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♦ Intro: brief motivation for light physics & dark matter (DM).

♦ Prelim: probing heavyish-light-scalar/relaxion DM \w clocks.

♦ Conclusions.

♦ Relaxion & coherent DM, \w dynamical misalignment.

♦ Very prelim: probing scalar-stars \w clocks (earth & space).



Introduction

♦ New particles/forces must exists as Standard Model can’t account         

 for baryon asym., dark matter (DM), Higgs-hierarchy, etc. 

♦ New paradigms recently proposed suggest alternative solutions. 

♦ Presence of light scalar/s is common to most.

♦ Conventional particle-TeV-physics wisdom is challenged by the      

 null results of the LHC & DM experiments.  

“Cosmic attractors”, “dynamical relaxation”, “N-naturalness”, “relating the weak-scale to the CC” & “inflating the Weak scale”.



Benchmarking-relaxion
♦ Relaxion-models => interesting & concrete: solves the hier’ strong CP 

problems in a simple & computable way, \w definite Lagrangian. 

♦ The relaxion is light because it is axion-like particle but due to 

CP violation it mixes with the Higgs => has scalar interactions.  
Flacke, Frugiuele, Fuchs, Gupta & GP; Choi & Im (16)

Use as benchmark to compute sensitivity of variety of exp’ 
& compare them to scalar-new-physics.

Graham, Kaplan & Rajendran (15); Hook,Marques-Tavares; Gupta, Komargodski, GP & Ubaldi (16); 
Davidi, Gupta, GP, Redigolo & Shalit; Gupta; Nelson & Prescod-Weinstein (17)

it interacts \w atoms                    its variation <=> variation of all constants          
                                                                       



Relaxion’s physics
Graham, Kaplan & Rajendran (15)

♦ A dynamical solution/amelioration of the Higgs fine-tuning problem: 

(i) Add a scalar (relaxion) Higgs dependent mass:                             .
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For further use, consider the following toy model,  of a global U(1) sym’: 

µ2 < 0 ) trivial case:

H ! e
i✓
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Both Lagrangian & Higgs VEV (ground state) respect the symmetry,             .       

♦

hHi = 0

µ2(�) = 0
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evolution  
ends

Coherent relaxion dark matter

Abhishek Banerjee, Hyungjin Kim, and Gilad Perez

Department of Particle Physics and Astrophysics,

Weizmann Institute of Science, Rehovot, Israel 7610001

We show that relaxion, that addresses the hierarchy problem, can account for the observed dark

matter (DM) relic density. The setup is similar to the case of axion DM
models topped with

a dynamical misalignment mechanism. After the reheating, when the temperature is well above

the electroweak scale, the backreaction potential disappears and the relaxion is displaced from its

vacuum. When the “wiggles” reappear the relaxion coherently oscillates around its minimum as in

the case of vanilla axion DM
models. We identify the parameter space such that the relaxion is

retrapped leading to the standard cosmology. When the relaxion is lighter than 10 �4
eV, Hubble

friction during radiation-domination is su�ciently strong for retrapping, and even minimal models

are found to be viable. It also leads to a new constraint on relaxion models, as a sizable region of their

parameter space could lead to overabundant relaxion DM. Alternatively, even a larger parameter

space exists when additional friction is obtained by particle production from additional coupling to

an additional dark photon field. The phenomenology of this class of models is quite unique, as it

implies that, on the one hand, we are surrounded by a time-dependent axion-like field, while, on the

other hand, its background behaves as a time-dependent oscillating dilaton/scalar field due to the

relaxion-Higgs mixing.

Introduction. The relaxion mechanism provides an

alternative solution to the Higgs naturalness problem [1].

Within the relaxion framework, the electroweak (EW)

scale is not a fundamental scale of a UV
theory, but

emerges as a result of dynamical evolution of our uni-

verse. The Higgs mass is not a constant but rather a

time dependent function of an axion-like field, the relax-

ion. An example of the potential of relaxion and Higgs

that realizes the relaxion mechanism is [2]

V (H
,�)= (⇤ 2

�
g⇤�)|H

| 2
�

cg⇤ 3
� � ⇤ 4

br
v 2 |H

| 2
cos �

f , (1)

where ⇤ is the cuto↵ scale for the Higgs mass, f is axion

decay constant, c is an order one coe�cient, g ⇠ ⇤ 4
br /f⇤ 3,

and ⇤
br is the scale charactarizing the backreaction po-

tential, with
v being the EW

scale. A close interplay

between relaxion evolution due to the relaxion rolling po-

tential and the backreaction from Higgs-dependent relax-

ion potential allows the relaxion to be stabilized at the

vacuum that provides electroweak scale with UV param-

eters chosen in a technically natural way (for realisation

and further discussions see for instance [1, 3–8]).

In
this paper, we investigate whether the model

presented above can account for the observed dark

matter relic density, in the context of the standard

⇤CDM
cosmology with a high reheating temperature,

electroweak phase transition, and radiation domination

epoch after inflation.
The only non-SM

light degree

of freedom
in a minimal scenario is the relaxion field

itself. It is shown that via a dynamical misalignment

mechanism
the relaxion follows a viable axion-like DM

evolution.
Basic

idea.
Our basic observation is simple as

follows. During inflation, the relaxion scans the elec-

troweak Higgs mass, and settles down at one of its

local minima.
After reheating, the EW

symmetry is

restored and the backreaction potential disappears. As

a result, the relaxion field begins to evolve again, until

the backreaction potential appears at some temperature,

T
ra . Requiring that the relaxion has been trapped in a

close-by minima, the relaxion field is displaced from its

local mininum
with a certain misalignment angle, �

✓.

Consequently, when the Hubble scale drops below
its

mass, it begins to oscillates around the minimum. This

coherently oscillating relaxion field eventually constitutes

the DM
in the present universe. To understand qualita-

tively why such a “relaxion-miracle” can occur, consider

the relaxion matter density during matter radiation

equality in units of the corresponding temperature, T 4
eq :

⇢DM/T 4
eq ⇠

m 2
� f 2

/T
eqT 3

os ⇠
0.1 where we assume for

simplicity �
✓ ⇠ 1, T

os ⇠
v and ⇤

br ⇠ 0.1GeV. We show

below
that a light relaxion can be e�ciently trapped

either via the Hubble friction
during the radiation

domination era, in a truly minimal model, or via particle

production from relaxion coupling to dark photon.

M
inim

al m
odel. A viable DM

model would require

that the relaxion is on the one hand su�ciently displaced

from its minima after reheating (assuming that it is well

above the EW
scale) but on the other hand such that

the relaxion never dominates the energy density of the

universe before the matter-radiation equality, and also

keeps the Higgs mass close to its original value set by

the dynamics during inflation. Before discussing this,

let us consider the dark matter density at the begin-

ning of relaxion oscillation, Y
� (tosc ) =

n
� (tosc )/s(tosc ) '

m
�f 2(�

✓) 2
/2s(tosc ), tosc is the time when the oscillation

begins, and
s(t) is the entropy density. The tempera-

ture of the universe when the relaxion starts to oscillate

is given as
T
os ⇡ min ⇥

T
tr ,

p
m

�M
Pl

⇤
where

T
tr is the

temperature of the universe when the relaxion is trapped

by the backreaction potential, and the second term
in

the squared parenthesis is obtained by 3H(T
os ) =

m
� .

The resulting relic abundance at the present universe is

backreaction 
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Graham, Kaplan & Rajendran (15)

♦ A dynamical solution/amelioration of the Higgs fine-tuning problem: 

♦ Focus shifts from TeV Higgs dynamics to relaxion, 
    which is light & weakly coupled … 

(i) Add a scalar (relaxion) Higgs dependent mass:                             .
�
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†
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� roles till µ2 changes sign ) hHi 6= 0 ) stops rolling.(ii)



Motivation to hunt & compare sensitivity to broad class 
of scalar-new-physics in: 

(ii) time-depend. background if relaxion/scalar = dark matter (DM):
    

(i) virtual processes searching for long-range “Yukawa” force;

(a) for average DM density; (b) for relaxion stars. 

If it is ultra-light, mass < eV (today’s talk)

(ii) can affect cosmological history + astrophysics dynamics.
    

(i) can be copiously produced & detected at colliders; 

If it is heavy, mass >> eV

Flacke, Frugiuele, Fuchs, Gupta & GP; Choi & Im (16);
Frugiuele, Fuchs, GP & Schlaffer;  Fonseca, Morgante & Servant; Fonseca & Morgante(18)



Hunting a “heavy” relaxion/scalar-portal
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Figure 1. Summary of present bounds and few projections on the relaxion mass m� and the
mixing angle sin ✓ (for details see Ref. [10]): Fifth force via the Casimir e↵ect (orange) [45, 46],
astrophysical probes (light blue) [55–60] such as red giants (RG), horizontal branch stars (HB)
and the Supernova (SN) 1987A, rare meson decays (turquoise) where the strongest bounds stem
from K ! ⇡ + invisible at E949 [64], KL ! ⇡l

+
l
� at KTeV/E799 [70, 71] and B ! Kµ

+
µ
� at

LHCb [65, 66]. Beam dump experiment for � production from K- and B-decays at CHARM [61–
63] and a projection from SHiP [72] (red dotted). Constraints from the �Z interaction (green) via
Z ! Z

⇤
� and e

+
e
�

! Z� at LEP [67, 68] and projections for the same processes at the FCCee
(green dashed). Untagged Higgs decays (blue) at the LHC Run-1 [10] and projections for the
FCCee and TeraZ (blue, dash-dotted, see Sect. 4.1.1). The gray contours of the relaxion lifetime
of ⌧� = 1 s, 1017 s and 1026 s indicate the beginning of BBN, the lifetime of the universe and safety
from constraints of extragalactic background light, respectively. The black line shows the upper
bound on the mixing according to Eq. (2.12).

3.2 CP-odd couplings

Pseudoscalar couplings of the relaxion originate from the backreaction sector, and thus

they depend on the details of the specific model as we briefly discussed in Sect. 2.1. The

perspectives to probe the relaxion via these CP-odd couplings are subject to the relative

size of the CP-odd and -even couplings.

In the following we focus on the mass region above 5GeV and we refer to Refs. [20, 87,

88] for a detailed discussion of the phenomenology of axion-like particles with sin ✓ = 0. As

it was shown in Ref. [87], heavy-ion collisions at the LHC can provide the best limits on

CP-odd photon couplings in the 5GeV–100GeV mass range. Considering Pb-Pb collisions

– 9 –

Frugiuele, Fuchs, GP & Schlaffer (18)

today’s talk
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Relaxion/scalar light dark matter
Banerjee, Kim & GP (18)



Concrete ex.: relaxion dark matter (DM)

♦ Basic idea is similar to axion DM (but avoiding missalignment problem):

V (�)

�

�

Banerjee, Kim & GP (18)
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Coherent relaxion DM relic density

♦ Basic idea is similar to axion DM (but avoiding missalignment problem):

Now the relaxion not at the min’ and start to oscillates = DM.

2

⌦� = m�Y�s(t0)/⇢crit, which can be written as

⌦�h
2

⇡ 3 ⇥ (�✓)2T=Tos

✓
⇤br

1 GeV

◆4 ✓100 GeV

Tos

◆3

, (2)

where the observed DM abundance is ⌦DMh
2

' 0.12 [9].
Consider the case where the reheating temperature is
above the EW scale or at least above Tra . In order
for it to be retrapped, a source for dissipation must be
present. For this we consider two possibilities; Hubble
friction due to the radiation dominated universe, and
particle production from relaxion coupling to dark pho-
tons. Let us first consider the minimal case where the
relaxion evolution is only regulated via Hubble friction,
�̈ + 3H�̇ + @V (v, �)/@� = 0 . We have assumed that the
relaxion field is homogeneous over the size of observable
universe as a result of inflation, � = �(t). The solu-
tion to the equation of motion in radiation dominated
universe is given as �̇(t) = 2

5g⇤3
t
⇥
1 � (trh/t)5/2

⇤
where

trh is the proper time at the reheating. The kinetic en-
ergy should be smaller than the backreaction potential at
T = Tra, �̇(tra) . ⇤2

br so that the relaxion is trapped by
backreaction potential [10]. In addition, the Higgs mass
change should be smaller than electroweak scale. These
constraints are interpreted as

⇤2
br

f
= m� . 5H(Tra) and

⇤4
br

f
.

p
20⇤vH(Tra) . (3)

The condition on the left is obtained by requiring the
kinetic energy to be smaller than the backreaction po-
tential, while the one on the right is obtained by requir-
ing the Higgs mass change to be smaller than EW scale.
Given ⇤2

br . ⇤v [3] the first condition is always stronger
than the second one. This indicates that if the relaxion
mass is smaller than the Hubble scale at Tra, the relax-
ion evolution after the reheating is under control such
that it can be trapped by the backreaction potential at
T = Ttr = Tra, while it does not change the Higgs mass
very much from the EW scale. The relaxion field excur-
sion (e↵ective misalignment) is given by

�✓ =
��

f
'

1

20


m�

H(Tra)

�2

. (4)

For m� ' H(Tra), we see that the misalignment angle is
�✓ ⇠ 0.1. From Eq. (2), the observed relic abundance
could be achieved for m� ' 10�5 eV and f ' 1014 GeV.
For lighter relaxion mass, m� . H(Tra), the misalign-
ment angle is suppressed, while the relaxion begins to
oscillate later (T 2

os ⇠ m�MPl), and the relic abundance
scales as ⌦�h

2
/ m

9/2
f

2 [11]. Restricting the relaxion
decay constant to be sub-Planckian, we find that the DM
window for our minimal scenario is

10�14

✓
Tra

10 MeV

◆ 16
9
✓

MPl

f

◆ 4
9

. m�

eV
. 10�4

✓
Tra

v

◆2

. (5)

We finish this part by noting that there is a sizable
region that potentially lead to a relaxion overabundance,

resulting in a new constraint on minimal models:

m� . 10�7 eV ⇥

✓
Tra

100 GeV

◆ 16
9
✓

MPl

f

◆4/9

. (6)

Dissipation from dark photons. The main di�-
culty for heavier relaxion, m� & 5Hra, is that the kinetic
energy of relaxion is too large to be trapped by backre-
action potential. We thus below focus on this case, oth-
erwise the results presented above holds. The model’s
parameter space is extended to heavier relaxion mass
once we introduce couplings to new fields. In particu-
lar adding a coupling to dark photons via the operator
(rX/4f)�Xµ⌫

eXµ⌫ , with the dark photon field strength

Xµ⌫ = @µX⌫ � @⌫Xµ, and its dual eX, would lead to a
new source of dissipation (see e.g. [12, 13]). The new
interaction introduces a source term to the equation of
motion for relaxion,

�̈ + 3H�̇ +
@V (v, �)

@�
= �

rX

4fa4
hXµ⌫

eXµ⌫
i,

providing additional channel for relaxion to dissipate its
kinetic energy. At the same time, nonzero kinetic energy
triggers an exponential production of dark photon. To
illustrate this point, we first expand the dark photon field
in Fourier space,

~X(⌧, ~x) =

Z
d
3
k

(2⇡)3

X

�=±

h
~✏�(k̂)a~k,�e

i~k·~x
X�(⌧,~k) + h.c.

i
,

and find the equation of motion for dark photon as
X

00
± + (k2

⌥ rXk✓
0)X± = 0 , where the prime denotes

a derivative with respect to the conformal time, d⌧ =
dt/a(t), and ✓ ⌘ �/f . The nonvanishing classical back-
ground, ✓

0
6= 0, leads to exponential production of one

of the helicity modes. Thus, eventually, the source term
in the equation of motion becomes comparable to the
other terms, e↵ectively alleviating the slope of relaxion
potential. As a result, the relaxion field-velocity ap-
proaches an asymptotic value [12], |✓̇X | ⌘ r⇠H, where
the coe�cient r⇠ depends on relaxion parameter only
logarithmically, and numerically takes a value around
⇠ ⌘ r⇠ rX ⇠ O(10) [14]. The time scale that this par-

ticle production kicks in is tpp = H
�1
pp ' (5r⇠)

1/2
m

�1
� .

Once particle production becomes e�cient, the relaxion
kinetic energy is a decreasing function in time. Thus,
unlike in the minimal case, even if the relaxion kinetic
energy is larger than the barrier size at Tra, the relaxion
would be trapped eventually as the asymptotic velocity,
✓̇X , is decreasing with time.

In order to determine the resulting DM density in the
presence of dark photons, we need to evaluate the time of
trapping, H

�1
tr , and the misalignment angle as a function

of the model parameters. The Hubble parameter, Htr, is
set according to:

Htr '

(
Hra ⌘ H(Tra) if |✓̇(Tra)| . m� ,

m�/r⇠ if |✓̇(Tra)| & m� ,
(7)
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Given ⇤2
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f
'

1

20


m�

H(Tra)

�2

. (4)

For m� ' H(Tra), we see that the misalignment angle is
�✓ ⇠ 0.1. From Eq. (2), the observed relic abundance
could be achieved for m� ' 10�5 eV and f ' 1014 GeV.
For lighter relaxion mass, m� . H(Tra), the misalign-
ment angle is suppressed, while the relaxion begins to
oscillate later (T 2

os ⇠ m�MPl), and the relic abundance
scales as ⌦�h

2
/ m

9/2
f

2 [11]. Restricting the relaxion
decay constant to be sub-Planckian, we find that the DM
window for our minimal scenario is

10�14

✓
Tra

10 MeV

◆ 16
9
✓

MPl

f

◆ 4
9

. m�

eV
. 10�4

✓
Tra

v

◆2

. (5)

We finish this part by noting that there is a sizable
region that potentially lead to a relaxion overabundance,

resulting in a new constraint on minimal models:

m� . 10�7 eV ⇥

✓
Tra

100 GeV

◆ 16
9
✓

MPl

f

◆4/9

. (6)

Dissipation from dark photons. The main di�-
culty for heavier relaxion, m� & 5Hra, is that the kinetic
energy of relaxion is too large to be trapped by backre-
action potential. We thus below focus on this case, oth-
erwise the results presented above holds. The model’s
parameter space is extended to heavier relaxion mass
once we introduce couplings to new fields. In particu-
lar adding a coupling to dark photons via the operator
(rX/4f)�Xµ⌫

eXµ⌫ , with the dark photon field strength

Xµ⌫ = @µX⌫ � @⌫Xµ, and its dual eX, would lead to a
new source of dissipation (see e.g. [12, 13]). The new
interaction introduces a source term to the equation of
motion for relaxion,

�̈ + 3H�̇ +
@V (v, �)

@�
= �

rX

4fa4
hXµ⌫

eXµ⌫
i,

providing additional channel for relaxion to dissipate its
kinetic energy. At the same time, nonzero kinetic energy
triggers an exponential production of dark photon. To
illustrate this point, we first expand the dark photon field
in Fourier space,

~X(⌧, ~x) =

Z
d
3
k

(2⇡)3

X

�=±

h
~✏�(k̂)a~k,�e

i~k·~x
X�(⌧,~k) + h.c.

i
,

and find the equation of motion for dark photon as
X

00
± + (k2

⌥ rXk✓
0)X± = 0 , where the prime denotes

a derivative with respect to the conformal time, d⌧ =
dt/a(t), and ✓ ⌘ �/f . The nonvanishing classical back-
ground, ✓

0
6= 0, leads to exponential production of one

of the helicity modes. Thus, eventually, the source term
in the equation of motion becomes comparable to the
other terms, e↵ectively alleviating the slope of relaxion
potential. As a result, the relaxion field-velocity ap-
proaches an asymptotic value [12], |✓̇X | ⌘ r⇠H, where
the coe�cient r⇠ depends on relaxion parameter only
logarithmically, and numerically takes a value around
⇠ ⌘ r⇠ rX ⇠ O(10) [14]. The time scale that this par-

ticle production kicks in is tpp = H
�1
pp ' (5r⇠)

1/2
m

�1
� .

Once particle production becomes e�cient, the relaxion
kinetic energy is a decreasing function in time. Thus,
unlike in the minimal case, even if the relaxion kinetic
energy is larger than the barrier size at Tra, the relaxion
would be trapped eventually as the asymptotic velocity,
✓̇X , is decreasing with time.

In order to determine the resulting DM density in the
presence of dark photons, we need to evaluate the time of
trapping, H

�1
tr , and the misalignment angle as a function

of the model parameters. The Hubble parameter, Htr, is
set according to:

Htr '

(
Hra ⌘ H(Tra) if |✓̇(Tra)| . m� ,

m�/r⇠ if |✓̇(Tra)| & m� ,
(7)

 For mϕ ≳ H(Tra) : ρcos
DM ∼

 For mϕ < H(Tra) : extra suppression is obtained as oscilation starts when H(Tosc) ∼ mϕ .

ρcos
DM ∼ m2Δϕ2Light-coherent DM abundance:



Relaxion dark matter, parameter space

♦ If the relaxion oscillates due to its mixing with the Higgs all 

constants of nature + masses now oscillates.
Banerjee, Kim & GP (18)

Arvanitaki, Huang & Van Tilburg (15)
δme

me
≲ ye sinϕh

ρDM

memϕ
sin(mϕt)

Banerjee, Kim & GP (18)

One second
coherent time



(ii) Is the amplitude large enough to probe meaningful models?
    

Two relevant questions

(i) Notice that relevant models have osc. freq. 1 - 1014 Hz.
     Can we probe these?



Figure 3: Preliminary comparison of the sensitivity of various probes of atomic clocks to a relaxion-DM
model which couples to the SM fields only via mixing with the Higgs [92]. On the horizontal axis we shod
the relaxion mass and on the vertical one we show the mixing angle with the Higgs. de stands for the time
dependent component of the fine coupling constant, the bound on dg (the coefficient of the time dependent
component of ↵s, the strong coupling) assumes a working 229Th nuclear clock with a 1 : 1019 precision [99],
⌧int stands for the total assumed integration time and �1 stands for the corresponding stability (see [54]). The
dashed-red line on the diagonal corresponds to the maximal mixing allowed in this scenario (see e.g. [70])
and ⇤br is defined in Eq (2). For brief discussion of dynamic decoupling, as relevant for this proposal, see
discussion in 3.3.

since the relaxion mass is suppressed while the mixing angle remains the same, slightly larger mixing
angle is allowed. Furthermore, the relaxion can interact with SM fermions with a coupling strength
much stronger than relaxion-fermion coupling induced by mixing and even stronger than usual pNGB-
fermion coupling, when additional shift symmetry breaking source is introduced. This in particular
induce a stronger signal for the precision experiments discussed below and allows a deviation from the
"higgs-portal" type of couplings. Finally, in case where the shift breaking sources respect an internal
Z2 symmetry, the leading relaxion coupling to matter could be quadratic as opposed to linear. As
a consequence the 5th-force experiments, that mainly search for static virtual exchange processes of
light scalars, might become significantly less sensitive to our scenario [89], a fact that reinforces the
need for the direct probe of time-dependent backgrounds, the basic thrust of this proposed project.

3.2 Entangled isotope shift, and comments on time dependence

The Ozeri group at the Weizmann Institute has launched a project of precision measurement of the
isotope shifts (ISs) of optical clock transitions in several atomic ion species. As mentioned above and
shown in Fig. 2, the technique used for precision measurements of isotope shifts is the synthesis of
entangled state that evolve at the isotope shift frequency directly; i.e. an isotope-shift atomic clock.
In this project isotope shifts of two different optical clock transition in Yb+ and Ca+ ions will be
measured in order to check the linearity of a King-plot comparison of these transition and search for
possible new light scalar forces [60]. We propose to use similar measurements to search for, or provide
bounds on, possible time variation of the isotope shift (IS) of clock transitions. The entangled system
can provide us with a direct probe of time-dependent-isotope-shift and thus very unique not only in
term of its experimental precision and stability but also due to the fact that it is sensitive to both
standard and non-standard theoretical entities. While it is sensitive to time dependence quark and
electron masses (say when compared to other clocks or cavities as explained above) it is also directly
sensitive to time dependent-mass-shift or field shift. In terms of effective non-relativistic expansion
(see e.g. [100] and Refs. therein) these are given by a different set of operators. Thus, in principle, the
above method lead to a unique sensitivity to an abstract unknown source of new physics in addition
to a more standard variation of masses and other fundamental couplings. With aiming at a precision
of 5 mHz in isotope shift measurements, which translates to a fractional precision of ' 10�11 in the
isotope shift, we will be able to check for drifts in the isotope shift over the course of weeks and
months as compared with a Cs clock provided by GPS. In particular this measurement will be able
to place bound on the change of the ration between the electron and the neutron masses, me/mn, at

8

Constraining sub-Hz relaxion DM

de stands for the time dependent component of the fine coupling constant, the bound on dg (the coefficient of the time dependent component of αs, 
the strong coupling) assumes a working 229Th nuclear clock with a 1 : 1019 precision, τint stands for the total assumed integration time and σ1 stands 
for the corresponding stability. The dashed-red line on the diagonal corresponds to the maximal mixing allowed in this scenario, Λbr corresponds to 
a coupling in the relaxion model.

GP, Redigolo, Safronova, Ubaldi & Zupan, in preparation.  

HCI to optical, τint = 10
6 

s, σ1=10
-16

, ∆ν/ν = 10
-19 

Interesting relaxion 
DM models

Graham, Kaplan, Mardon, Rajendran & Terrano; Arvanitaki, Dimopoulos & Van Tilburg; Van Tilburg, Leefer, Bougas & Budker  (15) 

(de,α ∼ δme, δα /me, α)



(ii) Is the amplitude large enough to probe meaningful models?
    

Back to our 2 questions

(i) Notice that relevant models have osc. freq. 1 - 1014 Hz.
     Can we probe these?

However, gravity can help: dark matter might form “relaxion-
planets” that might be trapped around earth-gravitational field. 

(similar to axion-stars requiring stability and assuming capturing & coherence)

Banerjee, Budker, Eby, Kim, GP, in Prep.

Kimball, et al. (17)



Beyond 1Hz DM mass \w dynamical decoupling (DD)

Aharony, Akerman, Ozeri, GP & Shaniv & Savoray, in prep. (ion-cavity comparison)

Figure 1: Current bound on the relative modulation of the transition frequency from a DD experiment,
placed at 95% CL. The dashed line marks the current sensitivity reach, corresponding to scanning over ⌫m.
The inset is a magnified view of m ⇠ 10�8eV.

by about two orders of magnitude. We also note that in the current setup, the signal was encoded in the

coherence of the ion’s superposition, or alternatively the amplitude of the Ramsey fringe [18]. Since both

the signal and the experimental imperfections (e.g. ⇡ pulse fidelity) tend to decrease the fringe amplitude,

the bound would be ultimately limited by the experimental apparatus. However, in the case of large enough

quality factor of the �me and �↵ oscillations, it would be useful to synchronize di↵erent experiment realiza-

tions via an external clock, such that for a specific ⌫m, di↵erent experimental realizations would measure

signal oscillations with a known phase di↵erence [22, 23]. This would allow to infer the signal amplitude

from the final superposition phase, separating it from the coherence of our atom.

Bounds on Light Scalar Dark Matter from DD Experiments Using these results, we obtain upper

limits on the values of g�e and g�� at 95% CL, and present them in Fig. 2a and Fig. 2b, respectively. The

background DM density is assumed to be ⇢DM = ⇢DM� = 3.1 · 10�6 eV4, which is the local DM density

around the sun [24]. As shown in Eq. 7, the measurement is sensitive to variations in ↵ in the entire range,

but is not sensitive to variations in me at low frequencies. For our analysis, we assumed a sharp transition

between d↵ sensitivity and dme + 2d↵ sensitivity at ⌫ = 50 kHz, namely F (⌫) = ⇥(⌫ � 50 kHz), where ⇥ is

the Heaviside step function. The step frequency ⌫step = 50 kHz is the ratio between the speed of sound in our

cavity spacer v ⇡ 5km
s and the cavity length r ⇡ 0.1 m. The black dashed line is the projected sensitivity for

the proposed method, corresponding to scanning the experimental modulation frequency ⌫m. We compare

our results with the current bounds obtained from experiments testing deviations from gravity (Equivalence

Principle (EP) and fifth force) and Naturalness - both are explained below.

We would like to further interpret our results in accordance to the relaxion [25] model, which was recently

shown to be a viable DM candidate [8]. The interactions of a relaxion DM with the SM fields are mediated

through its mixing with the Higgs, and thus the corresponding couplings are no longer independent. The

4

Preliminary



Beyond 1Hz DM mass \w dynamical decoupling

(c)

Figure 2: Bounds on the parameter space of light scalar DM corresponding to the observed DM density near
the sun. The bounds on the couplings of a generic DM candidates are shown in (a) and (b). The bounds
on the mixing angle of a relaxion DM are presented in (c). Black – current and projected bounds from DD
experiments at 95% CL. Red – Bounds from fifth force experiments [30]. Magenta – EP-tests bounds taken
from [20]. Dash-dotted – Bounds from Naturalness.

8

Preliminary

Aharony, Akerman, Ozeri, GP & Shaniv & Savoray, in prep. (ion-cavity comparison)

The bounds on the mixing angle of a relaxion DM: Black – current and projected bounds from DD experiments at 95% CL. Red – Bounds from 
fifth force experiments. Magenta – EP-tests bounds. Dash-dotted – Bounds from Naturalness. 



Searching for a relaxion DM planet around us

Rstar ≈
M2

Pl

m2
ϕ

1
MEarth

(M* ≪ MEarth) .
Assume small DM density & large 
radius => mass-radii relation:

Eby, Leembruggen, Street, Suranyi & Wijewardhana (18);

Banerjee, Budker, Eby, Kim, GP, in Prep.

Can obtain large density enhancement:

r ≡
ρstar

ρloc−DM
∼ ξ

M4
Earth m6

ϕ

M6
Pl ρloc−DM

∼ ξ × 1028 × ( mϕ

10−10 )
6

ξ ≡ Mstar /MEarth



Large star DM density => visible effect
Aharony, Akerman, Ozeri, GP & Shaniv & Savoray, in prep. (ion-cavity comparison); Banerjee,  Budker, Eby, Kim, GP, in Prep.

Prelim.
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Figure 3: Bounds for a relaxion star centered around earth.
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♦ Null-LHC + new paradigms + incredible sensitivity => new era!

♦ Relaxion-benchmarking allows to compare sensitivities.

Conclusions

♦ Relaxion-DM: dynamic decoupling -> strong bounds but cannot 

compete \w 5th force & can’t probe physical region. 

♦ Relaxion-DM-stars: table-top probe physical region, stronger 

than 5th force & can/should compare \w space.
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Large star DM density => visible effect
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Large star DM density => visible effect
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Subjective particle physicist perspective

�37

Theoretical motivation

Exp. sensitivity
Precision frontier 

Supersymmetry;
Composite Higgs

QCD axion

Axion-like particles
Relaxions

Axion dark matter

Dilaton dark matter
Topological dark matter

Lorentz violation
CPT



Beyond 1Hz DM mass \w dynamical decoupling

Aharony, Akerman, Ozeri, GP & Shaniv & Savoray, in prep.
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Beyond 1Hz DM mass \w dynamical decoupling

Aharony, Akerman, Ozeri, GP & Shaniv & Savoray, in prep.
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FIG. 1. Constraints on a Z0 gauge boson from U(1)B�L.
KLV bound from existing IS data: Ca+ with uncertainty
� ' 0.1MHz (397 nm vs. 866 nm [32], solid red line). KLV
projections for � = 1Hz assuming linearity in Ca+ (S ! D
transitions, red, dashed), Sr+ (blue, dotted), Sr/Sr+ (blue,
dashed), and Yb+ (black, dash-dotted) [26]. For compar-
ison, bounds from fifth-force searches via the Casimir ef-
fect [41, 42] (blue), neutron scattering [43–45] (orange), Ry-
dberg states [46–48] (dark blue), energy level shifts in H
and He [11] (turquoise), ⌫ � e scattering at GEMMA and
Borexino [49] (purple), and beam dump experiments [2, 3, 50]
(green). Astrophysical and cosmological probes (beige): su-
pernova 1987A with O(1) uncertainties [51–53] (SN, the area
below the dotted line), horizontal branch stars [51, 54–57]
(HB, the area left of the dashed line) and BBN viaNe↵ [58, 59]
(the area above the solid line).

1. Laboratory bounds

The existence of a fifth force is severely constrained for
a mass MZ0 . 100 eV by experiments testing the Casimir
e↵ect [41, 42].

In contrast to KLV, other atomic precision measure-
ments such as energy level shifts in Rydberg states [46–
48] and in s- and p-states of atomic H and hydrogen-like
He+ [11] provide bounds on ypye where yp is the proton
coupling. In the massless limit, MZ0 ⌧ (1 + ne)/a0, the
NP potential probed by these observables simplifies to a
Coulomb potential. In this case the NP interaction is ab-
sorbed by a redefinition of the fine-structure constant ↵,
resulting in a weakening of the bounds. Due to its sensi-
tivity to yeyn, KLV is not a↵ected by this redefinition so
that its bound remains constant in the massless limit and
is the strongest among the atomic spectroscopy bounds
for mediator masses below 0.3 eV. The intersection of

FIG. 2. Existing bounds on the neutron coupling gn of a
new boson � from the neutron-electron scattering length
in Pb, Bi and noble gases denoted as neutron optics [43]
(orange, dashed); n-208Pb scattering at neutron energies of
En ⇠ 1 keV-26 keV [61] (green, dotted), 10 eV-10 keV [43]
(blue, solid) and up to 20 keV including interference of reso-
nant and non-resonant amplitudes [45] (purple, dotted); and
the comparison of the total to the forward scattering cross
section of neutrons on nuclei [44] (red, dash-dotted). For dis-
cussion see Sect. IVA1.

the Ca+ and Rydberg bound was determined following
Ref. [48] and lies below the mass range shown in Fig. 1.
Yet, one needs to keep in mind that for MZ0  0.3 eV
also other constraints apply, such as from the Casimir
e↵ect mentioned above or from tests for a deviation from
the Coulomb force, see e.g. Ref. [60].
Neutron scattering is a powerful probe of the interac-

tion between new bosons and neutrons over a wide mass
range. Among the neutron scattering experiments, neu-
tron optics [43] provides the strongest constraint on gn,
in this model equivalent to gB�L, in the mass range of
MZ0 . 500 eV. For 500 eV . MZ0 . 5 keV, the com-
parison of the total to the forward scattering cross sec-
tion [44] is most sensitive. Above MZ0 ⇠ 5 keV, the
neutron-lead (n-Pb) scattering [45] sets the strongest
bound. This method is based on the proposal by Ref. [61]
whose bounds are superseded by the ones reported in
Refs. [43, 45]. The collection of the various bounds is
shown in Fig. 2, the limit presented in Fig. 1 shows the
best bound for each mass. When comparing to KLV,
the considerable uncertainties on the neutron scattering
bounds need to be kept in mind [44, 62–64]. In par-
ticular, the uncertainties related to the electron-neutron
scattering length, various nuclear inputs, and the missing
higher-order terms in the neutron-scattering cross sec-
tion, are not easy to determine precisely. Similarly, the

5

Complementarity with astro/cosmo’ bounds:



King comparison

♦ Level of linearity can be quantified by comparing area

   of triangle to that of a cube:

1

Constraining new light force-mediators by isotope shift spectroscopy
Supplementary Material

Julian C. Berengut, Dimtry Budker, Cédric Delaunay, Victor V. Flambaum, Claudia Frugiuele, Elina Fuchs,
Christophe Grojean, Roni Harnik, Roee Ozeri, Gilad Perez, and Yotam Soreq

I. VISUALIZING THE VECTOR SPACE

In the main text we define the following vectors in the A
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i, the resulting King plot will be linear. In Fig. S1, we illustrate the

vector space of the various components related to isotope shifts that leads to the nonlinearites. The NP contribution

to IS, ↵NPXi
~h, may lift the IS vectors from the (�!mµ,
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2
i) plane, resulting in a nonlinear King plot. Fig. S2

illustrates a nonlinear King plot, where the area of the triangle corresponds to the NL of Eq. (6).
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FIG. S1: Left: A cartoon of the prediction of factorization, Eq. (5) in vector language. All of the isotope shift measurements

(which are here three dimensional vectors �!m⌫1,2) lie in the plane that is spanned by �!mµ and
����!
m�hr2i. This coplanarity can be

tested by measuring whether �!m⌫1,
�!m⌫2 and �!mµ are coplanar. Right: In the presence of new physics the isotope shift get a

contribution which can point out of the plane. A new long range force can spoil the coplanarity of �!m⌫1,
�!m⌫2 and �!mµ.
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����!
m�hr2i. This coplanarity can be

tested by measuring whether �!m⌫1,
�!m⌫2 and �!mµ are coplanar. Right: In the presence of new physics the isotope shift get a

contribution which can point out of the plane. A new long range force can spoil the coplanarity of �!m⌫1,
�!m⌫2 and �!mµ.
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j , j = 1, 2, 3. The area of the triangle corresponds to the NL of Eq. (6).
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In this language LO factorization implies the follow-
ing qualitative statement: any vector of reduced isotope
shifts, �!

m⌫i, must lie in the plane that is defined by �!
mµ

and
����!
m�hr

2
i, as illustrated in the cartoon in the left panel

of Fig. S1.

Note that, because the direction of
����!
m�hr

2
i in this space

is uncertain, theory does not tell us in which direction
this plane is oriented. However, by measuring two IS
vectors, �!

m⌫1 and �!
m⌫2, we can test this statement by

asking whether the three vectors �!
m⌫1,

�!
m⌫2, and �!

mµ are
coplanar. The coplanarity of these vectors corresponds
to King linearity as we can see by rewriting Eq. (3) in
vectorial form �!

m⌫2 = K21
�!
mµ+F21

�!
m⌫1. Like King lin-

earity, coplanarity is a purely data driven test of LO fac-
torization since it is independent of theoretical input. A
change in Ki and Fi will merely change the direction of
�!
m⌫1 and �!

m⌫2 within the plane, but the qualitative state-
ment of coplanarity remains.

In this vector language we can provide a compact ex-
pression for a nonlinearity measure,

NL =
1

2
|(�!m⌫1 ⇥

�!
m⌫2) ·

�!
mµ| . (6)

In terms of the King plot, NL is the area of the triangle
spanned by the three points shown in Fig. S2. Equiva-
lently, in our geometrical picture it is the volume of the
parallelepiped defined by �!

m⌫1,2 and �!
mµ. A given data

set is considered linear if NL is smaller than its first-order
propagated error �NL =

p
⌃k(@NL/@Ok)2�2

k where the
sum runs over all measured observables Ok (modified fre-
quency shifts and isotope masses) with standard devia-
tions �k.

III. NEW PHYSICS AND VIOLATION OF
KING LINEARITY

We now include a NP contribution by adding a third,
also factorized, term to Eq. (2),

⌫
AA0

i = Ki µAA0 + Fi �hr
2
iAA0 + ↵NPXi �AA0 , (7)

namely Xi depends on the form of the new potential and
on the electronic transition, while �AA0 depends only on
the nuclear properties. The parameter ↵NP is the NP
coupling constant which we would like to probe.

Let us first mention two cases of NP which we do not
expect to be able to probe by testing King linearity. For
short-range NP (shorter than the nuclear size), the elec-
tronic parameters Xi will be proportional to those of FS,
Xi / Fi. In this case the NP term can be absorbed
by redefining �hr

2
iAA0 . Also, if the new physics couples

to electrons and nuclei according to their electric charge
(such as the case of dark-photon [34]), �AA0 = 0. There
may also be cases in which NP can accidentally be ab-
sorbed by redefining Fi. However, a long-range force with
couplings not proportional to the electric charge (and

barring an accidental cancellation) can be severely con-
strained by tests of King linearity.

Equation (3) written in vectorial form becomes

�!
m⌫2 =K21

�!
mµ+F21

�!
m⌫1+↵NP

~hX1 (X21�F21) , (8)

where ~h is the NP vector in reduced frequency units, that
is hAA0 ⌘ �AA0/µAA0 and X21 ⌘ X2/X1. One can see
that NP can lead to a deviation from coplanarity if and
only if (i) the new force is not short-range, X21 6= F21;

(ii) ~h is not aligned with any linear combination of �!
mµ,

�!
m⌫1 or �!

m⌫2.
By solving the set of equations (7) one finds an expres-

sion for ↵NP that is needed to yield a particular dataset
{
�!
m⌫1,

�!
m⌫2,

�!
mµ},

↵NP =
(�!m⌫1 ⇥

�!
m⌫2) ·

�!
mµ

(�!mµ ⇥ ~h) · (X1
�!
m⌫2 � X2

�!
m⌫1)

, (9)

assuming NP is the dominant contribution to non-
linearity. If linearity holds then ↵NP . �↵NP =p

⌃k(@↵NP/@Ok)2�2
k. Hence, the sensitivity to probe

↵NP is lost in the limit where the denominator in Eq. (9)
vanishes, because the NP contribution to nonlinearity is

NLNP =
↵NP

2
(�!mµ ⇥ ~h) · (X1

�!
m⌫2 � X2

�!
m⌫1) . (10)

It is straightforward to check that this happens under the
conditions specified below Eq. (8).

The presented method of limiting ↵NP, Eq. (9), con-
tains theory input only in Xi and hAA0 which describe
how NP a↵ects the IS. The SM contribution in the fac-
torized limit is fully parametrized by the observables ~⌫i

and ~µ. The form of hAA0 depends on the assumed cou-
plings of new physics to nuclei. For example, if the
new interaction couples to quarks, then we expect that
hAA0 / AA

0 [17, 35]. The atomic transition-dependent
factors X1,2 can be reasonably calculated by a many-
body simulation (see the next section). This strategy is
analogous to a search for NP, say, at the LHC, where all
SM backgrounds are estimated using data driven meth-
ods and Monte Carlo simulation is used only in estimat-
ing the signal cross section.

Thus far, most measurements of scalar-isotope shifts
have been consistent with King linearity (see, however,
the case of Samarium [36]). Nevertheless, some level of
nonlinearity is expected to arise from SM higher-order
contributions [37–40]. These contributions, that are re-
lated to nuclear physics and electronic-structure dynam-
ics linked together, are presently not understood in a
quantitative manner for many-electron systems. One
possible source of nonlinearities is of the form of a field
shift that depends on the isotope mass. Precision calcula-
tions recently showed that this e↵ect is of O(10�3

�10�4)
in light atoms [41]. Likewise, such contributions in heav-
ier elements with Z = 20 � 87 [39], but only for S ! P

transitions, are estimated to be of a similar order. Hence,
matching the precision of future measurements motivates
the calculation of the remaining higher-order corrections.
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King linearity implications

♦ Linearity implies that                    must be linearly 
dependent:

�!m⌫2 & �!m⌫1

�!m⌫2 = K2
�!mµ + F2 ~v +O

�
10�4

�

�!m⌫1 = K1
�!mµ + F1 ~v +O

�
10�4

�

�hr
2
iAA0 ⌘ hr

2
Ai � hr

2
A0i, where rA is the nuclear charge

radius of isotope A. In contrast to µAA0 , �hr
2
iAA0 is

subject to large experimental uncertainties. The compo-
sition of the IS in terms of products of purely electronic
and purely nuclear quantities is referred to as factoriza-
tion [27]. As a result, these two leading contributions
amount to the total IS as

⌫
AA0

i = Ki µAA0 + Fi �hr
2
iAA0 + . . . , (2)

where the first term represents the MS and the second
one the FS [27, 28]. The dots denote possible higher order
corrections and NP contributions which we will discuss
below. It is useful to normalize the frequency shifts by
the reduced mass µAA0 to obtain the so-called modified
isotope shifts, m⌫

AA0

i ⌘ ⌫
AA0

i /µAA0 , which we will use
in the following. As a consequence, the mass shift is
reduced to the electronic factor Ki whereas the FS factor
Fi is multiplied by the modified charge radius variance,
m�hr

2
iAA0 ⌘ �hr

2
iAA0/µAA0 .

When considering several pairs of isotopes, the modi-
fied Eq. (2) can be written in vectorial form as

�!
m⌫i = Ki

�!
mµ+ Fi

����!
m�hr

2
i , (3)

where each line corresponds to one set of isotopes. For
the example of four isotopes combined to three isotope
pairs {A,Aa}, where a = 1, 2, 3 and A is the reference
isotope, the IS vector of transition i is given by �!

m⌫i =

(m⌫
AA1
i ,m⌫

AA2
i ,m⌫

AA3
i ), and

����!
m�hr

2
i accordingly. The

mass shift vector is denoted by �!
mµ = (1, 1, 1).

With measurements of two transitions i = 1, 2 the un-
known charge radius distribution can be replaced by mea-

sured quantities. Solving Eq. (3) with i = 1 for
����!
m�hr

2
i

and replacing it in the equation with i = 2 leads to

�!
m⌫2 = K21

�!
mµ+ F21

�!
m⌫1 , (4)

with F21 ⌘ F2/F1 and K21 ⌘ K2 � F21K1. Hence, this
replacement gives rise to a linear dependence between the
two sets of modified frequency shifts �!

m⌫1,2, referred to
as King linearity [27].

In order to quantify the observed linearity, we define a
measure of nonlinearity [26],

NL = (�!m⌫1 ⇥
�!
m⌫2) ·

�!
mµ , (5)

which corresponds to the volume of the parallelepiped
spanned by the vectors �!

m⌫1,
�!
m⌫2 and �!

mµ (for illustra-
tion see Ref. [26]). King linearity is considered to hold if
the measure NL is smaller than its uncertainty �NL1.

1 At the present level of experimental accuracy, the uncertainties
on the isotope masses are smaller by several orders of magnitude
than those of the frequency shifts (e.g. O(10�5) smaller for Yb
masses [29] with the present IS accuracy of 0.1�1MHz [30, 31]).
Therefore we will neglect them in our numerical evaluation. Once
the uncertainties of IS measurements will be significantly re-
duced, the mass uncertainties will have to be taken into account.

In several atoms and ions, King linearity has indeed
been established within the experimental uncertainty of
� = 0.1MHz on the IS, see e.g. Refs. [30–34].
In Ref. [26] it was shown that new physics contribu-

tions from light bosons interacting with electrons and
neutrons can lead to a deviation from the linear relation
in Eq. (4). Thereby, the observation of linearity allows
to set bounds on the mass and coupling of a possible new
force mediator.
To be specific, a new physics contribution is added as

a third term to Eq. (2)

�!
m⌫i = Ki

�!
mµ+ Fi

����!
m�hr

2
i+ yeynXi

~h , (6)

where ye, yn are the couplings of a new boson to electrons
and neutrons, respectively. Furthermore, we have intro-
duced the electronic NP factor Xi and the reduced iso-
tope dependence ~h. Both of them are model-dependent;
a specific expression is given below. Proceeding as in
the SM case, one can express �!m⌫2 as a function of �!m⌫1,
yielding

�!
m⌫2 = K21

�!
mµ+ F21

�!
m⌫1 + yeyn

~h (X2 �X1F21) . (7)

Thus, NP can break King linearity. For unit coupling,
the NP contribution to NL is given by the projection of
~h onto the normal vector of the King plane,

NLNP = [�!mµ⇥ (X2
�!
m⌫1 �X1

�!
m⌫2)] · ~h . (8)

NLNP vanishes if

(i) NP mediates a short-range interaction, shorter than
the nuclear size. In this case the electronic param-
eter Xi becomes proportional to the electronic pa-
rameter of the FS, namely Xi / Fi so that the
bracket in Eq. (7) vanishes or

(ii) the isotope-dependent NP contribution ~h is propor-
tional either to �!

mµ or to the reduced charge radius
����!
m�hr

2
i, such that the NP contribution can be ab-

sorbed in a redefinition of K21 or F21, respectively.

Finally, solving the set of equations in Eq. (7) deter-
mines the central value of yeyn needed to yield a partic-
ular data set {�!m⌫1,

�!
m⌫2,

�!
mµ},

yeyn =
NL

NLNP
. (9)

The interval of yeyn can be obtained via error propaga-
tion of the uncertainties on the involved quantities. In
case of linearity, yeyn is compatible with zero and the
method reaches its maximal sensitivity, whereas if non-
linearity is found a bound can be set with the experi-
mental resolution at which nonlinearity emerges. In the
following we will adopt the same approach as in Ref. [26]
based on the best-case projection where linearity holds
up to the experimentally achievable precision.
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subject to large experimental uncertainties. The compo-
sition of the IS in terms of products of purely electronic
and purely nuclear quantities is referred to as factoriza-
tion [27]. As a result, these two leading contributions
amount to the total IS as
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i = Ki µAA0 + Fi �hr
2
iAA0 + . . . , (2)

where the first term represents the MS and the second
one the FS [27, 28]. The dots denote possible higher order
corrections and NP contributions which we will discuss
below. It is useful to normalize the frequency shifts by
the reduced mass µAA0 to obtain the so-called modified
isotope shifts, m⌫
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i /µAA0 , which we will use
in the following. As a consequence, the mass shift is
reduced to the electronic factor Ki whereas the FS factor
Fi is multiplied by the modified charge radius variance,
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2
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When considering several pairs of isotopes, the modi-
fied Eq. (2) can be written in vectorial form as
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i , (3)

where each line corresponds to one set of isotopes. For
the example of four isotopes combined to three isotope
pairs {A,Aa}, where a = 1, 2, 3 and A is the reference
isotope, the IS vector of transition i is given by �!

m⌫i =

(m⌫
AA1
i ,m⌫

AA2
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AA3
i ), and
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i accordingly. The

mass shift vector is denoted by �!
mµ = (1, 1, 1).

With measurements of two transitions i = 1, 2 the un-
known charge radius distribution can be replaced by mea-

sured quantities. Solving Eq. (3) with i = 1 for
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m�hr
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and replacing it in the equation with i = 2 leads to

�!
m⌫2 = K21

�!
mµ+ F21

�!
m⌫1 , (4)

with F21 ⌘ F2/F1 and K21 ⌘ K2 � F21K1. Hence, this
replacement gives rise to a linear dependence between the
two sets of modified frequency shifts �!

m⌫1,2, referred to
as King linearity [27].

In order to quantify the observed linearity, we define a
measure of nonlinearity [26],

NL = (�!m⌫1 ⇥
�!
m⌫2) ·

�!
mµ , (5)

which corresponds to the volume of the parallelepiped
spanned by the vectors �!

m⌫1,
�!
m⌫2 and �!

mµ (for illustra-
tion see Ref. [26]). King linearity is considered to hold if
the measure NL is smaller than its uncertainty �NL1.

1 At the present level of experimental accuracy, the uncertainties
on the isotope masses are smaller by several orders of magnitude
than those of the frequency shifts (e.g. O(10�5) smaller for Yb
masses [29] with the present IS accuracy of 0.1�1MHz [30, 31]).
Therefore we will neglect them in our numerical evaluation. Once
the uncertainties of IS measurements will be significantly re-
duced, the mass uncertainties will have to be taken into account.

In several atoms and ions, King linearity has indeed
been established within the experimental uncertainty of
� = 0.1MHz on the IS, see e.g. Refs. [30–34].
In Ref. [26] it was shown that new physics contribu-

tions from light bosons interacting with electrons and
neutrons can lead to a deviation from the linear relation
in Eq. (4). Thereby, the observation of linearity allows
to set bounds on the mass and coupling of a possible new
force mediator.
To be specific, a new physics contribution is added as

a third term to Eq. (2)

�!
m⌫i = Ki

�!
mµ+ Fi

����!
m�hr

2
i+ yeynXi

~h , (6)

where ye, yn are the couplings of a new boson to electrons
and neutrons, respectively. Furthermore, we have intro-
duced the electronic NP factor Xi and the reduced iso-
tope dependence ~h. Both of them are model-dependent;
a specific expression is given below. Proceeding as in
the SM case, one can express �!m⌫2 as a function of �!m⌫1,
yielding

�!
m⌫2 = K21

�!
mµ+ F21

�!
m⌫1 + yeyn

~h (X2 �X1F21) . (7)

Thus, NP can break King linearity. For unit coupling,
the NP contribution to NL is given by the projection of
~h onto the normal vector of the King plane,

NLNP = [�!mµ⇥ (X2
�!
m⌫1 �X1

�!
m⌫2)] · ~h . (8)

NLNP vanishes if

(i) NP mediates a short-range interaction, shorter than
the nuclear size. In this case the electronic param-
eter Xi becomes proportional to the electronic pa-
rameter of the FS, namely Xi / Fi so that the
bracket in Eq. (7) vanishes or

(ii) the isotope-dependent NP contribution ~h is propor-
tional either to �!

mµ or to the reduced charge radius
����!
m�hr

2
i, such that the NP contribution can be ab-

sorbed in a redefinition of K21 or F21, respectively.

Finally, solving the set of equations in Eq. (7) deter-
mines the central value of yeyn needed to yield a partic-
ular data set {�!m⌫1,

�!
m⌫2,

�!
mµ},

yeyn =
NL

NLNP
. (9)

The interval of yeyn can be obtained via error propaga-
tion of the uncertainties on the involved quantities. In
case of linearity, yeyn is compatible with zero and the
method reaches its maximal sensitivity, whereas if non-
linearity is found a bound can be set with the experi-
mental resolution at which nonlinearity emerges. In the
following we will adopt the same approach as in Ref. [26]
based on the best-case projection where linearity holds
up to the experimentally achievable precision.
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Adding light new physics (NP)

♦ New physics part known, precisely calculated:

�!m⌫i = Ki
�!mµ + Fi ~v + yeynXi

~h ,

New forces acts on electron & quarks leads to change of energy levels. 
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In this language LO factorization implies the follow-
ing qualitative statement: any vector of reduced isotope
shifts, �!

m⌫i, must lie in the plane that is defined by �!
mµ

and
����!
m�hr

2
i, as illustrated in the cartoon in the left panel

of Fig. S1.

Note that, because the direction of
����!
m�hr

2
i in this space

is uncertain, theory does not tell us in which direction
this plane is oriented. However, by measuring two IS
vectors, �!

m⌫1 and �!
m⌫2, we can test this statement by

asking whether the three vectors �!
m⌫1,

�!
m⌫2, and �!

mµ are
coplanar. The coplanarity of these vectors corresponds
to King linearity as we can see by rewriting Eq. (3) in
vectorial form �!

m⌫2 = K21
�!
mµ+F21

�!
m⌫1. Like King lin-

earity, coplanarity is a purely data driven test of LO fac-
torization since it is independent of theoretical input. A
change in Ki and Fi will merely change the direction of
�!
m⌫1 and �!

m⌫2 within the plane, but the qualitative state-
ment of coplanarity remains.

In this vector language we can provide a compact ex-
pression for a nonlinearity measure,

NL =
1

2
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�!
m⌫2) ·

�!
mµ| . (6)

In terms of the King plot, NL is the area of the triangle
spanned by the three points shown in Fig. S2. Equiva-
lently, in our geometrical picture it is the volume of the
parallelepiped defined by �!

m⌫1,2 and �!
mµ. A given data

set is considered linear if NL is smaller than its first-order
propagated error �NL =

p
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k where the
sum runs over all measured observables Ok (modified fre-
quency shifts and isotope masses) with standard devia-
tions �k.

III. NEW PHYSICS AND VIOLATION OF
KING LINEARITY

We now include a NP contribution by adding a third,
also factorized, term to Eq. (2),

⌫
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2
iAA0 + ↵NPXi �AA0 , (7)

namely Xi depends on the form of the new potential and
on the electronic transition, while �AA0 depends only on
the nuclear properties. The parameter ↵NP is the NP
coupling constant which we would like to probe.

Let us first mention two cases of NP which we do not
expect to be able to probe by testing King linearity. For
short-range NP (shorter than the nuclear size), the elec-
tronic parameters Xi will be proportional to those of FS,
Xi / Fi. In this case the NP term can be absorbed
by redefining �hr

2
iAA0 . Also, if the new physics couples

to electrons and nuclei according to their electric charge
(such as the case of dark-photon [34]), �AA0 = 0. There
may also be cases in which NP can accidentally be ab-
sorbed by redefining Fi. However, a long-range force with
couplings not proportional to the electric charge (and

barring an accidental cancellation) can be severely con-
strained by tests of King linearity.

Equation (3) written in vectorial form becomes

�!
m⌫2 =K21
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~hX1 (X21�F21) , (8)

where ~h is the NP vector in reduced frequency units, that
is hAA0 ⌘ �AA0/µAA0 and X21 ⌘ X2/X1. One can see
that NP can lead to a deviation from coplanarity if and
only if (i) the new force is not short-range, X21 6= F21;

(ii) ~h is not aligned with any linear combination of �!
mµ,
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assuming NP is the dominant contribution to non-
linearity. If linearity holds then ↵NP . �↵NP =p
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It is straightforward to check that this happens under the
conditions specified below Eq. (8).

The presented method of limiting ↵NP, Eq. (9), con-
tains theory input only in Xi and hAA0 which describe
how NP a↵ects the IS. The SM contribution in the fac-
torized limit is fully parametrized by the observables ~⌫i

and ~µ. The form of hAA0 depends on the assumed cou-
plings of new physics to nuclei. For example, if the
new interaction couples to quarks, then we expect that
hAA0 / AA

0 [17, 35]. The atomic transition-dependent
factors X1,2 can be reasonably calculated by a many-
body simulation (see the next section). This strategy is
analogous to a search for NP, say, at the LHC, where all
SM backgrounds are estimated using data driven meth-
ods and Monte Carlo simulation is used only in estimat-
ing the signal cross section.

Thus far, most measurements of scalar-isotope shifts
have been consistent with King linearity (see, however,
the case of Samarium [36]). Nevertheless, some level of
nonlinearity is expected to arise from SM higher-order
contributions [37–40]. These contributions, that are re-
lated to nuclear physics and electronic-structure dynam-
ics linked together, are presently not understood in a
quantitative manner for many-electron systems. One
possible source of nonlinearities is of the form of a field
shift that depends on the isotope mass. Precision calcula-
tions recently showed that this e↵ect is of O(10�3

�10�4)
in light atoms [41]. Likewise, such contributions in heav-
ier elements with Z = 20 � 87 [39], but only for S ! P

transitions, are estimated to be of a similar order. Hence,
matching the precision of future measurements motivates
the calculation of the remaining higher-order corrections.
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coplanar. The coplanarity of these vectors corresponds
to King linearity as we can see by rewriting Eq. (3) in
vectorial form �!

m⌫2 = K21
�!
mµ+F21

�!
m⌫1. Like King lin-

earity, coplanarity is a purely data driven test of LO fac-
torization since it is independent of theoretical input. A
change in Ki and Fi will merely change the direction of
�!
m⌫1 and �!

m⌫2 within the plane, but the qualitative state-
ment of coplanarity remains.

In this vector language we can provide a compact ex-
pression for a nonlinearity measure,

NL =
1

2
|(�!m⌫1 ⇥

�!
m⌫2) ·

�!
mµ| . (6)

In terms of the King plot, NL is the area of the triangle
spanned by the three points shown in Fig. S2. Equiva-
lently, in our geometrical picture it is the volume of the
parallelepiped defined by �!

m⌫1,2 and �!
mµ. A given data

set is considered linear if NL is smaller than its first-order
propagated error �NL =

p
⌃k(@NL/@Ok)2�2

k where the
sum runs over all measured observables Ok (modified fre-
quency shifts and isotope masses) with standard devia-
tions �k.

III. NEW PHYSICS AND VIOLATION OF
KING LINEARITY

We now include a NP contribution by adding a third,
also factorized, term to Eq. (2),

⌫
AA0

i = Ki µAA0 + Fi �hr
2
iAA0 + ↵NPXi �AA0 , (7)

namely Xi depends on the form of the new potential and
on the electronic transition, while �AA0 depends only on
the nuclear properties. The parameter ↵NP is the NP
coupling constant which we would like to probe.

Let us first mention two cases of NP which we do not
expect to be able to probe by testing King linearity. For
short-range NP (shorter than the nuclear size), the elec-
tronic parameters Xi will be proportional to those of FS,
Xi / Fi. In this case the NP term can be absorbed
by redefining �hr

2
iAA0 . Also, if the new physics couples

to electrons and nuclei according to their electric charge
(such as the case of dark-photon [34]), �AA0 = 0. There
may also be cases in which NP can accidentally be ab-
sorbed by redefining Fi. However, a long-range force with
couplings not proportional to the electric charge (and

barring an accidental cancellation) can be severely con-
strained by tests of King linearity.

Equation (3) written in vectorial form becomes

�!
m⌫2 =K21

�!
mµ+F21

�!
m⌫1+↵NP

~hX1 (X21�F21) , (8)

where ~h is the NP vector in reduced frequency units, that
is hAA0 ⌘ �AA0/µAA0 and X21 ⌘ X2/X1. One can see
that NP can lead to a deviation from coplanarity if and
only if (i) the new force is not short-range, X21 6= F21;

(ii) ~h is not aligned with any linear combination of �!
mµ,

�!
m⌫1 or �!

m⌫2.
By solving the set of equations (7) one finds an expres-

sion for ↵NP that is needed to yield a particular dataset
{
�!
m⌫1,

�!
m⌫2,

�!
mµ},

↵NP =
(�!m⌫1 ⇥

�!
m⌫2) ·

�!
mµ

(�!mµ ⇥ ~h) · (X1
�!
m⌫2 � X2

�!
m⌫1)

, (9)

assuming NP is the dominant contribution to non-
linearity. If linearity holds then ↵NP . �↵NP =p

⌃k(@↵NP/@Ok)2�2
k. Hence, the sensitivity to probe

↵NP is lost in the limit where the denominator in Eq. (9)
vanishes, because the NP contribution to nonlinearity is

NLNP =
↵NP

2
(�!mµ ⇥ ~h) · (X1

�!
m⌫2 � X2

�!
m⌫1) . (10)

It is straightforward to check that this happens under the
conditions specified below Eq. (8).

The presented method of limiting ↵NP, Eq. (9), con-
tains theory input only in Xi and hAA0 which describe
how NP a↵ects the IS. The SM contribution in the fac-
torized limit is fully parametrized by the observables ~⌫i

and ~µ. The form of hAA0 depends on the assumed cou-
plings of new physics to nuclei. For example, if the
new interaction couples to quarks, then we expect that
hAA0 / AA

0 [17, 35]. The atomic transition-dependent
factors X1,2 can be reasonably calculated by a many-
body simulation (see the next section). This strategy is
analogous to a search for NP, say, at the LHC, where all
SM backgrounds are estimated using data driven meth-
ods and Monte Carlo simulation is used only in estimat-
ing the signal cross section.

Thus far, most measurements of scalar-isotope shifts
have been consistent with King linearity (see, however,
the case of Samarium [36]). Nevertheless, some level of
nonlinearity is expected to arise from SM higher-order
contributions [37–40]. These contributions, that are re-
lated to nuclear physics and electronic-structure dynam-
ics linked together, are presently not understood in a
quantitative manner for many-electron systems. One
possible source of nonlinearities is of the form of a field
shift that depends on the isotope mass. Precision calcula-
tions recently showed that this e↵ect is of O(10�3

�10�4)
in light atoms [41]. Likewise, such contributions in heav-
ier elements with Z = 20 � 87 [39], but only for S ! P

transitions, are estimated to be of a similar order. Hence,
matching the precision of future measurements motivates
the calculation of the remaining higher-order corrections.

Delaunay, Ozeri, GP & Soreq (16)

CI+MBPT: Dzuba, Flambaum & Kozlov (96) Berengut, Flambaum & Kozlov (06); 
GRASP2K: Jonsson, Gaigalas, Biero, Fischer & Grant (2013)  

. (Combination of the many-body perturbation theory with the configuration-interaction method)
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I. VISUALIZING THE VECTOR SPACE

In the main text we define the following vectors in the A
0 vector space

�!
m⌫i ⌘

⇣
m⌫

AA0
1

i , m⌫
AA0

2
i , m⌫

AA0
3

i

⌘
, (S1)

����!
m�hr

2
i ⌘

�
hr

2
iAA0

1
/µAA0

1
, hr

2
iAA0

2
/µAA0

2
, hr

2
iAA0

3
/µAA0

3

�
, (S2)

�!
mµ ⌘ (1, 1, 1) . (S3)

As long as �!
m⌫1,2 are spanned by �!

mµ and
����!
m�hr

2
i, the resulting King plot will be linear. In Fig. S1, we illustrate the

vector space of the various components related to isotope shifts that leads to the nonlinearites. The NP contribution

to IS, ↵NPXi
~h, may lift the IS vectors from the (�!mµ,

����!
m�hr

2
i) plane, resulting in a nonlinear King plot. Fig. S2

illustrates a nonlinear King plot, where the area of the triangle corresponds to the NL of Eq. (6).

the plane spanned by �!
mµ and

����!
m�hr

2
i

����!
m�hr

2
i

�!
mµ

�!
m⌫1

�!
m⌫2

the plane spanned by �!
mµ and

����!
m�hr

2
i

����!
m�hr

2
i

�!
mµ

�!
m⌫1

�!
m⌫2

= ↵NPXi
~h

FIG. S1: Left: A cartoon of the prediction of factorization, Eq. (5) in vector language. All of the isotope shift measurements

(which are here three dimensional vectors �!m⌫1,2) lie in the plane that is spanned by �!mµ and
����!
m�hr2i. This coplanarity can be

tested by measuring whether �!m⌫1,
�!m⌫2 and �!mµ are coplanar. Right: In the presence of new physics the isotope shift get a

contribution which can point out of the plane. A new long range force can spoil the coplanarity of �!m⌫1,
�!m⌫2 and �!mµ.
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FIG. S2: Illustration of nonlinearity in the King plot of the isotope shifts �!m⌫1,2, as defined in Eq. (4), in isotope pairs
AA0

j , j = 1, 2, 3. The area of the triangle corresponds to the NL of Eq. (6).
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If mediator’s mass, mX , is smaller than inverse of outer electrons than the 
potential is Coulombic.    

If mediator’s mass is smaller than inverse distance of most inner electron from 
the nucleus then the full Yukawa potential is required.  

Otherwise the potential is described via a delta function.

V (r) =

8
>>>><

>>>>:

1
r for mX . ↵me ,

e�rmX

r for ↵me . mX . ↵meZ ,

1
m2

X
�3(r) otherwise .
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FIG. 1: Limits on the electron and neutron couplings (yeyn)
of the new boson of mass m� (for the experimental accuracies
�i specified in the labels). Constraint from existing IS data:
Ca+ (397 nm vs. 866 nm [18], solid red line). IS projections
(dashed lines) for Ca+ (S ! D transitions), Sr+, Sr/Sr+,
and Yb+. For comparison, existing constraints from other
experiments (shaded areas): fifth force [19, 20] (dark orange),
(g � 2)e [21, 22] combined with neutron scattering [23–26]
(light blue) or SN1987A [27] (light orange), and from star
cooling in globular clusters [28–30] (orange). The gray line at
17MeV indicates the yeyn values required to accommodate
the Be anomaly [31, 32].

of-the-art experimental precision, and baring cancellation
between the SM and NP contributions, world-record sen-
sitivity in a certain mass range will be achieved.

II. FACTORIZATION OF NUCLEAR AND
ATOMIC EFFECTS IN ISOTOPE SHIFTS

We now discuss the scaling and factorization properties
of IS which we use to probe NP in this work. Consider an
atomic transition, denoted by i, between narrow atomic
states. The di↵erence in the transition frequency ⌫ com-
paring the isotopes A and A

0 is the IS,

⌫
AA0

i ⌘ ⌫
A
i � ⌫

A0

i . (1)

At leading order (LO) the IS receives contributions from
two sources, mass shift (MS) and field shift (FS). Mass
shift arises due to a correction to the kinetic energy of
atomic electrons due to the motion of the nucleus. For
independent electrons, this is just replacing me by the
reduced mass but if electrons are correlated, this could
be orders of magnitude larger. Field shift originates from

di↵erent contact interactions between electrons and nu-
clei in isotopes. Putting these two leading contributions
together, the IS can be phenomenologically written as

⌫
AA0

i = Ki µAA0 + Fi �hr
2
iAA0 + . . . , (2)

where the two terms represent MS and FS respec-
tively [16, 33]. We define µAA0 ⌘ m

�1
A � m

�1
A0 , where

mA and mA0 are the masses of isotopes A and A
0.

The quantity �hr
2
iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr

2
iAA0 are purely nuclear quantities that do not de-

pend on the electronic transition i. Note, however, that
µAA0 is known with high precision, whereas �hr

2
iAA0 is

known only to a limited accuracy. The parameters Ki

and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values are
unnecessary in the observable we construct. Each term
of Eq. (2) is a product of a purely nuclear quantity and a
purely electronic quantity, resulting in the factorization
of nuclear and electronic dependence. This is known as
LO factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr

2
iAA0 giving a relation between the

isotope shifts ⌫
AA0

1 and ⌫
AA0

2 . In terms of the modified
IS1, m⌫

AA0

i ⌘ ⌫
AA0

i /µAA0 , this relation is,

m⌫
AA0

2 =K21+F21m⌫
AA0

1 , (3)

with F21 ⌘ F2/F1, and K21 ⌘ K2 � F21K1.
Equation (3) reveals a linear relation between m⌫1 and

m⌫2, giving rise to a straight line in the so-called King
plot of m⌫2 vs m⌫1 [16]. It is important to stress that the
linearity of this equation holds regardless of the precise
values of the Ki and Fi electronic parameters. Testing
linearity necessitates at least three independent isotope
pairs in two transitions, which constitutes a purely data
driven test of LO factorization.

The formulae in our treatment of NP will be simplified
greatly by introducing a geometrical description of LO
factorization. As we will now explain, King linearity is
equivalent to coplanarity of vectors. For each transition
i, we can form a vector

�!
m⌫i ⌘

⇣
m⌫

AA0
1

i , m⌫
AA0

2
i , m⌫

AA0
3

i

⌘
. (4)

The nuclear parameters of field and mass shift, µAA0 and

�hr
2
iAA0 can also be written as vectors �!

mµ and
����!
m�hr

2
i

in the same space (notice that �!
mµ ⌘ (1, 1, 1)) and hence

Eq. (2) becomes

�!
m⌫i = Ki

�!
mµ + Fi

����!
m�hr

2
i. (5)

1
Below we will adopt the notation of adding an m to “modi-

fied” (i.e. normalized by µAA0 ) quantities, such as m�hr2iAA0 ⌘
�hr2iAA0/µAA0 .



Be 17 MeV anomaly

�46

Frugiuele, Fuchs, GP & Schlaffer v2 (16)

S
r/S

r +
1
H
z

Y
b +

1H
z

(g-2)e

Beam dump

N
e
u
tr
o
n
s
c
a
tt
e
ri
n
g

Be

5�10
-4

1�10
-3

5�10
-3

1�10
-2

5�10
-5

7�10
-5

1�10
-4

2�10
-4

3�10
-4

yn

y
e

FIG. 3. 95% CL bounds on ye and yn for a protophobic vector
boson of mass mX = 17MeV. The gray region represents the
required and allowed couplings to explain the 8Be anomaly.
The dashed lines show the projected upper bounds on the
couplings from KLV measurements in Sr/Sr+ and Yb+.

V. CONCLUSIONS

In this work we extended the proposal of Ref. [26] to
constrain New Physics (NP) by means of isotope shift
spectroscopy to enable the inclusion of larger data sets
with an arbitrary number of atomic transitions and iso-
tope pairs. As an application of the King linearity viola-
tion (KLV) observable to bound NP couplings, we eval-
uated the constraints resulting from existing data sets of
two di↵erent atomic systems (Ca+ and Yb).

We compare the existing KLV bounds and near-future
projections to present constraints in various models that
can potentially be probed by isotope shifts.

• B�L: The MZ0 -gB�L space is already largely con-
strained by astrophysical and cosmological bounds.
Complementary laboratory probes, however, are
not yet able to confirm those bounds in certain ar-
eas of the parameter space. Here KLV has the po-
tential to become the strongest laboratory bound
for 300 eV . MZ0 . 1MeV.

• Higgs portal: While KLV bounds on standard
Higgs portals are weaker than existing laboratory
bounds, KLV can supersede them in the case of an
enhanced electron or suppressed neutron coupling.
For an enhancement (suppression) by a factor of 10,
KLV could even set the strongest of all bounds in
the range 350 keV . m� . 1MeV. Such a scenario
can be realized e.g. in the leptonic Higgs portal.

• Chameleon: KLV will be able to set the strongest
lower bound M > 500TeV on the interaction scale
of the chameleon with matter.

• Be anomaly: With the anticipated precision, KLV
will fully explore the coupling range of a protopho-
bic vector boson with mass mX = 17MeV needed
to reproduce the observed anomaly in 8Be decays.
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Ex.: Yb+ with Z=70, n=6 and A=168(4)-174(6).
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Yb+ ion-clock

Ytterbium: properties of free atoms
Ytterbium atoms have 70 electrons

and the shell structure (../periodicity/electron_shell_structure/) is  2.8.18.32.8.2.

The ground state electron configuration of ground state gaseous neutral
ytterbium is (../periodicity/electronic_configuration/)  [Xe].4f .6s  and the term
symbol (../periodicity/term_symbol/) is  S .

Atomic spectrum
 
A representation of the atomic spectrum of ytterbium.

Electronic configuration of neutral atomic ytterbium

The electronic configuration of ytterbium.
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The Kossel shell structure of ytterbium.

Ionisation Energies and electron affinity
The electron affinity (../periodicity/electron_affinity/) of ytterbium is 50 kJ mol . The
ionisation energies (../periodicity/ionisation_energy/) of ytterbium are given below.

Ionisation energies of ytterbium

Ionisation energy number Enthalpy / kJ mol

1st (../periodicity/ionisation_energy_1/) 603.4
2nd (../periodicity/ionisation_energy_2/) 1174.8
3rd (../periodicity/ionisation_energy_3/) 2417
4th (../periodicity/ionisation_energy_4/) 4203
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Precision mass measurements: 10-10



Partial solution, comparing different isotope shift, 
searching of nonlinearity in “King plot”

( µAA0 ⌘ 1/mA�1/mA0 = (A0�A)/(AA0) amu�1, where amu ⇡ 0.931GeV)

�⌫AA0

i ⌘ ⌫Ai � ⌫A
0

i = Ki µAA0 + Fi�hr2iAA0 ,

only depend on e-transition

only depend on nucleus

m�⌫2AA0 = F21m�⌫1AA0 +K21 ,

We can solve for �hr2iAA0 to get a linear relation:

King’s factorisation formula (King, 1963):

(with K21 ⌘ (K2 � F21K1) and F21 ⌘ F2/F1 and m�⌫iAA0 ⌘ �⌫iAA0/µAA0 .)
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Ex.: Yb+ with Z=70, n=6 and A=168(4)-174(6).
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Yb+ ion-clock

Ytterbium: properties of free atoms
Ytterbium atoms have 70 electrons

and the shell structure (../periodicity/electron_shell_structure/) is  2.8.18.32.8.2.

The ground state electron configuration of ground state gaseous neutral
ytterbium is (../periodicity/electronic_configuration/)  [Xe].4f .6s  and the term
symbol (../periodicity/term_symbol/) is  S .

Atomic spectrum
 
A representation of the atomic spectrum of ytterbium.

Electronic configuration of neutral atomic ytterbium

The electronic configuration of ytterbium.
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The Kossel shell structure of ytterbium.

Ionisation Energies and electron affinity
The electron affinity (../periodicity/electron_affinity/) of ytterbium is 50 kJ mol . The
ionisation energies (../periodicity/ionisation_energy/) of ytterbium are given below.
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Chromium
(../chromium/atoms.html)

Cobalt
(../cobalt/atoms.html)

Copernicium
(../copernicium/atoms.html)



Ex.: Sr(+) with Z=38, n=5 and A=84-88 (90).
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 • Electron Configuration:1s2 2s2p6 3s2p6d10 4s2p6 5s2(1)  

 • Electrons per Energy Level: 2,8,18,8,2(1) 
 

http://environmentalchemistry.com/yogi/chemistry/dictionary/E02.html#Energy_Level


Ex.: Ca(+) with Z=20, n=4 and A=40-48.
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 • Electron Configuration:1s2 2s2p6 3s2p6 4s1 

 • Electrons per Energy Level: 2,8,8,2(1) 
 • 

http://environmentalchemistry.com/yogi/chemistry/dictionary/E02.html#Energy_Level


Ex.: Dy with Z=66, n=6 and A=158-164.

�53

  
  Number of Energy Levels: 6   
 First Energy Level: 2  
 Second Energy Level: 8  
 Third Energy Level: 18  
 Fourth Energy Level: 28  
 Fifth Energy Level: 8  
 Sixth Energy Level: 2



The observables

♦ We have 3 isotope shifts              for 2 transitions (i=1,2):

2

FIG. 1: Limits on the electron and neutron couplings (yeyn)
of the new boson of mass m� (for the experimental accuracies
�i specified in the labels). Constraint from existing IS data:
Ca+ (397 nm vs. 866 nm [18], solid red line). IS projections
(dashed lines) for Ca+ (S ! D transitions), Sr+, Sr/Sr+,
and Yb+. For comparison, existing constraints from other
experiments (shaded areas): fifth force [19, 20] (dark orange),
(g � 2)e [21, 22] combined with neutron scattering [23–26]
(light blue) or SN1987A [27] (light orange), and from star
cooling in globular clusters [28–30] (orange). The gray line at
17MeV indicates the yeyn values required to accommodate
the Be anomaly [31, 32].

of-the-art experimental precision, and baring cancellation
between the SM and NP contributions, world-record sen-
sitivity in a certain mass range will be achieved.

II. FACTORIZATION OF NUCLEAR AND
ATOMIC EFFECTS IN ISOTOPE SHIFTS

We now discuss the scaling and factorization properties
of IS which we use to probe NP in this work. Consider an
atomic transition, denoted by i, between narrow atomic
states. The di↵erence in the transition frequency ⌫ com-
paring the isotopes A and A

0 is the IS,

⌫
AA0

i ⌘ ⌫
A
i � ⌫

A0

i . (1)

At leading order (LO) the IS receives contributions from
two sources, mass shift (MS) and field shift (FS). Mass
shift arises due to a correction to the kinetic energy of
atomic electrons due to the motion of the nucleus. For
independent electrons, this is just replacing me by the
reduced mass but if electrons are correlated, this could
be orders of magnitude larger. Field shift originates from

di↵erent contact interactions between electrons and nu-
clei in isotopes. Putting these two leading contributions
together, the IS can be phenomenologically written as

⌫
AA0

i = Ki µAA0 + Fi �hr
2
iAA0 + . . . , (2)

where the two terms represent MS and FS respec-
tively [16, 33]. We define µAA0 ⌘ m

�1
A � m

�1
A0 , where

mA and mA0 are the masses of isotopes A and A
0.

The quantity �hr
2
iAA0 is dominated by the di↵erence

in the mean squared charge radii of the two nuclei but
can include other contact interactions. Both µAA0 and
�hr

2
iAA0 are purely nuclear quantities that do not de-

pend on the electronic transition i. Note, however, that
µAA0 is known with high precision, whereas �hr

2
iAA0 is

known only to a limited accuracy. The parameters Ki

and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values are
unnecessary in the observable we construct. Each term
of Eq. (2) is a product of a purely nuclear quantity and a
purely electronic quantity, resulting in the factorization
of nuclear and electronic dependence. This is known as
LO factorization.

Given two electronic transitions, i = 1, 2, one can elim-
inate the uncertain �hr

2
iAA0 giving a relation between the

isotope shifts ⌫
AA0

1 and ⌫
AA0

2 . In terms of the modified
IS1, m⌫

AA0

i ⌘ ⌫
AA0

i /µAA0 , this relation is,

m⌫
AA0

2 =K21+F21m⌫
AA0

1 , (3)

with F21 ⌘ F2/F1, and K21 ⌘ K2 � F21K1.
Equation (3) reveals a linear relation between m⌫1 and

m⌫2, giving rise to a straight line in the so-called King
plot of m⌫2 vs m⌫1 [16]. It is important to stress that the
linearity of this equation holds regardless of the precise
values of the Ki and Fi electronic parameters. Testing
linearity necessitates at least three independent isotope
pairs in two transitions, which constitutes a purely data
driven test of LO factorization.

The formulae in our treatment of NP will be simplified
greatly by introducing a geometrical description of LO
factorization. As we will now explain, King linearity is
equivalent to coplanarity of vectors. For each transition
i, we can form a vector

�!
m⌫i ⌘

⇣
m⌫

AA0
1

i , m⌫
AA0

2
i , m⌫

AA0
3

i

⌘
. (4)

The nuclear parameters of field and mass shift, µAA0 and

�hr
2
iAA0 can also be written as vectors �!

mµ and
����!
m�hr

2
i

in the same space (notice that �!
mµ ⌘ (1, 1, 1)) and hence

Eq. (2) becomes

�!
m⌫i = Ki

�!
mµ + Fi

����!
m�hr

2
i. (5)

1
Below we will adopt the notation of adding an m to “modi-

fied” (i.e. normalized by µAA0 ) quantities, such as m�hr2iAA0 ⌘
�hr2iAA0/µAA0 .

�
AA0

1,2,3

�
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FIG. 1: Limits on the electron and neutron couplings (yeyn)
of the new boson of mass m� (for the experimental accuracies
�i specified in the labels). Constraint from existing IS data:
Ca+ (397 nm vs. 866 nm [18], solid red line). IS projections
(dashed lines) for Ca+ (S ! D transitions), Sr+, Sr/Sr+,
and Yb+. For comparison, existing constraints from other
experiments (shaded areas): fifth force [19, 20] (dark orange),
(g � 2)e [21, 22] combined with neutron scattering [23–26]
(light blue) or SN1987A [27] (light orange), and from star
cooling in globular clusters [28–30] (orange). The gray line at
17MeV indicates the yeyn values required to accommodate
the Be anomaly [31, 32].

of-the-art experimental precision, and baring cancellation
between the SM and NP contributions, world-record sen-
sitivity in a certain mass range will be achieved.
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and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values are
unnecessary in the observable we construct. Each term
of Eq. (2) is a product of a purely nuclear quantity and a
purely electronic quantity, resulting in the factorization
of nuclear and electronic dependence. This is known as
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with F21 ⌘ F2/F1, and K21 ⌘ K2 � F21K1.
Equation (3) reveals a linear relation between m⌫1 and

m⌫2, giving rise to a straight line in the so-called King
plot of m⌫2 vs m⌫1 [16]. It is important to stress that the
linearity of this equation holds regardless of the precise
values of the Ki and Fi electronic parameters. Testing
linearity necessitates at least three independent isotope
pairs in two transitions, which constitutes a purely data
driven test of LO factorization.

The formulae in our treatment of NP will be simplified
greatly by introducing a geometrical description of LO
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FIG. 1: Limits on the electron and neutron couplings (yeyn)
of the new boson of mass m� (for the experimental accuracies
�i specified in the labels). Constraint from existing IS data:
Ca+ (397 nm vs. 866 nm [18], solid red line). IS projections
(dashed lines) for Ca+ (S ! D transitions), Sr+, Sr/Sr+,
and Yb+. For comparison, existing constraints from other
experiments (shaded areas): fifth force [19, 20] (dark orange),
(g � 2)e [21, 22] combined with neutron scattering [23–26]
(light blue) or SN1987A [27] (light orange), and from star
cooling in globular clusters [28–30] (orange). The gray line at
17MeV indicates the yeyn values required to accommodate
the Be anomaly [31, 32].
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between the SM and NP contributions, world-record sen-
sitivity in a certain mass range will be achieved.

II. FACTORIZATION OF NUCLEAR AND
ATOMIC EFFECTS IN ISOTOPE SHIFTS

We now discuss the scaling and factorization properties
of IS which we use to probe NP in this work. Consider an
atomic transition, denoted by i, between narrow atomic
states. The di↵erence in the transition frequency ⌫ com-
paring the isotopes A and A

0 is the IS,

⌫
AA0

i ⌘ ⌫
A
i � ⌫

A0

i . (1)
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shift arises due to a correction to the kinetic energy of
atomic electrons due to the motion of the nucleus. For
independent electrons, this is just replacing me by the
reduced mass but if electrons are correlated, this could
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known only to a limited accuracy. The parameters Ki

and Fi are isotope-independent, transition-dependent co-
e�cients of the MS and FS, and their precise values are
unnecessary in the observable we construct. Each term
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of nuclear and electronic dependence. This is known as
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plot of m⌫2 vs m⌫1 [16]. It is important to stress that the
linearity of this equation holds regardless of the precise
values of the Ki and Fi electronic parameters. Testing
linearity necessitates at least three independent isotope
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Ca+ (397 nm vs. 866 nm [18], solid red line). IS projections
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sitivity in a certain mass range will be achieved.
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At leading order (LO) the IS receives contributions from
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atomic electrons due to the motion of the nucleus. For
independent electrons, this is just replacing me by the
reduced mass but if electrons are correlated, this could
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clei in isotopes. Putting these two leading contributions
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unnecessary in the observable we construct. Each term
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m⌫2, giving rise to a straight line in the so-called King
plot of m⌫2 vs m⌫1 [16]. It is important to stress that the
linearity of this equation holds regardless of the precise
values of the Ki and Fi electronic parameters. Testing
linearity necessitates at least three independent isotope
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Below we will adopt the notation of adding an m to “modi-

fied” (i.e. normalized by µAA0 ) quantities, such as m�hr2iAA0 ⌘
�hr2iAA0/µAA0 .

Target accuracy: �m⌫AA0

i /m⌫AA0

i . 10�6 .
(currently: 10�4, projected < 10�9)



The observable: King comparison (1964)

♦ What would be the generic form of                       ?�!m⌫2 vs. �!m⌫1

♦ 3 ISs -                                          : m⌫2 = am⌫21 + bm⌫1 + c

What about existing data ?



Limitation of method

♦ As long as linearity holds bounds are limited by exp’ accuracy: 

↵NP . �↵NP =
q

⌃k(@↵NP/@Ok)2�2
k ,

(OK various exp’ observables.)

3

In this language LO factorization implies the follow-
ing qualitative statement: any vector of reduced isotope
shifts, �!

m⌫i, must lie in the plane that is defined by �!
mµ

and
����!
m�hr

2
i, as illustrated in the cartoon in the left panel

of Fig. S1.

Note that, because the direction of
����!
m�hr

2
i in this space

is uncertain, theory does not tell us in which direction
this plane is oriented. However, by measuring two IS
vectors, �!

m⌫1 and �!
m⌫2, we can test this statement by

asking whether the three vectors �!
m⌫1,

�!
m⌫2, and �!

mµ are
coplanar. The coplanarity of these vectors corresponds
to King linearity as we can see by rewriting Eq. (3) in
vectorial form �!

m⌫2 = K21
�!
mµ+F21

�!
m⌫1. Like King lin-

earity, coplanarity is a purely data driven test of LO fac-
torization since it is independent of theoretical input. A
change in Ki and Fi will merely change the direction of
�!
m⌫1 and �!

m⌫2 within the plane, but the qualitative state-
ment of coplanarity remains.

In this vector language we can provide a compact ex-
pression for a nonlinearity measure,

NL =
1

2
|(�!m⌫1 ⇥

�!
m⌫2) ·

�!
mµ| . (6)

In terms of the King plot, NL is the area of the triangle
spanned by the three points shown in Fig. S2. Equiva-
lently, in our geometrical picture it is the volume of the
parallelepiped defined by �!

m⌫1,2 and �!
mµ. A given data

set is considered linear if NL is smaller than its first-order
propagated error �NL =

p
⌃k(@NL/@Ok)2�2

k where the
sum runs over all measured observables Ok (modified fre-
quency shifts and isotope masses) with standard devia-
tions �k.

III. NEW PHYSICS AND VIOLATION OF
KING LINEARITY

We now include a NP contribution by adding a third,
also factorized, term to Eq. (2),

⌫
AA0

i = Ki µAA0 + Fi �hr
2
iAA0 + ↵NPXi �AA0 , (7)

namely Xi depends on the form of the new potential and
on the electronic transition, while �AA0 depends only on
the nuclear properties. The parameter ↵NP is the NP
coupling constant which we would like to probe.

Let us first mention two cases of NP which we do not
expect to be able to probe by testing King linearity. For
short-range NP (shorter than the nuclear size), the elec-
tronic parameters Xi will be proportional to those of FS,
Xi / Fi. In this case the NP term can be absorbed
by redefining �hr

2
iAA0 . Also, if the new physics couples

to electrons and nuclei according to their electric charge
(such as the case of dark-photon [34]), �AA0 = 0. There
may also be cases in which NP can accidentally be ab-
sorbed by redefining Fi. However, a long-range force with
couplings not proportional to the electric charge (and

barring an accidental cancellation) can be severely con-
strained by tests of King linearity.

Equation (3) written in vectorial form becomes

�!
m⌫2 =K21

�!
mµ+F21

�!
m⌫1+↵NP

~hX1 (X21�F21) , (8)

where ~h is the NP vector in reduced frequency units, that
is hAA0 ⌘ �AA0/µAA0 and X21 ⌘ X2/X1. One can see
that NP can lead to a deviation from coplanarity if and
only if (i) the new force is not short-range, X21 6= F21;

(ii) ~h is not aligned with any linear combination of �!
mµ,

�!
m⌫1 or �!

m⌫2.
By solving the set of equations (7) one finds an expres-

sion for ↵NP that is needed to yield a particular dataset
{
�!
m⌫1,

�!
m⌫2,

�!
mµ},

↵NP =
(�!m⌫1 ⇥

�!
m⌫2) ·

�!
mµ

(�!mµ ⇥ ~h) · (X1
�!
m⌫2 � X2

�!
m⌫1)

, (9)

assuming NP is the dominant contribution to non-
linearity. If linearity holds then ↵NP . �↵NP =p

⌃k(@↵NP/@Ok)2�2
k. Hence, the sensitivity to probe

↵NP is lost in the limit where the denominator in Eq. (9)
vanishes, because the NP contribution to nonlinearity is

NLNP =
↵NP

2
(�!mµ ⇥ ~h) · (X1

�!
m⌫2 � X2

�!
m⌫1) . (10)

It is straightforward to check that this happens under the
conditions specified below Eq. (8).

The presented method of limiting ↵NP, Eq. (9), con-
tains theory input only in Xi and hAA0 which describe
how NP a↵ects the IS. The SM contribution in the fac-
torized limit is fully parametrized by the observables ~⌫i

and ~µ. The form of hAA0 depends on the assumed cou-
plings of new physics to nuclei. For example, if the
new interaction couples to quarks, then we expect that
hAA0 / AA

0 [17, 35]. The atomic transition-dependent
factors X1,2 can be reasonably calculated by a many-
body simulation (see the next section). This strategy is
analogous to a search for NP, say, at the LHC, where all
SM backgrounds are estimated using data driven meth-
ods and Monte Carlo simulation is used only in estimat-
ing the signal cross section.

Thus far, most measurements of scalar-isotope shifts
have been consistent with King linearity (see, however,
the case of Samarium [36]). Nevertheless, some level of
nonlinearity is expected to arise from SM higher-order
contributions [37–40]. These contributions, that are re-
lated to nuclear physics and electronic-structure dynam-
ics linked together, are presently not understood in a
quantitative manner for many-electron systems. One
possible source of nonlinearities is of the form of a field
shift that depends on the isotope mass. Precision calcula-
tions recently showed that this e↵ect is of O(10�3

�10�4)
in light atoms [41]. Likewise, such contributions in heav-
ier elements with Z = 20 � 87 [39], but only for S ! P

transitions, are estimated to be of a similar order. Hence,
matching the precision of future measurements motivates
the calculation of the remaining higher-order corrections.

Berengut, Budker, Delaunay, Flambaum, Frugiuele, Fuchs, Grojean, Harnik, Ozeri, GP & Soreq (17)

♦ Once non-linearity observed bound will be set by observation.

♦ Short range NP:                    is redefined to absorb NP;       Xi / Fi ) ~v

♦ Only useful to bound new physics (barring cancellation).

requires extra carefulness when approaching this limit.


