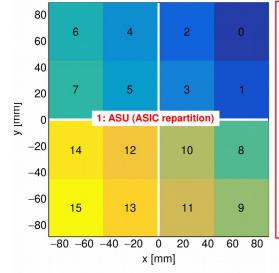
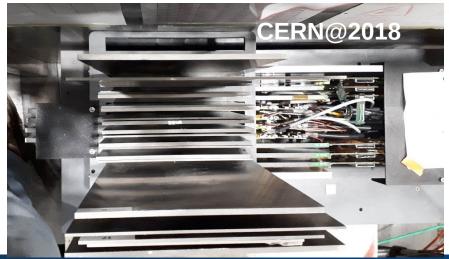
SiW-ECAL 2018 CERN Beam Test: beam test summary

A. Irles, LAL-CNRS/IN2P3 19th December 2018

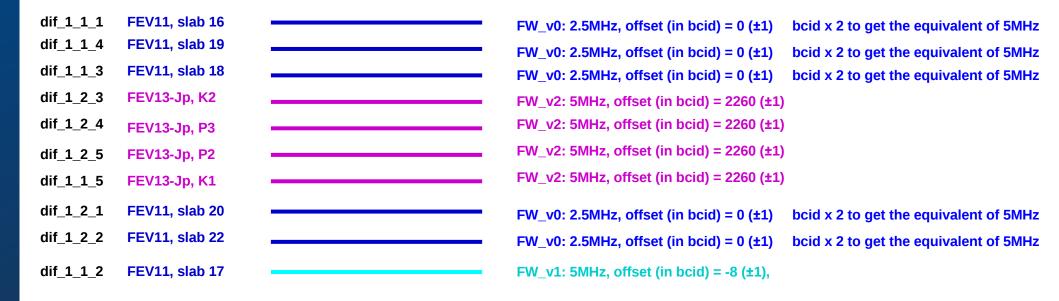
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168



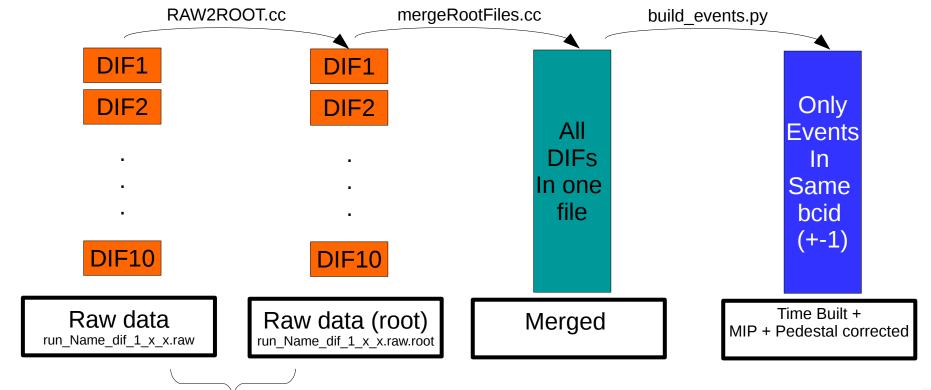
Slab mapping



FEV11, The FEV13 ASUs are mirrored in Y



ECAL setup



beam

Data Format + software

- All software is based in the BT-software developped during last 2 years (based on previous software)
- https://github.com/SiWECAL-TestBeam/SiWECAL-TB-analysis/ → Branch TB201809_10slabs

See backup

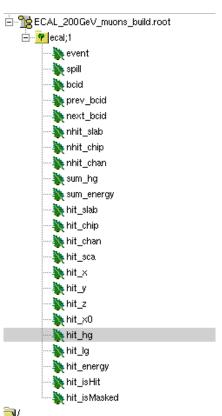
Data Format + software

All DIFs In one file

```
int bcid[NSLABS][NCHIP][MEMDEPTH];
int badbcid[NSLABS][NCHIP][MEMDEPTH];
int charge_low[NSLABS][NCHIP][MEMDEPTH][NCHANNELS];
int charge_high[NSLABS][NCHIP][MEMDEPTH][NCHANNELS];
int gain_hit_low[NSLABS][NCHIP][MEMDEPTH][NCHANNELS];
int gain_hit_high[NSLABS][NCHIP][MEMDEPTH][NCHANNELS];
int numCol[NSLABS][NCHIP];
int chipID[NSLABS][NCHIP];
int acqNumber;
int corrected_bcid[NSLABS][NCHIP][MEMDEPTH];
int nhits[NSLABS][NCHIP][MEMDEPTH];
```

- Bcid = bcid that corresponds to 5MHz
 - The overrunning of the bcid counter (12 bits) is accounted. One loop of 12Bits at 5MHz is 0.819ms and we were open during 25ms.
- Badbcid == 0 if the event is not a retrigger

Merged



Data Format + software

- See the examples attached in the indico agenda.
- A dummy MIP calibration and pedestal calibration is applied for slabs 1_1_5, 1_2_4 and 1_2_3 since they are not calibrated yet (the data are not yet in the cern folder)

Only Events In Same bcid (+-1)

Time Built + MIP + Pedestal corrected

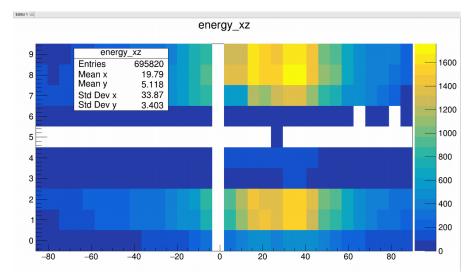
- Only hits are saved (hit_isHit is always 1).
 Retriggers are filtered.
- Each event has nhit_chan cells triggered.
- The hit_energy is pedestal subtracted and MIP calibrated.
- The hit_hg is only pedestal subtracted.
- (x,y)=(0,0) in the center of the detector
- (x,y)=(+max,+max) as seen from the beam pipe.
 - Attention! FEV13 are mirrored in y
 - see back up for schematic picture

Common + last standalone muon runs

- Location of the converted + standalone event built data /eos/project/s/siw-ecal/TB2018-09/Common/ECAL
- Scripts for conversion in /eos/project/s/siw-ecal/TB2018-09/converter
 - Main script: build script.sh
 - Script with the selection of runs from the e-log: launch build.sh
 - Instructions and comments are in the script and in the README in the github (for the use of the root building event script).

Still some data are to be copied:

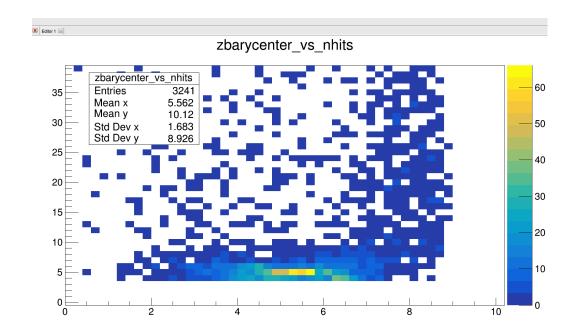
- Common electron runs.
- Last muon runs for calibration of the 3-4 FeV13s



Common + last standalone muon runs

- Full common muon run hit map (x vs z). Only ECAL data.
- Selection: nslabs with hit≥3

- Some optimization of the event building + offsets management may be needed
- But ...
- If the offsets event building is the issue... the selection will still accept two groups of events:
 - the events where the FEV11 are synchronized and the events where the 4 central slabs are synchronized



Common + last standalone muon runs

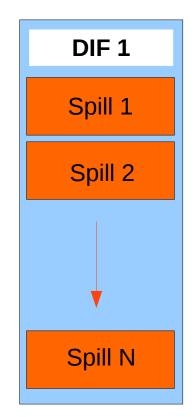
- Selection: nslabs_with_hit≥3
- Plot for PiPlus_50GeV

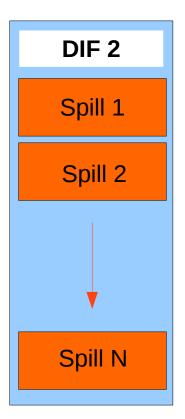
Common runs (selection = nslabs with hit >3)	
run	events (offsets elog)
PiPlus_40GeV	28299
PiPlus_50GeV	3241
PiPlus_60GeV	2365
PiPlus_70GeV	12727
PiPlus_80GeV	5484
Muon_200GeV	108729
Electron 150 GeV	not copied to the cern eos

- The selection is very loose, a proper selection may easily apply a substantial reduction
 - And there is the issue with the middle slabs...

Back-up

Details on the raw data format





Pyrame and/or the DIF fw are introducing small changes into the SKIROC data format.

- The data is grouped in block of spills with all chip info inside
 - → common to all data files
- Spill number is increased by a counter (GDCC, DIF firmware, Pyrame?) and it is reset when a new configuration of the detector is done.
- The output are saved in independents data files (one per DIF)

Spill 1

Header Data packet

All chips data packet

Oxfffc → header tag

0x0

0x1

 $0x5053 \rightarrow footer tag$

0x4c49 → footer tag

 $0x2020 \rightarrow footer tag$

We use the header and footer tags to identify the data packet as spill info packet.

We rextract the spill number as:

packetData[packetData.size()5]*65536+packetData[packetData.size()-4]

The packet has variable length... why?

Spill 1

Header Data packet

All chips data packet

Oxfffd → beginning of chip block

0xff01 → block ID (reset every spill)

 $0x4843 \rightarrow \text{header tag (why } 4843?)$

 $0x5049 \rightarrow \text{header tag (why 5049?)}$

 $0x2020 \rightarrow \text{header tag (why 2020?)}$

SKIROC-Data (contains the chip ID)

Oxfffe → end of block chip block

0xff01 → block ID (reset every spill)

 $0x2020 \rightarrow footer tag$

0xfffd

 $0x2020 \rightarrow footer tag$

0xfffd

0x2020 0x2020

SKIROC-Data SKIROC-Data

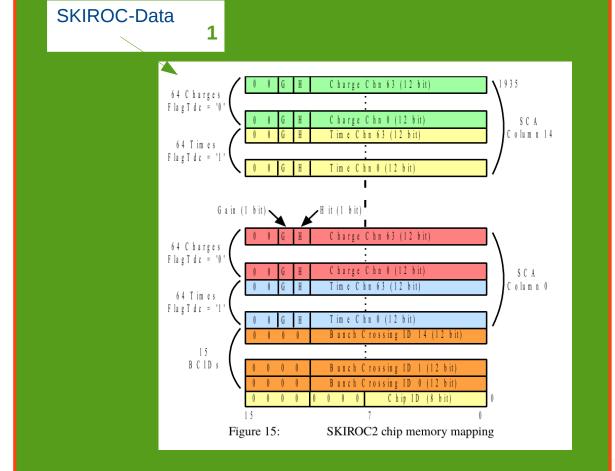
Oxfffe Oxff02 Oxfffe

0x2020 2 0x2020

0x2020 0x2020

Oxffff → end of spill block

last



Spill 1

Header
Data packet

All chips
data packet

Raw to ROOT decoder

- The ROOT decoder uses the tags to identify the different data packets types.
- If a spill packet is found, the spill is decoded and saved only if the next packet is a data packet.
- When a data packet is found (after a spill packet), the length is checked
 - It has to be comaptible with the number of chips in the ASU (can be less but not more!)
 - It has to be compatible with the SKIROC data structure: chip ID, a maximum of 15 SCA high gain + low gain (or auto gain + TDC), 15 bcids
- The data is converted to ROOT format without any event building (nor time, nor merge of DIFs files)
 - The event building is done afterwards, if needed.

