Svom

The Self-describing Portable Data Container

2019/10/16

Maohail Huang, NAOC
September 15-18, 2019, Nanning

Self-describing Portable Data Container, SVOM Workshop, Nanning.
Maohai Huang, NAOC

m%‘”fg SVOM
spdc?
* SPDC Is a container” package written in Python for packing
different types of data together,

* letting the container take care of inter-platform compatibility,
serialization, persistence, and data object referencing that enables
lazy-loading.

* The word “container” in the name Is more similar to that in ~a
shipping container” (emphasizing association) instead of a
Docker container” (emphasizing isolation).

Self-describing Portable Data Container, SVOM Worksho

2019/10/16 Maohai Huang, NAOC

2019/10/16

SPDC packages

The base data model is defined in package dataset.

Persistent data access, referencing, and Universal Resource
Names are defined in package pal.

A reference REST API server designed to communicate with a

Svom

data processing docker using the data model Is in package pns.

All classes are individually versioned.

Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC

= CSC Standard Product Generation (SPG)

. Specificalclf/ ‘Data Products’ means deliverable legacy data of the mission with
controlled quality.

* CSC produces LOd — 2.5 Data Products are generated from LOc data, calibration
data, and external auxiliary data. Short Description of “L” levels:
1. LOd: telemetry reorganized for L1 generation.
2. L1:uncalibrated instrument data. Organized according to astronomical convention.

3. L2: calibrated instrument data with physical units that can be used by the general
community.

* Calibration models and algorithms are published, standardized, and configuration controlled.

4. L2.5: conceptually simple merging of L2 data to: e.g. stitched maps, connected spectra
and SEDs, light curves.

* May be derived from multiple instruments.
* Calibration models and algorithms are published, standardized, and configuration controlled

m ‘" |evels are not always the same as “SP” levels.
* |3: Calculation is not standard model-dependent and/or external data sets.

* SPG controls input, processing, validating, output, pipeline delivery time. Has
production timing requirements

m | 3 is not in SPG. Best-effort-basis for resource spent on validation, production timing

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC

SVON\

Vv oy o
T,

2019/10/16

1.

2.

Types of Product Generation

Automatic SPG started by the arrival of new data from VHF, S-band,
X-band (LOc), and ground instruments.

1. Runs only once.
2. Uses the latest production release pipeline and calibration products.

Updating SPG started by hand or scheduler.

1. Runs after everY new production release of pipeline and calibration
products on all data as needed.

2. Uses the latest production release pipeline and calibration products.

Customized Product Generation: a possible subset of all pipelines
are run with customized configuration by a creator.

In Automatic and Updating SPG, pipelines are run by a central
scheduler. sequentially to traverse a SPG dependency Tree. (in
parallel TBD)

In all cases the starter should provide with a ‘Creator’ and a
‘RootCause’ parameters to the piplelines, which will produce
Products that remember these parameters.

Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC

SVON\

,.,._)3 A naiive view of the pipelines Svom

Pipeline \
framework Ea rchlvejh' Generate
r Level 3

‘|[Pl S

Eggco Generate Generate Generate
, (_ start
GFT Level Od Level 1 Level 2

& Standard Product Generation /

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 6

AroEtical telescope
b VTE-SKY-CAL VTE-SKY-MOS VTE-SOP-IMA
In space
p Image Prod . Brightness Prod Brightness Prod
Single) Single Image Prod Source : - .
expogure (intr,obs, obsén?ation (insgtr obs) extral::tionl (instr=1..N, Slngle_ epc_>ch (Instr=1..N, S GHIVE
o expo=1..L) combination 1’1 photometery obs=1..M) combination | epoch=1..M) | aggregation
1,11 ’ 1.1 1,1
A
Single epoch
Single - = - com’ 12
\— = XpO ! Ul m e w g = Snyle epochw 13
can ratic - co '
.- W

Single epoch
combination

: 1,4
An optical telescope

on the ground

P

VTE-LC-Sii
Light Curve Prd
(instr=1..N,
band=1.\M) | SED surface
1,1

A

QLC_GFT_ji
2.1

Single Single Sote! : =
exposure —211 observation 2,1 extraction / —t2,1—) quI:i ept?ch QF—2G1FT ' nght cu:'v s
calibration combination photometery £ ﬁon ' Adgregation
Single Ch
» exposure 2,1,2 N
calibration ,7
Single
exposure 2,1,3
. calibration
An high-enel
telescope in space
: Event Prod Brightness Prod .
Single (intr,obs, '".‘age Prad (instr=1..N, Single epoch Bnghtneis Prod Light curve
exposure expo=1..L) (iresiroles) obs=1..M) combination {epeati=L.] aggregation
calibration 311 3,1 31 3.1
MXT-EVT-CAL MXT-SKY-IMAGE MXT-SOP-IMA

2019/10/16

Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC

MXT-LCS-Sii

And there are can multiple objects to be observed simultaneously:-

2019/10/16

MX

VTE-SKY-CAL VTE-SKY-MOS VTE-SOP-IMA VTE-LC-Sii
Image Prod o Brightness Prod Brightness Prod Light Curve Prd
. Single Image Prod Source 4 -
(intr,obs, . . - (instr=1..N, (Instr=1..N, Light curve (instr=1..N,
T observation (instr,obs) extraction / _ _ i — SED surface >
ex;:o‘I—‘EI, L) T ! photometery obs1—11“M) epoc:1—11“M) aggregation ban(i—:,,M) a
1:1:2—2
VTE-SKY-CAL VTE-SKY-MOS VTE-SOP-IMA VTE-LC-Sii
Single Ivz?‘?reon;od Single image Prod Bn(gi;:;?ess Prod Brightness Zrod . ng(:wnls(t:lir;leNPrd
exposure o 0'=1 L) observation (instr,obs) extraction / obs= hg band= ‘Ms SED surface >
Single calibration p1 1 1“ combination 11 photometery 1 1’ 11
exposure Y . '
calibration
Single
exposure 11,2
calibration
VTE-SKY-CAL VTE-SKY-MOS VTE-SOP-IMA VTE-LC-Sii
exposure " . Image Prod - Brightness Prod Brightness Prod Light Curve Prd
o Single Single " Single Image Prod Source -y o o "
calibration = = =
exposure exposure e(;::':‘bsll) observation (instr,0bs) extraction / (")1551:1'“' sé:'r?‘:::;:: ;Lﬁ:{ﬂ:% ;‘;%M cury;‘ S::L: h,\/:) SED surface| >
calibration calibration 11 1" combination 1,1 photometery 11 11 - 1 1" O a
Single Single 12
SXPOSHID) s exs;zgl.lsre 11,2 '
ibrati librati s
calibration calibration calibration i
Single epoch} 1,4
Single oombinationy |
P
jcalibizion VTE-SKY-CAL VTE-SKY-MOS VTE-SOP-IMA VTE-LC-Sii
Single
exposure — Single Image Prod Single Image Prod s Brightness Prod Brightness Prod Light Curve Prd
i ge Pro ource e . . :
Single Eve calibration exposure e()'(::':ﬁbi) observation (instr,obs) extraction / (:)158‘511 N’I\‘) ch'ur?‘ﬁ::“ogw N, al.glgght cur_v;' S:: ol thI) SED surface >
exposure (i calibration IR combination 11 photometery 11 Sdat 11
calibration & Single
exposure
MXT- calibration Single
exposure 11,2
Single calibration
exposure combination
calibration
Single Single Source " i i QLC_GFT_i
Single exposure 211 observation 21 extraction / 21 Sg'g';:;?:: QFszfTJ al-lshl) vl
exposure calibration combination photometery d ggreg d
calibration

P
calibration
Single

Self-describing Po st

VO M

GW 20231225

12

N\

Vv oy o

M

. o . Svo
Data processing pipeline requirements summary

* A pipeline * Node: |
m the]pipelin_e software (with their m The function of a node may need to
configuration) should be versioned. be us%d at thel same time,
m [he pipeline is driven asynchronously.
asynchronously or synchronously. - Wltft\ one interface for I/0 and
m Be modularized, made of “nodes” contro . ,
ot generate products s A
m Depﬁloyment should allow robust (hardware, OS, software, libs-) to
staling make the Processing Task Software.
* A Data Product m Easy and quick access for
= Should be versioned developers.

m results are to be saved in a
persistent store.

m A Product needs a URI.
m Has uniform format or APIs.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 15

> ?
ARG S VOM

Example:

Use SPDC for developing a simplified
VVPP node

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 16

X
VO M

* Input
m 4 VHF datasets
m 3 external datasets
m 2 science datasets

* QOutput
m 6 datasets

* Being developed at NAOC

* to be integrated as a
{;roces_smg node in the FSC
HF pipeline.

* To communicate with the FSC
pipeline with LAN.

* To be deployed in a cluster
environment managed by FSC.

* http://svom.iap.fr/fiches/view_
map.php?list_id[]=217

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 17

=4

3 Cali_vT Calibration database -VT M text database FSC, CSC

F messages
Name Status Format Expected values/units Origin

Order Field

1 ATC g Attitude Chart - VT - R filter M/O text X y mag VHF message VT Attitude Chart R
2 gfC VvT_B Attitude Chart - VT - B filter o/M text X y mag VHF message VT Attitude Chart B
3 FDC_VT_R Finding Chart - VT - R filter M/O text X y mag snr VHF message VT finding chart R
4 Finding Chart - VT - B filter 0o/M text X y mag snr VHF message VT finding chart B
B
; Input science products
= Order Field Required output fields Status
1 QPO_ECL RA M
2 QPO_ECL DEC M
: = datamodel of
4 M
5 M
==1npUL products
-- Attitude Charts (ATC_VT_R,B) and Finding Charts (FDC_VT_R,B) are generated by Payload 3 Psu ot ()®n ras | NS e astrometric
catalogues for VT astrometric calibrations, such as USNO, Gaia, UCAC, etc. -- REF_CATs are the deep all-sky survey catalogues, i.e. USNO, Sloan, Gaia, etc. -- Cali_VT is the
VT calibration database. It is to be used to correct the vignetting (illumination uniformity) and do photometric calibrations. -- QPO_MXT (Quick source position of MXT
detection) should include the detection errors, which determine accurately cross-matching radius in VT Finding Charts
Draft
Check name, status and origin for VHF inputFDaigne: Please check if QPO_ECLAIRs is really needed.FDaigne: Please check if QPO_MXT is really needed: is the on-board
processing not already limiting sources in the finding chart based on MXT position?
Output science products
Order Field Name Status Format Expected values/units
1 SRC_RIi] List of bright source positions with mag. (R filter). M/01 m col.; n rows; float Coord. in J2000 (RA, Dec). Mag. in AB
2 SRC_R_t[i] Observation time of the list n (R filter) M/02 m col.; n rows; float Coord. in J2000 (RA, Dec). Mag. in AB
= 3 SRC_R_n Number of available source lists (R filter) M integer 1to6
= B SRC_BIi] List of bright source positions with mag. (B filter). o/M1 m col.; n rows; float Coord. in J2000 (RA, Dec). Mag. in AB
lg 5 SRC_B_t[i] Observation time of the list n (B filter) M/02 m col.; n rows; float Coord. in J2000 (RA, Dec). Mag. in AB
6 SRC_B_n Number of available source lists (B filter) M integer 1to6
Draft

SRC_R.B: number of lines : n < 200.
SRC_R,B: number of columns and content of columns
check range for SRC_R_n and SRC_B_n

o)

*=*Define a data model for this example:

* Input product:

m dataset 1473
- ATC_R, ATC_B as (type, unit): >38.

* [(float, None), (float, None), (float, 1921.

mag)] 801.

m Metadata(?) 986.
* Pointing as (type, unit): 1350.

* (float, None), (float, None) 715

* This is not in the table. Is it a product 671

or a paremeter? a65

710
960
380
550
500
460

.140
.520
.150

1499
1898

00001_R_1_00 atti.cat
1467.
1214.
919.
1919.
741.
661.
920.
.250
.750

940
460
370
200
020
700
660

00001 R 1 00 atti.pn
142.93425555 42.6292460757

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC

.020
12.
12.
12.
12.
12.
12.
12.
12.

230
290
310
350
360
390
510
550

Svom

19

efine the ATC product SPDC Svom

class ATC_VT_R(ChartXY, Monochrome):

mnun
from dataset.dataset import TableDataset

from pal.context import MapContext e
import logging

import logging.config

create logger

logger = logging.getLogger(__name_)

def __init__ (self, **kwds):
must be the first line to initiate meta and get description
super().__init__ (**kwds)

p#logger.debug('level %d' % (logger.getEffectivelevel())) self.band = 'R’

class Chart(MapContext):
""" Chart has a TableDataset named 'table' as its data

class ATC_VT_B(ChartXY, Monochrome):

def __init__ (self, **kwds):
must be the first line to initiate meta and get description
super().__init__ (**kwds)
implemented with TableDataset for easier row operation
self['table'] = TableDataset()

def __init__ (self, **kwds):
must be the first line to initiate meta and get description
super().__init__ (**kwds)
class ChartXY(Chart): self.band = 'B'
""" ATC is a Chart that has 'x', 'y', 'xerr', 'yerr' columns
for coordinates and 'm', 'merr' for measurement. they are accessed with f
00.x and foo.y etc.

* Taken from svom/products/chart.py
def __init__ (self, **kwds):
must be the first line to initiate meta and get description ® ThlS python ClaSS |S ha nd _ertten |t IS

super().__init__ (**kwds)

S e Rl planned to generate Python product

ERNTNE classes automatically from data model
yeree, 110 XML files.

‘merr', []1, '

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 20

ead the ascii file and
make an ATC product :

def makeProdfrom(self, filep): e
"n" Read attitute chart csv file and make products that ¢~
bsed to be the output of the upstream VHF module.

#logger.debug('reading csv file ' + str(filep))

d = self.loadCSV(filep)
now = FineTimel(datetime.datetime.now(tz=datetime.timezor®
atc = ATC_VT_R(description=filep.name,
creator=__name__,
creationDate=now,
instrument='VT',
startDate=now,
endDate=now, ¥ MapRefsDatase
rootCause='VVPP Simulation', |+ descriptio "UNKNOWN"
modelName='prototest’, B ometa — MotaRatall[l 14ateners
type='ATC_VT R') o MetaData , listener:
atc has no error ?
d.append([0] * len(d[0]))
d.append([0] * len(d[0]))
d.append([0] * len(d[0]))

atc['table’'].data = d

filea = filep.with_suffix('.pn")
d = self.loadCSV(filea)
atc.meta['pointing'] = Parameter([d[0][0], d[1][0]])

assemble
logger.debug(atc.toString())
return atc

* From svom/vvpp.engsimulator.py

88ee SVON\

SPDC Properties

* Annotatable: one can use textual description to annotate the
contained data;

myData.description = ‘My Precious’

* Attributable: one can add attributes (or called properties, meta
data) to the contained data;

myData[‘creator’] = ‘The Dark Lord Sauron’

* Copyable: one can ask for a copy of the data;
anotherOne = myData.copy()

* Comparable; one can compare two containers to see if they are
equal;

anotherOne == myData

* Queryable: Can be queried to discover its contents, and obtain
references of the components

* Serializable: one can transmit the data across the network and
re-construct (deserialize) them on the receiving side

* Accepts Change Listeners

* Easy to handle with REST API
* Free to add properties which are accessible by users.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 23

A\ ¢

Vv oy o
T,

==SPDC allows one to organize data into: [product |

* A Product -- an arbitrary combination of datasets with some Description=
mandatory meta data. Creator=
: : : creationDate=
* A dataset -- an arbitrary combination of | J—————
m N dimensional arrays with an optional unit, modelName=
m [ables Other properties -

m An arbitrary combination of the above.

 Metadata — a list of named parameters Metadata
. : : Parameterl
A Parameter — a string or quantity. parameter?
parameter3
* Besides using the above base class directly, one can also
m assoclate groups, arrays, or tables of Products using basic data structures - ~
such as sets, sequences (Python list), mappings (Python dict), datasetl
m Define custom-made classes that inherit functionalities from base classes dataset2
provided by the package. dataset3
* SPDC accommodates highly complex associated and nested structures. |)

K history /

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 24

SVON\

Product Access Layer (PAL)

* Provides classes for the storing, retrieving, tagging, and context creating

of data product modeled in the dataset package.

Lets one store data in logical “pools”, and makes the data accessible with
light weight product references. A ProductStorage interface is provided to
handle saving/retrieving/querying data in registered ProductPools.

In a data processing pipeline or network of processing nodes, data products
are generated within a context. Data processers, data storages, and data
consumers often need to have relevant context data recorded with a product.
However the context could have a large size so including them as metadata
of the product is often impractical.

Once a data product is saved by ProductStorage it can have a reference
generated for the saved Product. Through its reference the product can be
accessed. The size of such references are typically less than a hundred bytes,
like a URL. References enable SPDCs to encapsulate rich, deep,
sophisticated, and accessible contextual data, yet remain light weight.

= PAL example

Create a product and a productStorage with a pool
registered

a pool for demonstration will be create here
demopoolpath = '/tmp/demopool’

demopool = 'file://' + demopoolpath

clean possible data left from previous runs
os.system('rm -rf ' + demopoolpath)

create a prooduct

X = Product(description="in store')

print(x)

{meta = "MetaData|['description', 'creator',
creationDate', 'instrument', 'startDate',
'endDate', 'rootCause', 'modelName',6 'type',
'mission']", sets = [], history = {meta =
"MetaData[]", _sets = []}}

create a product store
pstore = ProductStorage(pool=demopool)

2019/10/16

Save the product and get a reference

prodref = pstore.save(x)

create an empty mapcontext

mc = MapContext()

put the ref in the context.

mc['refs']['very-useful'] = prodref

get the urn string

urn = prodref.urn

print(urn)
urn:file:///tmp/demopool:Product:0

re-create a product only using the urn

newp = getProductObject(urn)

the new and the old one are equal
print(newp == Xx)

True

Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC

Svom

26

2019/10/16

VPP external environment setup

VVPP Docker container 6 FSC Pipeline Manager Mock-up

VVPP Event
Handler/
publisher

Processing Node
Server (PNS) Input/output data
Http RESTful API in SPDC

VVPP astrnomy

Prosessing Task ”

Software

e
4 5=
= c(
(AT V5 —
> I e T
w = Qe vy
u_Sl-ﬂﬁu
omﬂ-':’D
4l T
EL-cou
S8 a
= By
% §Z

to drive the processing chain.

2 /_ Engineering Simulator

SPDC storage
pool

Product references > event stream

generator

SPDC creator
k Store ingester

=
CSV, excel ...
format data

Product to save

Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC

27

]

=—Docker Container for pipelines

* Many data processing pipelines

s,
Svom

need to run SOftwa.re that Onl runs Server Virtualisation: Each app
on a specific combination of OS and each version of an app has
type, version, language, and library. | dedicated 0s

* These software could be impractical
to replace or modify but need to be
run side-by-side with software of
Incompatible environments/formats - (o
to form an integral data processing '*
pipeline, each software being a

n?(de" to perform a processing
task.

* Docker containers are often the
perfect solution to run software with —————
Incompatible dependencies.

Containers: All containers share
host OS kernel and appropriate
bins/libraries

DS Bins/Libs

Server (physical or virtual)

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC

Microsoft

28

S

* Astronomers develop the
Processing Task Software (PTS)
in his/her Tavorite environment:

m Concentrate in solving astronomy
and algorithmic problems

m Define input and output data
models.

. -
|

A
1

m Prepare test data so that the PTS

Xsgpee canbe tested.

* When the PTS Is ready to
deploy, with supporting tools
and libraries, i1t Is cloned to a In
a Docker container.

m All docker images are managed
by a repository

2019/10/16

APACHE
HTTP SERVER

i
A

Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 29

=z==DNevelop and Deploy a Node for a pipeline Svom

* A Processing Node Server is (PNS)
Installed in the container OS.

* PNS is a Web RESTful APl Server
for a data processing
pipeline/network node that
provides interfaces to

m configure the data processing task
software (PTS) in a processing node,

m make a run request,

m deliver necessary input data, and to
read results.

* PNS uses a ‘Delivery Man’
Protocol to talk to PTS.

Whlask g,

one drop at a time

)

External on-line
services and

3

databases

Libraries,
packages, OS
cmd and util
etc ...

I =

Internal
database

Processing Task
Software (PTS):
E.g. astronomical
software package
(IRAf, XSPEC...;
program in shell
scripts, C, Fortran,
Java, Python.. ;
Proprietary or legacy
software ...

W

(@

Status and Iogs/

Result data

E Directory in file system

(@

Configuration 4

D

Input Data

irectory in file system

CLQLpJp_e_tQ_ENS__/

Operating System inside a Docker Container

PNS:
RESTful Web

Input data in SPDC

and configuration

Interface and
SPDC adaptor

Output data in
SPDC and status,
logs

Physical Server or Cloud Service

/

2019/10/16

* PTS is stateless -- the result can be calculated and
reproduced with given input and configuration. PTS
does not remember previous runs.

Y

Processing
Pipeline
Runner /

scheduler /

manager /
event
handler

External
data store /

database

Processing Node inS“a,ogA
Docker container with an
Nttp Interface

* The container has a Processing

Node Server (PNS) installed to

* Pass input data and configuration from
the pipeline runner to the PTS with
required contents..

* Configures and Runs the PTS and
produce results (successful or not)

e Collect the results and return them to
the pipeline runner.

Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC

30

o PNS 1s Working

* PNS installed on a Docker container or a normal server allows a
processing tasks to
m run in the PNS memory space, in a daemon process, or as an OS process
m recelving Input and delivering output through a “delivery man" protocol.

 SPDC v0.8 test suite has been run on CentOS, Ubuntu, and
Cygwin with Apache and Flask servers.

* The client-server pipeline architecture is shown to work with VVPP
proof-of-concept server running processing software written in C,
FORTRAN, Python using Pyraf and Anaconda.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 31

Repo and docs

v ’a‘PHI‘l

GitLab

* Gitlab repo

http://mercury.bao.ac.cn:9006/mh/spdc
welcome to register and try out

Products and vvpp:
* http://mercury.bao.ac.cn:9006/svom-csc/svom

* Document by Sphinx

Will move to readthedoc.io

* To do:

2019/10/16

Validate with GRM, GFT prototype pipelines

Generate product classes from data model descriptia

history

Beta release

Define messaging architecture
Serialization and toString based on STATE.

——]

spdc

Navigation
Contents:

Install SPDC
Container

Server
spdc Quick Start

API Reference

dataset: Model for Data

pal: Product Access Layer
pns: Processing Node

Self-describing Portable Dataset
Container (SPDCQC)

SPDC is a ‘container’ package written in Python for packing different types of data
together, and letting the container take care of inter-platform compatibility, serialisal
persistence, and data object referencing that enables lazy-loading. The word ‘contair]
the name is more closely associated that is ‘shipping container’ instead of ‘docker
container’.

Features

With SPDC one can pack data of different format into modular Data Products, toget]
with annotation (description and units) and meta data (data about data). One can

Self-describing Portable Data Container, S\/O]

|
spdc spdc Quick Start
Navigation
Contents: dataset
Install SPDC
dataset: Model for Data ArrayDataset
Container Ereation

pal: Product Access Layer
pns: Processing Node
Server

spdc Quick Start
= dataset

= pal

= pns

API Reference

Quick search

Go

<

>>>

>>>

>>>

>>>

>>>

al [15 4.4, 1E3]

a2 ‘ev’

a3 ‘three energy vals'

v - ArrayDataset(data-al, unit-a2, description-a3)
v ArrayDataset(al, a2, description a3)

print(v)

ArrayDataset{ description = "“three energy vals", meta = MetaDatal[],

>>>

>>>

True

>>>

print(v v1)

data access

>>>
>>>
>>>

The

v1 data [34]

v1 unit ‘m’'

print('The diameter is %f %s.'
diameter is 34.000000 m.

(v1.data[@], v1.unit))

et Svon

thanks

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 33

