
Self-describing Portable Dataset Container

Abstract
With SPDC one can pack data of different formats into modular
dataset and Products, together with annotation (description and units)
and metadata (Parameters about data). SPDC accommodates highly
complex associated and nested structures.
Access APIs of the components of “SPDCs” are convenient, making it
easier for scripting and data mining directly “on SPDCs”. The toString()
method of major container classes outputs nicely formatted text
representation of complex data.
SPDCs are portable (de/serializable) in human-friendly standard
format (JSON implemented), so that machine data processors on
different platforms can parse, access internal components, or re-
construct an SPDC. Even a human with a web browser can understand
the data.
Most SPDC Products and components implement event sender and
listener interfaces to facilitate scalable data-driven processing
pipelines.
SPDC storage “pools” are provided for 1) data storage and, 2) for all
persistent data to be referenced to with URNs (Universal Resource
Names).
References of SPDC can become components of Context products,
enabling SPDCs to encapsulate rich, deep, sophisticated, and
accessible contextual data, yet remain light-weight.
For data processors, a web server with RESTful APIs is implemented,
suitable for Docker containers in pipelines that mix legacy software or
software of incompatible environments to form an integral data
processing pipeline.

1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100014, China
2 University of Chinese Academy of Sciences, Beijing, China
3 Key Laboratory of Space Astronomy and Technology, NAOC, Beijing, China

Maohai Huang1,2,3

mhuang@nao.cas.cn

Introduction
SPDC is a ``container'' package written in Python for
packing different types of data together, letting the
container take care of inter-platform compatibility,
serialisation, persistence, and data object
referencing that enables lazy-loading. The word
``container'' in the name is more closely associated
that in ``a shipping container'' instead of ``a Docker
container‘’.
One can associate groups, arrays, or tables of
Products using basic data structures such as sets,
sequences (Python list), mappings (Python dict),
or custom-made classes that inherit functionalities
from base classes provided by the package.
The following describes SPDC Python packages:
• The base data model is defined in package

dataset.

• Persistent data access, referencing, and Universal
Resource Names are defined in package pal.

• A reference REST API server designed to
communicate with a data processing docker using
the data model is in package pns.

This package implements a data structure modeled after Herschel
Common Software System (v15) products
(https://www.cosmos.esa.int/web/herschel/data-products-
overview/}, taking other requirements of scientific observation
and data processing into account. The APIs are kept as
compatible with HCSS/HIPE (Riedinger 2009, Ott 2010) as
possible, with descriptions treated as part of interface contract.

Python programming API examples for Dataset module:

dataset: Model for Data Container
SPDC aims to give pipeline data artifacts (products, intermedia data
sets, auxiliary data sets) these properties:
Annotatable: one can use textual description to annotate the contained data;
Attributable: one can add attributes (or called properties, meta data) to the
contained data;
Copyable: one can ask for a copy of the data;
Comparable: one can compare two containers to see if they are equal;
Queryable: Can be queried to discover its contents, and obtain references of
the components
Serializable: one can transmit the data across the network and re-construct
(deserialize) them on the receiving side
Accepts Change Listeners
Easy to handle with RESTful API

SPDC allows one to organize data into:
A dataset -- an arbitrary combination of

• N dimensional arrays with an optional unit,
• Tables
• a list of meta data.

Metadata – a list of named parameters
A Parameter – a string or quantity.
A Product -- an arbitrary combination of datasets with some
mandatory meta data.

Product Access Layer (pal)

Product Access Layer provides classes for the storing,
retrieving, tagging, and context creating of data
product modeled in the dataset package. This package
lets one store data in logical ``pools'', and makes the
data accessible with light weight product references. A
ProductStorage interface is provided to handle
saving/retrieving/querying data in registered
ProductPools.
In a data processing pipeline or network of processing
nodes, data products are generated within a context.
Data processers, data storages, and data consumers
often need to have relevant context data recorded
with a product. However the context could have a
large size so including them as metadata of the
product is often impractical.
Once a data product is saved by ProductStorage it can
have a reference generated for it. Through its
reference the product can be accessed. The size of
such references are typically less than a hundred bytes,
like a URL. References enable SPDCs to encapsulate
rich, deep, sophisticated, and accessible contextual
data, yet remain light weight.

ArrayDataset x.toString():

ArrayDataset
description = "UNKNOWN"
meta = MetaData{[],
listeners = []}
unit = "None"
data =

0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8
6 7 8 9

#=== dimension 4

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8
6 7 8 9

3 4 5 6
4 5 6 7
5 6 7 8
6 7 8 9
7 8 9 10

#=== dimension 4

pal

Create a product and a productStorage with a pool
registered
>>> # a pool for demonstration will be
create here
... demopoolpath = '/tmp/demopool'
>>> demopool = 'file://' + demopoolpath
>>> # clean possible data left from
previous runs
... os.system('rm -rf ' + demopoolpath)
>>> # create a prooduct
... x = Product(description='in store')
>>> print(x)
{meta = "MetaData['description',
'creator', 'creationDate',
'instrument', 'startDate', 'endDate',
'rootCause', 'modelName', 'type',
'mission']", _sets = [], history =
{meta = "MetaData[]", _sets = []}}
>>> # create a product store
... pstore =
ProductStorage(pool=demopool)

Save the product and get a reference
>>> prodref = pstore.save(x)
>>> # create an empty mapcontext
... mc = MapContext()
>>> # put the ref in the context.
... mc['refs']['very-useful'] = prodref
>>> # get the urn string
... urn = prodref.urn
>>> print(urn)
urn:file:///tmp/demopool:Product:0

re-create a product only using the urn
>>> newp = getProductObject(urn)
>>> # the new and the old one are equal
... print(newp == x)
True

Processing Node Server (pns)
This Web API Server for a data processing pipeline/network node provides interfaces to
configure the data processing task software (PTS) in a processing node, to make a run request,
to deliver necessary input data, and to read results, all via RESTful web APIs.
Many data processing pipelines need to run software that only runs on a specific combination
of OS type, version, language, and library. These software could be impractical to replace or
modify but need to be run side-by-side with software of incompatible environments/formats to
form an integral data processing pipeline, each software being a ``node'' to perform a
processing task. Docker containers are often the perfect solution to run software with
incompatible dependencies.
PNS installed on a Docker container or a normal server allows a processing tasks to run in the
PNS memory space, in a daemon process, or as an OS process receiving input and delivering
output through a ``delivery man'' protocol.
SPDC v0.8 test suite has been run on CentOS, Ubuntu, and Cygwin with Apache and Flask
servers. The client-server pipeline architecture is shown to work with a server running
astronomical data processing software written in C, FORTRAN, Python using Pyraf and
Anaconda.
Astronomers
develop the
Processing Task
Software (PTS) in
his/her favorite
environment, with
required tools and
libraries. All are
possibly
incompatible with
those of other
modes.

The Processing Node Server (PNS) passes input data and configuring information from the pipeline runner
to the PTS, runs the PTS (successfully or not) , collects the results, and returns them to the pipeline runner.

PTS is stateless --
the result can be
calculated and
reproduced with
given input and
configuration. PTS
does not
remember
previous runs.

Product

Creation
>>> x = Product(description="product example with several datasets",
... instrument="Crystal-Ball", modelName="Mk II")
>>>
>>> print(x.meta['description']) # == "product example with several datasets"
product example with several datasets
>>>
>>> print(x.instrument) # == "Crystal-Ball"
Crystal-Ball

ways to add datasets
>>> i0 = 6
>>> i1 = [[1, 2, 3], [4, 5, i0], [7, 8, 9]]
>>> i2 = 'ev' # unit
>>> i3 = 'image1' # description
>>> image = ArrayDataset(data=i1, unit=i2, description=i3)
>>>
>>> x["RawImage"] = image
>>> print(x["RawImage"].data) # [1][2] == i0
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>>
>>> # no unit or description. different syntax but same function as above
... x.set('QualityImage', ArrayDataset(
... [[0.1, 0.5, 0.7], [4e3, 6e7, 8], [-2, 0, 3.1]]))
>>> print(x["QualityImage"].unit) # is None
None
>>> # add a tabledataset
... s1 = [('col1', [1, 4.4, 5.4E3], 'eV'),
... ('col2', [0, 43.2, 2E3], 'cnt')]
>>> x["Spectrum"] = TableDataset(data=s1)
>>>
>>> # mandatory properties are also in metadata
... x.creator = "Me, myself and I"
>>> print(x.creator) # == "Me, myself and I"
Me, myself and I
>>> # This is also changed
... print(x.meta["creator"]) # == "Me, myself and I"
Me, myself and I

Product x.toString() :

Product
description = "product example with several datasets"
meta = MetaData{[description = product example with several datasets,
creator = Me, myself and I, creationDate = 2000-01-01T00:00:00.000000 TAI(0),
instrument = Crystal-Ball, startDate = , endDate = , rootCause = UNKNOWN,
modelName = Mk II, type = UNKNOWN, mission = SVOM,], listeners = [Product
7696577608224 "product example with several datasets",]}
History
description = "UNKNOWN"
meta = MetaData{[], listeners = []}
data =

data =

[RawImage]
ArrayDataset
description = "image1"
meta = MetaData{[], listeners = []}
unit = "ev"
data =

1 4 7
2 5 8
3 6 9

[QualityImage]
ArrayDataset
description = "UNKNOWN"
meta = MetaData{[], listeners = []}
unit = "None"
data =

0.1 4000.0 -2
0.5 60000000.0 0
0.7 8 3.1

[Spectrum]
TableDataset
description = "UNKNOWN"
meta = MetaData{[], listeners = []}
data =

col1 col2
eV cnt
1 0
4.4 43.2
5400.0 2000.0

ArrayDataset
creation:
>>> a1 = [1, 4.4, 5.4E3] # a 1D array of data
>>> a2 = 'ev' # unit
>>> a3 = 'three energy vals' # description
>>> v = ArrayDataset(data=a1, unit=a2, description=a3)
>>> # simpler but error-prone
>>> v1 = ArrayDataset(a1, a2, description=a3)
>>> print(v)
ArrayDataset{ description = "three energy vals", meta =
MetaData[], data = "[1, 4.4, 5400.0]", unit = "ev"}
>>>
>>> print(v == v1)
True

data access:
>>> v1.data = [34]
>>> v1.unit = 'm'
>>> print('The diameter is %f %s.' % (v1.data[0], v1.unit))
The diameter is 34.000000 m.

>>> # iteration
>>> i = []
>>> for m in v:
... i.append(m)
...
>>> #assert i == a1
>>> print(i)
[1, 4.4, 5400.0]

ArrayDataset
creation:
>>> a1 = [1, 4.4, 5.4E3] # a 1D array of data
>>> a2 = 'ev' # unit
>>> a3 = 'three energy vals' # description
>>> v = ArrayDataset(data=a1, unit=a2, description=a3)
>>> # simpler but error-prone
>>> v1 = ArrayDataset(a1, a2, description=a3)
>>> print(v)
ArrayDataset{ description = "three energy vals", meta =
MetaData[], data = "[1, 4.4, 5400.0]", unit = "ev"}
>>>
>>> print(v == v1)
True

data access:
>>> v1.data = [34]
>>> v1.unit = 'm'
>>> print('The diameter is %f %s.' % (v1.data[0], v1.unit))
The diameter is 34.000000 m.

>>> # iteration
>>> i = []
>>> for m in v:
... i.append(m)
...
>>> #assert i == a1
>>> print(i)
[1, 4.4, 5400.0]

toString():
make a 4-D array: a list of 2 lists of 3 lists of 4 lists
of 5 elements.
s = [[[[i + j + k + l for i in range(5)] for j in range(4)]
for k in range(3)] for l in range(2)]
x = ArrayDataset(data=s)
print(x.toString())

toString():
make a 4-D array: a list of 2 lists of 3 lists of 4 lists
of 5 elements.
s = [[[[i + j + k + l for i in range(5)] for j in range(4)]
for k in range(3)] for l in range(2)]
x = ArrayDataset(data=s)
print(x.toString())

ArrayDataset
creation:
>>> a1 = [1, 4.4, 5.4E3] # a 1D array of data
>>> a2 = 'ev' # unit
>>> a3 = 'three energy vals' # description
>>> v = ArrayDataset(data=a1, unit=a2, description=a3)
>>> # simpler but error-prone
>>> v1 = ArrayDataset(a1, a2, description=a3)
>>> print(v)
ArrayDataset{ description = "three energy vals", meta =
MetaData[], data = "[1, 4.4, 5400.0]", unit = "ev"}
>>>
>>> print(v == v1)
True

data access:
>>> v1.data = [34]
>>> v1.unit = 'm'
>>> print('The diameter is %f %s.' % (v1.data[0], v1.unit))
The diameter is 34.000000 m.

>>> # iteration
>>> i = []
>>> for m in v:
... i.append(m)
...
>>> #assert i == a1
>>> print(i)
[1, 4.4, 5400.0]

toString():
make a 4-D array: a list of 2 lists of 3 lists of 4 lists
of 5 elements.
s = [[[[i + j + k + l for i in range(5)] for j in range(4)]
for k in range(3)] for l in range(2)]
x = ArrayDataset(data=s)
print(x.toString()) output

References
Ott, S. 2010, in Astronomical Data Analysis Software and Systems XIX, edited by Y. Mizumoto, K. I. Morita, & M. Ohishi, vol. 434 of
Astronomical Society of the Pacific Conference Series, 139. 1011.1209
Riedinger, J. 2009, ESA Bulletin, 139, 14

