamma^{\mu} \gamma_5 q$$

1st condition

$$0=c_u+c_d=rac{X_u+X_d}{N}-1$$
 $X_u=X_d=0$
DFSZ

$$X_u = X_d = 0$$

$$\frac{1}{n_g}$$

Implementing Nucleophobia

Nucleophobia can be obtained in DFSZ models **BUT** with non-universal (i.e. generation dependent) PQ charges, such that

$$N=N_1\equiv X_u+X_d$$

$$0=c_u+c_d=rac{X_u+X_d}{N}-1$$

$$X_u=X_d=0$$
 DFSZ

$$X_u = X_d = 0$$

$$\frac{1}{n_g}$$
-1

Implementing Nucleophobia

• Simplification: assume 2+1 structure $X_{q_1} = X_{q_2} \neq X_{q_3}$

$$N \equiv N_1 + N_2 + N_3 = N_1$$

$$N_1 = N_2 = -N_3$$

• $N_2 + N_3 = 0$ easy to implement with 2HDM

$$\mathcal{L}_{Y} \supset \bar{q}_{3}u_{3}H_{1} + \bar{q}_{3}d_{3}\tilde{H}_{2} + (\bar{q}_{3}u_{2}... + ...) + \bar{q}_{2}u_{2}H_{2} + \bar{q}_{2}d_{2}\tilde{H}_{1} + (\bar{q}_{2}d_{3}... + ...)$$

$$\begin{vmatrix}
\mathcal{L}_{Y} \supset \bar{q}_{3}u_{3}H_{1} + \bar{q}_{3}d_{3}\tilde{H}_{2} + (\bar{q}_{3}u_{2}... + ...) \\
+ \bar{q}_{2}u_{2}H_{2} + \bar{q}_{2}d_{2}\tilde{H}_{1} + (\bar{q}_{2}d_{3}... + ...)
\end{vmatrix}
\Rightarrow \mathcal{N}_{3^{rd}} = 2X_{q_{3}} - X_{u_{3}} - X_{d_{3}} = X_{1} - X_{2}$$

$$\Rightarrow \mathcal{N}_{2^{nd}} = 2X_{q_{2}} - X_{u_{2}} - X_{d_{2}} = X_{2} - X_{1}$$

1st condition <u>automatically</u> satisfied

Implementing Nucleophobia

Simplification: assume 2+1 structure $X_{q_1} = X_{q_2} \neq X_{q_3}$

$$N \equiv N_1 + N_2 + N_3 = N_1$$

$$N_1 = N_2 = -N_3$$

• $N_2 + N_3 = 0$ easy to implement with 2HDM

$$\mathcal{L}_{Y} \supset \bar{q}_{3}u_{3}H_{1} + \bar{q}_{3}d_{3}\tilde{H}_{2} + (\bar{q}_{3}u_{2}... + ...)$$

$$+ \bar{q}_{2}u_{2}H_{2} + \bar{q}_{2}d_{2}\tilde{H}_{1} + (\bar{q}_{2}d_{3}... + ...)$$

$$\begin{vmatrix} \mathcal{L}_{Y} \supset \bar{q}_{3}u_{3}H_{1} + \bar{q}_{3}d_{3}\tilde{H}_{2} + (\bar{q}_{3}u_{2}... + ...) \\ + \bar{q}_{2}u_{2}H_{2} + \bar{q}_{2}d_{2}\tilde{H}_{1} + (\bar{q}_{2}d_{3}... + ...) \end{vmatrix} \Rightarrow \mathcal{N}_{3^{rd}} = 2X_{q_{3}} - X_{u_{3}} - X_{d_{3}} = X_{1} - X_{2}$$
$$\Rightarrow \mathcal{N}_{2^{nd}} = 2X_{q_{2}} - X_{u_{2}} - X_{d_{2}} = X_{2} - X_{1}$$

• 2nd condition can be implemented via a 10% tuning

$$aneta=v_2/v_1 \ c_u-c_d=\underbrace{rac{X_u-X_d}{N}}_{c_eta^2-s_eta^2}-\underbrace{rac{m_d-m_u}{m_u+m_d}}_{\simeqrac{1}{3}}=0 \qquad \qquad c_eta^2\simeq 2/3$$

Flavour Connection

Nucleophobia implies flavour violating axion couplings!

$$[PQ_d, Y_d^{\dagger} Y_d] \neq 0$$
 $C_{ad_i d_i} \propto (V_d^{\dagger} PQ_d V_d)_{i \neq j} \neq 0$

e.g. RH down rotations become physical

ullet Plethora of low-energy flavour experiments probing $rac{\partial_{\mu}a}{2f_a}\overline{f}_i\gamma^{\mu}(C^V_{ij}+C^A_{ij}\gamma_5)f_j$

$$K o \pi a$$
 $m_a < 1.0 imes 10^{-4} rac{{
m eV}}{|C_{sd}^V|}$ - [E787, E949; @ BNL, 0709.1000] NA62 $B o Ka$ $m_a < 3.7 imes 10^{-2} rac{{
m eV}}{|C_{bs}^V|}$ - [Babar, 1303.7465] Belle-II

$$\mu \to ea \qquad m_a < 3.4 \times 10^{-3} \frac{\text{eV}}{\sqrt{\left|C_{bd}^V\right|^2 + \left|C_{bd}^V\right|^2}} \qquad : \text{ [Crystal Box @ Los Alamos, Bolton et al PRD38 (1988)]}$$

Axion models

Axion models

Astrophobic axion models

Conclusion

- The axion hypothesis provides a well motivated BSM scenario
 - solves the strong CP problem
 - provides a DM candidate
 - is unambiguously testable by detecting the axion
 - Healthy and lively experimental program
 - IAXO is entering now the preferred window for the QCD axion
 - Theoretical developments are still ongoing
 - lacktriangledown reduce non-perturbative QCD uncertainties, especially on $g_{\mathrm{a}\gamma\gamma}$ and $\mathrm{f_a}$
 - define theoretical uncertainties due to "model dependence"

Here: Axion window defined in terms of precise pheno requirements

Thanks

What about Axion Windows: in DFSZ?

• In general each R-handed SM fermion can have a specific PQ charge $\chi_{\mathrm{f}_{\mathrm{j}}}$

$$u_{R}^{j} \to \exp(iX_{uj}) u_{R}^{j}, d_{R}^{j} \to \exp(iX_{dj}) d_{R}^{j}, e_{R}^{j} \to \exp(iX_{ej}) e_{R}^{j}.$$

$$\frac{E}{N} = \frac{2}{3} + 2 \frac{\sum_{j} (X_{uj} + X_{ej})}{\sum_{j} (X_{uj} + X_{dj})}$$

For generation independent charges DFSZ remains within KSVZ window:

DFSZ-I:
$$X_e = X_d$$
, $E/N = 8/3$
DFSZ-II: $X_e = -X_u$, $E/N = 2/3$ DFSZ-III: $X_e \neq X_{u,d}$, $E/N_{(max)} = -4/3$

ullet For generation dependent charges with a max. of 9 Higgs doublets $H_{f,j}$:

DFSZ(
$$X_{ej} X_{dj}, X_{uj}$$
): $E/N_{(max)} = 524/3 = 3 \cdot E/N_{(max)} (KSVZ)$

Light Shining trough Walls: ALP1-2 (Desy)

Any Light Particle Search (DESY) Alps 1 (2007-2010) Alps 2 (2013-)

$$\mathcal{L}_{a\gamma\gamma} = -\frac{1}{4} g_{a\gamma\gamma} \, a \, F \cdot \tilde{F} = g_{a\gamma\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

Artist view of a light shining through a wall experiment

Schematic view of axion (or ALP) production through photon conversion in a magnetic field (left), subsequent travel through a wall, and final detection through photon regeneration (right).

 \longrightarrow LSW experiments pay o $(g_{a\gamma\gamma})^4$ suppression

Haloscopes: ADMX (Washington)

· Look for halo DM axions with a microwave resonant cavity

[Sikivie (1983)]

exploits inverse Primakoff effect: axion-photon transition in external

E or B field

$$\mathcal{L}_{a\gamma\gamma} = -\frac{1}{4} g_{a\gamma\gamma} \, a \, F \cdot \tilde{F} = g_{a\gamma\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

power of axions converting into photons in an EM cavity

$$P_a = Cg_{a\gamma\gamma}^2 V B_0^2 \frac{\rho_a}{m_a} Q_{\text{eff}}$$

Helioscopes: CAST (CERN), IAXO (DESY)

The Sun is a potential source of a copious axion flux

 macroscopic transverse B-field over a large volume triggers axion to photon (x-ray) conversion

Helioscopes: CAST (CERN), IAXO (DESY)

- The Sun is a potential axion source (3rd and 4th generation axion-Sun telescopes)
 - CERN Axion Solar Telescope (CAST)

- International AXion Observatory (IAXO)

[IAXO "Letter of intent", CERN-SPSC-2013-022]