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Outline

» The future detectors
— 2G updates : Advanced LIGO, advanced Virgo and Kagra
— Spaceborne mission : LISA.
— 3G ground based detectors.

— Other detectors : atomic interferometers, PTA, ...

e For which science ?

— Science case defined in :
e LISA proposal [ArXiv:1702.00786]

e 3G Science Book (to be released soon)


https://arxiv.org/pdf/1702.00786.pdf

Network of 2G ground detectors in the next decade

L

Operational
“i} Commissioning

\ ‘ﬁ'\ Construction

=




Future detectors : 3G ground detectors

Einstein Telescope : 10 km triangle

Cosmic Explorer : 40 km
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Future detectors

LISA : launch 2034 Pulsar timing array
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MIGA | Discrim'ination between GW effects and

Atomic interferometry : inertial sensor gravity gradients using the spatial
resolution of the antenna



GW spectrum
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Expected sensitivities
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The GWIC

Gravitational Wave International Comittee.

https://gwic.ligo.org/

Goal : defining the road map for future detectors. That includes all types of ground
based detectors but mainly laser interferometric detectors.

Has formed a 3G committee that has appointed a subcommittee to write the 3G

Science Book.

GWIC 3G COMMITTEE

Gravitational-Wave
International Committee

3G Committee

R&D Governance Agency
Coordination Structure Interfacing

Science Case

3G Committee
Punturo, Reitze (co-chairs)
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GWIC 3G science case

SCIENCE CASE TEAM

3G Committee
Gravitational-Wave Punturo, Reitze (co-chairs)
International Committee van den Brand, Couvares,
Katsanevas, Kajita,
Kalogera, Lueck, Sanders,
McClelland, Rowan,
Sathyaprakash,

3G Committee Shoemaker

Science Case REE}D : Governance Agen:fy Commur‘uty
Coordination Structure Interfacing Networking

multi-
cosmology supernova messenger
observations

extreme waveform detector
gravity models networks

seed black compact
neutron stars

holes binaries

for membership of committees see: https://gwic.ligo.org/3Gsubcomm/




3G Science Book




Factor 10 improvement

— 1000 times more
sources than 2G

— 1 % statistical
accuracy for binary
related measurements

Shifting towards lower
cuttoff frequency

Einstein Telescope and
Cosmic explorer
sensitivity comparison
can be misleading
(triangle vs linear)

3G detectors sensitivity
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3G detectors sensitivity

e Horizon
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Fundamental physics : nature of gravity

— GW allows to constrain alternative gravity theories

Test black hole conjecture : QNM, absence/presence of

95 % confidence intervals on 2 QNM
frequencies for GW150914 like event

Is GR the fundamental theory ?
— Non tensorial radiation
— Lorentz symetry violation
horizon
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Fundamental physics : nature of compact object

e Search for exotic compact LTl mmmm e
objects : worm holes, bosonic ~ ®%'F, Finsyein Tescors
clouds, cosmic strings SF f 4 s g
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Fundamental physics : nature of dark matter

e Can dark matter be BH ?

107" 4

(95% c.l.)

S [*]

Sy

e Can we detect particule like dark matter with compact
objects ?

— Gravitational drag will affect the binary dynamics



Astrophysics of compact objects




Neutron stars

* Binary mergers involving
neutron stars

EQS, finite temparatures,
phase transitions

microphysics input: neutrino
transport and interactions,
applicability of MHD

modeling mergers

e hydrodynamics and MHD,
neutrino radiation, EM signals

post-merger oscillations,
stability extraction of radius,
mass and compactness

e (Continuous wave sources

EQS, elasticity (mountains) of
phases; deformations and
precession

microphysics input: transport in
cold matter (shear, bulk
viscosities), neutrino cooling

GR modeling of oscillations,
stability and dependence on
EoS

effect of magnetic fields, spin-
evolution, magnetically induced
deformations

binary systems: dynamics, X-
rays, spin-evolution, QPOs
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Neutron stars

e Transients  Beyond the standard model
— EOS of cold matter, — Effect of dark matter
superfluidity for glitches and particules

relaxations, hot-matter in

— Testing GR in a matter
core-collapse.

environment
Microphysics of neutrino

interactions in core-collapse,

mutual friction superfluids.

Modelling magnetar
oscillations and bursts.

Modelling pulsar glitches,
precessions.



Core collapse supernovae (ground detectors)

e Understanding the explosion mecanism mystery :

Role of neutrinos

Role of Standing Accretion Shock Instability
Role of rotation

Role of progenitor mass

Mass accretion rate after shock

Asymetry of the explosion

* EOS measurement in proto-neutron star

Time frequency evolution of PNS oscillation modes

e Fate of the explosion : NS or BH ?



Core collapse supernovae (ground detectors)

P. Cerda-Duran et al, Astrophys.J. 779 (2013) L18
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Fig. 3.— Waveform (a) and spectrogram (b) of the characteristic gravitational wave signal for the fiducial model at [0 = 100 kpe. We
overplot estimates for the frequency evolution of g-modes at the surface of the PNS (solid-green line), g-modes in the cold inner core
(solid-red line), quasi-radial mode (dashed-red line) and f-mode (dotted-blue line). Capital letters point to features described in the main

text.



Core collapse supernovae (ground detectors)
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Yakunin 2017 Mueller 2012 Kuroda 2016

Cl15 L15-3 N20-3 WI15-1 SFHX TMI1
ET-D 54 12 4 6 24 18
CE 129 26 11 11.5 51 37
aLIGO 5.9 1.3 0.4 0.6 2.7 2.0

Table 4.1: Matched-filter SNRs of six 3D neutrino-driven explosion simulations for a source located at 100
kpc recorded in 1) the Einstein Telescope (ET-D), 2) the Cosmic Explorer (CE), and 3) and advanced LIGO at
design sensitivity (aLIGO) are provided here. The matched-filter SNRs do not include a detector’s antenna

function.



Origin and evolution of compact object binaries

e Key question : binary formation scenario

— Close compact binaries form from the evolution of massive stellar binaries through a common envelope phase or
through chemically homogenuous evolution.

- Dynamical formation : triple systems, star cluster or galactic nuclei.

- BH formed from instabilities in the early universe.

 What is important to measure ?

— Mass distribution, rate and spins.

e Observation of >100 Msun mergers at high redshift is only
accessible to 3G

— Comoving merger rate density of stellar born compact object is predicted to depend on the cosmic
star formation rate. Star formation peaks a z~2.

— 3G will be able to test wether merging binaries scales with the cosmic star formation rate.

Complement other measurements :

— SKA (radio) : maps of neutral gas up to very early ages.

— James Webb telescope (near IR) : image light of galaxies up to z~7.
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Origin of seed black holes

e Are stellar mass BH at high z BH that seed super massive black holes ?

 How do they form ?

cosmic reionization

cosmic high noon




IMBH

e Intermediate mass region : 100-1000 Msun accessible by 3G
and LISA

— Is there a gap ?
— Could be failed seed

— Redshift distribution would help to understand their role as seeds

e LLISA band :

- 600 M, 104 M, up to z~1 (equal mass).

sun

— Parameters estimated at ~30 %



L.ISA sources
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EMRIs and SMBH (LISA)

e Extreme mass ratio inspirals (EMRI)

— Long lasting inspiral and plunge of a 10-60 M., BH into a 105-106
M., BH in the centers of galaxies.

— Orbits are generic but highly eccentric.

— Use « gloden » EMRISs to probe the multipolar structure of MBHs
(deviation to Kerr BH).

— Uncertain rate.

e SMBH environment

— Will complement EM observations



Cosmology & cosmography

e Primordial backgrounds e Standard siren cosmology
— Inflationary and early — Hubble constant, dark
universe : phase transitions, energy, EOS
cosmic strings and o ,
SuperStringS di(z) = H{}L Joo \/Qu(1+ E:I-’";F poe(Z)/Po
— stochastic background of
relic GWs. — Cosmological perturation
. effects on GW luminosity
e Astrophysical backgrounds distance
— Remove binary mergers — Strgng]y_]ensed GW

background and dig deeper

— Correlating large-scale
structure maps with GW
stochastic background maps
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Multi-messenger analysis

 Compact binary mergers * Continuous wave sources
— r-process production of — Curst and magnetosphere
heavy elements via NS-NS from coherence of GW and
and NS-BH mergers EM observations
— Are there differences in — Crust physics from magnetar
kilonovas from BNS and flares and outbursts
NSBH

* Supernovae

— NS max mass .
— Production of heavy

— Jet physics elements

— neutrinos



Conclusion




2G detectors timeline

LIGO-VIRGO Joint Run Flanning Commitiee
Working schedule for O3
(LIGO-G1800889-v4)
2018 2019

May Jun Jul  Aug Sep  Oct MNov Dec Jan @ Feb Mar @ Apr May >

H1 - Commissioning EFII3 Commissioring EHid O a———
L1 - Commissioning EHI3 Commissioning EF""‘ {amoxumcdggldﬂyﬂﬂ long)

Virgo Commissioning EHI3 Commigsioning EHI4 (approx one calendar year long)
GEO ~70% observing mode
Detector operational ,.commissioning mode Detector not producing data
(small fraction of observing mode time) (Downtime)
Detector in observing .
- mode for a fraction of the time 24/7 observing mode
during Engineering Runs (ERs), (Observing Run, Open Public Alerts)
EM alerts possible (best-effort only)




3G Cosmic Explorer/Einstein Telescope

Possible U.S. timeline
(Cf. Europe)

R‘t-gen: 40 km facility, tech scale-up | Cosmic Explorer

mﬂ: cryo, silicon Voyager
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