
Panorama de la science avec les 
ondes gravitationnelles

F. Marion

JOGLy
12 février 2019



Ondes gravitationnelles

 Prédiction de la Relativité Générale 
(Einstein, 1916)

 Perturbations de la métrique de 
l’espace-temps
 Engendrées par des accélérations    

de masses
 Se propagent à la vitesse de la 

lumière
 Transverses, quadripolaires, deux 

polarisations orthogonales
 Luminosité d’une source 

2
source 

asymétrique
source 

compacte
source 

relativiste

 Sources astrophysiques



Enjeux scientifiques
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 Les ondes gravitationnelles témoignent des phénomènes les   
plus violents de l’Univers
 Sondent directement la dynamique des événements

 Les ondes gravitationnelles permettent de sonder la gravitation
dans un régime inédit
 Gravitation au cœur des grandes énigmes de la physique contemporaine

Sources

Astrophysique



Le spectre
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NASA/J. I.Thorpe



Détecteurs interférométriques

 Miroirs suspendus ≡
masses en chute libre 
dans le plan horizontal, 
pour f >> fpendule

 Envergure de plusieurs 
kilomètres nécessaire
 h∼ 10-22 - 10-21

 δL ∼ 10-18 m
 Détecteurs large bande
 10 Hz – 10 kHz sur Terre
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Configuration standard
 Réglage sur la frange noire

 Réjection sources de bruit du mode 
commun

 Meilleur rapport signal sur bruit de 
photons

 P0 ∼ 1 kW et L ∼ 300 km nécessaires 
pour h ∼ 10-23 / √Hz
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 Recyclage du signal

 Recyclage de la 
lumière
• Amplification x ∼ 50 ∼

 Cavités Fabry-Perot
 ∼100 aller-retour

Les paramètres 
évoluent avec 
les détecteurs…



Les détecteurs
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LIGO Hanford, 4 km (USA) LIGO Livingston, 4 km (USA)

Virgo, 3 km (Italie) KAGRA, 3 km (Japon)



Ground-based GW detectors
 1st generation interferometric detectors

 Initial LIGO, Virgo, GEO600
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 Enhanced LIGO, Virgo+

 2nd generation detectors
 Advanced LIGO, Advanced Virgo, 

KAGRA

 3rd generation detectors
 Einstein Telescope, Cosmic Explorer

Unlikely detection

Science data taking    
First rate upper limits    
Set up network observation

Improved sensitivity

First detections

Toward routine GW observation 
Multi-messenger astronomy

Laid ground for multi-messenger astronomy

Thorough observation of 
Universe with GW

A+
AdV+

Voyager



O1 & O2 Observing Runs
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LIGO 
2010

 Binary neutron star range
 Average horizon distance
 Horizon ∼ 2.26 x range

 O1: 16 weeks
 O2: 37 weeks
 Virgo joined for last 

month of O2



Sources

 Transient sources
 Compact binary coalescences
 Other “bursts”, e.g. supernovae

 Persistent sources
 Rotating neutron stars
 Stochastic background
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Compact Binary Coalescences
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 BH + BH, NS + NS, NS + BH 
systems

 Waveform models from 
analytical and numerical 
relativity

 Event dynamics probes 
strong field gravity 

 Standard candles
 Rare events
 Rates now measured
 RBBH = 12 - 213 Gpc-3 yr-1

 RBNS = 320 - 4740 Gpc-3 yr-1
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Do we understand the progenitors?
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Source population Binary formation and evolution

Spins

Black holes
Are they the BH of GR?

Neutron stars
What is their structure?

Masses Merger rates

Tidal 
deformability

Stellar evolution



Masses

 Heavy stellar mass BHs (> 25 M) 
 Heavier than BHs observed in X-ray 

binaries
 Weak massive-star winds due to 

low-metallicity environment
 Evidence for upper cutoff in BBH 

mass spectrum at 45 M
 Might be a consequence of pair-

instability supernova
 Mass gap between NS and BH ?
 GW170817 remnant
 Lightest BH or heaviest NS known
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arXiv:1811.12940



Spins
 Spins difficult to measure – sub-dominant 

effect on waveforms
 Spins possible discriminator for BBH 

formation history
 BHs in dynamically formed binaries in dense 

stellar environments expected to have spins 
distributed isotropically

 For field populations, stellar evolution expected 
to induce BH spins preferentially aligned with 
the orbital angular momentum
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arXiv:1811.12907



Do we understand the ejecta?
 Connection of short 

GRBs to BNS mergers 
confirmed
 But GRB170817 not a 

typical short GRB ?
 Kilonova powered by 

radioactive decay of  
r-process nuclei 
synthesized in ejecta
 Accumulated 

nucleosynthesis could 
account for all heavy 
elements in Galaxy
 Depends on ejecta mass 

and composition, and 
on merger rate

16Metzger & Berger 2012



Do we understand the remnants?

 Not very well – yet – for lack of sensitivity at high 
frequency

 Kerr nature of CBC remnant can be shown by observing 
multiple quasinormal modes in post-merger signal
 Well modelled but low SNR
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 Fate of BNS remnant 
should leave prints in 
both GW and EM signals
 But difficult to observe 

and read the prints
Margalit & Metzger



More exotic questions

 Might BBHs be part of a primordial BH 
population in the early Universe and constitute 
a significant fraction of dark matter?

 Might some BBH signals be twin detections of 
strong-lensed distant sources?

 « Yes » not the most likely answer, but fun 
scenarios to explore
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Are GWs as predicted by GR ?
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Polarization modes
Propagation speed

Equivalence principle

Binary dynamics Graviton 
mass

Lorentz invariance



GW Polarizations

 Generic metric theories of 
gravity allow up to six 
polarizations

 GR allows two tensor 
polarizations, + and x

 LIGO instruments have similar 
orientation  record same 
combination of polarizations

 Virgo has different orientation 
 breaks degeneracy

 GW geometry probed directly 
through projection of metric 
perturbation onto detector 
network
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 GW170814: pure tensor 
polarization strongly 
favored over pure scalar or 
vector polarizations

GR



Testing GR with CBC

 Most relativistic binary 
pulsar known today 
 J0737-3039, orbital velocity

 BBH / BNS mergers
 Strong field, non linear, 

high velocity regime

 No evidence for deviation 
from GR in waveform, 
place empirical bounds on 
high order post-
Newtonian coefficients
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PHYSICAL REVIEW X 6, 041015 (2016)

inspiral merger/ringdown

GW170817 arXiv:1811.00364



 Equivalence principle
 EM radiation and GWs affected by 

background gravitational potentials in 
the same way ?

 Shapiro delay

 Many alternative theories of gravity 
ruled out

 GW propagation speed
 GW170817 – GRB 170817A: delay of 1.74 ±

0.05 s over > 85 million years propagation
 Assume Gamma emission delayed by [0,10]s

Testing some GR cornerstones (I)
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Testing some GR cornerstones (II)

 Lorentz invariance: Look for possible dispersion in signal 
propagation

 GW150914 + GW151226 + GW170104

 Bound graviton mass
 More constraining than bounds from Solar System and binary 

pulsar observations
 Less constraining than model dependent bounds from large 

scale dynamics of galactic clusters and weak gravitational 
lensing observations
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PRL 118, 221101 (2017)



Cosmology with CBC

 GW waveform provides luminosity distance
 GW waveform typically does not provide redshift
 Full mass-redshift degeneracy for inspiral

 How do we get the redshift ?
 From possible electromagnetic counterpart
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 GW17081 – AT2017gfo
 GW only
 Luminosity distance =                     

at 90% CL  
 Assuming sky position of 

AT2017gfo
 at 68% CL

 H0 uncertainty from 
statistics, geometrical 
degeneracy with system 
inclination, and galaxy 
peculiar velocity

Measuring the Hubble Constant
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Independent of any cosmic distance ladder

Distance 
from GW

Hubble flow velocity
from host galaxy NGC4993

Nature 551, 85 (2017)



Cosmology with CBC

 GW waveform provides luminosity distance
 GW waveform typically does not provide redshift
 Full mass-redshift degeneracy for inspiral

 How do we get the redshift ?
 From possible electromagnetic counterpart
 Statistically, from reliable galaxy catalog
 From tidal effects if NS equation of state is known
 From post-merger signal if observed and NS EoS is known
 Statistically, from known features in NS / BH mass 

distribution
 High statistics will provide precise measurements
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Burst sources
 Generic GW Bursts with < ∼1 ─ 10 s duration

 Some long-lived transient signals considered too, duration < 104 s

 Many poorly modeled 
transient sources 
 CBC post-merger signal
 Core-collapse supernovae in  

or near the galaxy
 Long GRBs
 Neutron star instabilities
 Soft gamma-ray repeater flares
 …

 Some well modeled sources too
 Cosmic strings
 Cusps  h ∝ f-4/3, Kinks  h ∝ f-5/3 27

Ott 2010



Core-Collapse Supernovae
 Collapse dynamics & GW 

waveform hard to predict
 Efficiency of GW emission 

strongly model dependent 
EGW ~ 10-11 – 10-7 M c2

 Advanced detectors probe 

 EGW ~ 10-9 M c2 at 10 kpc, 100-200 Hz
 Should detect GW signal from a galactic 

supernova / Put constraints on extreme 
scenarios for supernova in the local group

Sensitivity in 
EGW at 10 kpc
from O1 data
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Phys. Rev. D 95 (2017) 042003



Multi-messenger searches

 Triggered searches
 Search for GW signals in coincidence wit remarkable events
 GRBs, Magnetar flares, Pulsar glitches, Supernovae, High energy 

neutrinos…
 Are more sensitive than their all-sky counterparts

 The electromagnetic follow-up program
 MoUs with partners allowed successful follow-up in O1/O2
 Spectacular results for GW170817

 Moving to open public alerts from O3 on
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Continuous wave sources
 GW signal from non axisymmetric rotating neutron star

 O(106 - 107) neutron stars within 5 kpc
 ~2000 known pulsars, ~10% in frequency band of ground-based detectors

 Amplitude of GW signal driven by ellipticity, many uncertainties
 Maximum sustainable ε depends on NS structure
 Processes to produce/sustain ε

 NS born with bumpy crust
 Strong internal magnetic fields
 Accretion ± unstable r-mode oscillations
 Free precession

 Emission frequency
 Depends on emission mechanism
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CW search challenges

 Computationally limited searches
 Need to scan an enormous parameter space

 Sky location x Frequency x Frequency derivative(s) x Inclination x Polarization
 Coherent analysis is expensive

 Cost α (coherence time)6 x (band upper frequency)3

 Pick your battles:  choose your search mix well
 Coherent / Semi-coherent, Targeted/Directed/All sky, Isolated 

neutron stars / In binaries (accretion!)

 Data quality
 Chase wandering lines of instrumental or environmental origin

 Electromagnetic information
 Pulsar ephemerides, glitches…
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CW: From initial to advanced detectors

 GW emission <0.2% (1%) 
of spin-down luminosity 
for Crab (Vela)

 8 pulsars constrained 
below spin-down limit, 
32 within factor 10

 Lowest amplitude upper 
limit h < 1.6 10-26 

(J1918-0642)
 Lowest ellipticity upper 

limit ε < 1.3 10-8

(J0636+5129)
32

Astrophys. J. 839 (2017)



Stochastic Gravitational Wave Background

 Stochastic gravitational-wave 
background expected from
 Cosmological sources

 Inflation models, Cosmic strings, 
Phase transitions…

 Astrophysical sources
 Superposition of unresolved sources

 Spectral content carries 
signatures of underlying 
physics

33



SGWB energy density upper limits (O1)

 4 orders of magnitude improvement in ΩGW sensitivity expected with 
advanced detectors
 2 from detector sensitivity
 2 from detector bandwidth

 Future measurements can probe the physics of inflation and very high 
energy processes
 106 ─ 107 TeV
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Expected SGWB from CBC mergers

 First detections suggest population 
of BBH with relatively high mass

 SGWB from BBH could be higher 
than expected
 Incoherent superposition of all   

merging binaries in Universe
 Dominated by inspiral phase

 Significant contribution from BNS 
background

 Estimated energy density
 ΩGW ∼ 2 ⋅ 10-9 at 25 Hz

 Statistical uncertainty due to poorly 
constrained merger rate currently 
dominates model uncertainties

 Background potentially detectable     
by Advanced LIGO / Advanced Virgo
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PRL 120, 091101 (2018)



Science prospects      Instrumental challenges

 Sensitivity
 Captured by BNS range
 More events to explore 

source population
 More SNR for    

exceptional events

 Bandwidth
 Low frequency sensitivity

 Higher mass BBH mergers
 CBC parameter accuracy

 High frequency sensitivity
 CBC post-merger signal

 Network size
36

 Robustness
 Duty cycle
 3 detector operation

 Sky localization

 Data quality

 Calibration

 Open public alerts



Prospects for Near Future

 O2: 1/2 – 1/4 of the design sensitivity of Advanced LIGO 
and Advanced Virgo 

 Currently both LIGO and Virgo improving sensitivity of 
instruments

 Next: ∼1 year long O3 run
 Start April 2019
 LIGO BNS range ∼ 120 Mpc, Virgo ∼ 60 Mpc
 KAGRA hopes to join before the end of O3

 Best guesses for O3
 BBH: Several per month to several per week
 BNS: 1 to 10 in the year-long run
 NSBH: N=0 not ruled out in any scenario, most give ∼50% N>0

 More events, more physics… more breakthroughs?
 Eagerly waiting for next galactic supernova
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