
The Self-describing Portable Data Container

Maohai Huang, NAOC

September 15-18, 2019, Nanning

2019/10/16
Self-describing Portable Data Container, SVOM Workshop, Nanning.

Maohai Huang, NAOC 1

spdc?
• SPDC is a ``container'' package written in Python for packing

different types of data together,

• letting the container take care of inter-platform compatibility,
serialization, persistence, and data object referencing that enables
lazy-loading.

• The word ``container'' in the name is more similar to that in ``a
shipping container‘’ (emphasizing association) instead of ``a
Docker container‘’ (emphasizing isolation).

2019/10/16
Self-describing Portable Data Container, SVOM Workshop, Nanning.

Maohai Huang, NAOC
2

SPDC packages

• The base data model is defined in package dataset.

• Persistent data access, referencing, and Universal Resource
Names are defined in package pal.

• A reference REST API server designed to communicate with a
data processing docker using the data model is in package pns.

• All classes are individually versioned.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 3

CSC Standard Product Generation (SPG)
• Specifically ‘Data Products’ means deliverable legacy data of the mission with

controlled quality.
• CSC produces L0d – L2.5 Data Products are generated from L0c data, calibration

data, and external auxiliary data. Short Description of “L” levels:
1. L0d: telemetry reorganized for L1 generation.
2. L1: uncalibrated instrument data. Organized according to astronomical convention.
3. L2: calibrated instrument data with physical units that can be used by the general

community.
• Calibration models and algorithms are published, standardized, and configuration controlled.

4. L2.5: conceptually simple merging of L2 data to: e.g. stitched maps, connected spectra
and SEDs, light curves.
• May be derived from multiple instruments.
• Calibration models and algorithms are published, standardized, and configuration controlled

 “L” levels are not always the same as “SP” levels.

• L3: Calculation is not standard model-dependent and/or external data sets.
• SPG controls input, processing, validating, output, pipeline delivery time. Has

production timing requirements
 L3 is not in SPG. Best-effort-basis for resource spent on validation, production timing

2019/10/16 4Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC

Types of Product Generation

1. Automatic SPG started by the arrival of new data from VHF, S-band,
X-band (L0c), and ground instruments.

1. Runs only once.
2. Uses the latest production release pipeline and calibration products.

2. Updating SPG started by hand or scheduler.
1. Runs after every new production release of pipeline and calibration

products on all data as needed.
2. Uses the latest production release pipeline and calibration products.

3. Customized Product Generation: a possible subset of all pipelines
are run with customized configuration by a creator.

4. In Automatic and Updating SPG, pipelines are run by a central
scheduler. sequentially to traverse a SPG dependency Tree. (in
parallel TBD)

5. In all cases the starter should provide with a ‘Creator’ and a
‘RootCause’ parameters to the piplelines, which will produce
Products that remember these parameters.

L0c

2019/10/16 5Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC

A naiive view of the pipelines

2019/10/16 6Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC

SSDC,
FSC,
GFT

Pipeline
framework

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 9

An optical telescope
in space

An optical telescope
on the ground

An high-energy
telescope in space

And there are can multiple objects to be observed simultaneously…

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 12

GRB 20231224a

GRB 20231224b

ToO 20231225a

GW 20231225

Data processing pipeline requirements summary

• A pipeline
 the pipeline software (with their

configuration) should be versioned.
 The pipeline is driven

asynchronously or synchronously.
 Be modularized, made of “nodes”

that generate products.
 Deployment should allow robust

scaling

• A Data Product
 Should be versioned
 results are to be saved in a

persistent store.
 A Product needs a URI.
 Has uniform format or APIs.

• Node:
 The function of a node may need to

be used at the same time,
asynchronously.

 With one interface for I/O and
control

 Accommodates domain experts’
need to use their favorite tools
(hardware, OS, software, libs…) to
make the Processing Task Software.

 Easy and quick access for
developers.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 15

Example:

Use SPDC for developing a simplified
VVPP node

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 16

VVPP input / output and deployment

• Input
 4 VHF datasets
 3 external datasets
 2 science datasets

• Output
 6 datasets

• Being developed at NAOC

• to be integrated as a
processing node in the FSC
VHF pipeline.

• To communicate with the FSC
pipeline with LAN.

• To be deployed in a cluster
environment managed by FSC.

• http://svom.iap.fr/fiches/view_
map.php?list_id[]=217

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 17

2019/10/16
Self-describing Portable Data Container, SVOM Workshop,

Nanning. Maohai Huang, NAOC 18

data model of
input products

Define a data model for this example:

• Input product:
 dataset

• ATC_R, ATC_B as (type, unit):
• [(float, None), (float, None), (float,

mag)]

 Metadata(?)
• Pointing as (type, unit):

• (float, None), (float, None)

• This is not in the table. Is it a product
or a paremeter?

00001_R_1_00_atti.cat

1473.710 1467.940 9.020

538.960 1214.460 12.230

1921.380 919.370 12.290

801.550 1919.200 12.310

986.500 741.020 12.350

1350.460 661.700 12.360

715.140 920.660 12.390

671.520 1499.250 12.510

465.150 1898.750 12.550

…

…

00001_R_1_00_atti.pn

142.93425555 42.6292460757

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 19

Define the ATC product SPDC

• Taken from svom/products/chart.py
• This python class is hand-written. It is

planned to generate Python product
classes automatically from data model
XML files.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 20

Read the ascii file and
make an ATC product

• From svom/vvpp.engsimulator.py
2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 21

SPDC Properties

• Annotatable: one can use textual description to annotate the
contained data;
 myData.description = ‘My Precious’

• Attributable: one can add attributes (or called properties, meta
data) to the contained data;
 myData[‘creator’] = ‘The Dark Lord Sauron’

• Copyable: one can ask for a copy of the data;
 anotherOne = myData.copy()

• Comparable; one can compare two containers to see if they are
equal;
 anotherOne == myData

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 22

• Queryable: Can be queried to discover its contents, and obtain
references of the components

• Serializable: one can transmit the data across the network and
re-construct (deserialize) them on the receiving side

• Accepts Change Listeners

• Easy to handle with REST API

• Free to add properties which are accessible by users.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 23

SPDC allows one to organize data into:

• A Product -- an arbitrary combination of datasets with some
mandatory meta data.

• A dataset -- an arbitrary combination of
 N dimensional arrays with an optional unit,
 Tables
 An arbitrary combination of the above.

• Metadata – a list of named parameters
• A Parameter – a string or quantity.

• Besides using the above base class directly, one can also
 associate groups, arrays, or tables of Products using basic data structures

such as sets, sequences (Python list), mappings (Python dict),
 Define custom-made classes that inherit functionalities from base classes

provided by the package.

• SPDC accommodates highly complex associated and nested structures.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 24

product

Metadata

Parameter1
parameter2
parameter3

…

Description=
Creator=
creationDate=
Instrument=
modelName=
Other properties …

dataset1
dataset2
dataset3

…

history

Product Access Layer (PAL)
• Provides classes for the storing, retrieving, tagging, and context creating

of data product modeled in the dataset package.

• Lets one store data in logical ``pools'', and makes the data accessible with
light weight product references. A ProductStorage interface is provided to
handle saving/retrieving/querying data in registered ProductPools.

• In a data processing pipeline or network of processing nodes, data products
are generated within a context. Data processers, data storages, and data
consumers often need to have relevant context data recorded with a product.
However the context could have a large size so including them as metadata
of the product is often impractical.

• Once a data product is saved by ProductStorage it can have a reference
generated for the saved Product. Through its reference the product can be
accessed. The size of such references are typically less than a hundred bytes,
like a URL. References enable SPDCs to encapsulate rich, deep,
sophisticated, and accessible contextual data, yet remain light weight.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 25

PAL example
Create a product and a productStorage with a pool
registered

a pool for demonstration will be create here

demopoolpath = '/tmp/demopool'

demopool = 'file://' + demopoolpath

clean possible data left from previous runs

os.system('rm -rf ' + demopoolpath)

create a prooduct

x = Product(description='in store')

print(x)

{meta = "MetaData['description', 'creator',
'creationDate', 'instrument', 'startDate',
'endDate', 'rootCause', 'modelName', 'type',
'mission']", _sets = [], history = {meta =
"MetaData[]", _sets = []}}

create a product store

pstore = ProductStorage(pool=demopool)

Save the product and get a reference

prodref = pstore.save(x)

create an empty mapcontext

mc = MapContext()

put the ref in the context.

mc['refs']['very-useful'] = prodref

get the urn string

urn = prodref.urn

print(urn)

urn:file:///tmp/demopool:Product:0

re-create a product only using the urn

newp = getProductObject(urn)

the new and the old one are equal

print(newp == x)

True

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 26

VVPP external environment setup

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 27

1
2 3

4

5
6

7 8

Docker Container for pipelines

• Many data processing pipelines
need to run software that only runs
on a specific combination of OS
type, version, language, and library.

• These software could be impractical
to replace or modify but need to be
run side-by-side with software of
incompatible environments/formats
to form an integral data processing
pipeline, each software being a
``node'' to perform a processing
task.

• Docker containers are often the
perfect solution to run software with
incompatible dependencies.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 28

Microsoft

Develop and Deploy a Node for a pipeline

• Astronomers develop the
Processing Task Software (PTS)
in his/her favorite environment:
 Concentrate in solving astronomy

and algorithmic problems
 Define input and output data

models.
 Prepare test data so that the PTS

can be tested.

• When the PTS is ready to
deploy, with supporting tools
and libraries, it is cloned to a in
a Docker container.
 All docker images are managed

by a repository

• A Processing Node Server is (PNS)
installed in the container OS.

• PNS is a Web RESTful API Server
for a data processing
pipeline/network node that
provides interfaces to
 configure the data processing task

software (PTS) in a processing node,
 make a run request,
 deliver necessary input data, and to

read results.

• PNS uses a ‘Delivery Man’
Protocol to talk to PTS.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 29

Processing Node in a
Docker container with an
http interface

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 30

• PTS is stateless -- the result can be calculated and
reproduced with given input and configuration. PTS
does not remember previous runs.

• The container has a Processing
Node Server (PNS) installed to

• Pass input data and configuration from
the pipeline runner to the PTS with
required contents..

• Configures and Runs the PTS and
produce results (successful or not)

• Collect the results and return them to
the pipeline runner.

PNS is Working

• PNS installed on a Docker container or a normal server allows a
processing tasks to
 run in the PNS memory space, in a daemon process, or as an OS process
 receiving input and delivering output through a ``delivery man'' protocol.

• SPDC v0.8 test suite has been run on CentOS, Ubuntu, and
Cygwin with Apache and Flask servers.

• The client-server pipeline architecture is shown to work with VVPP
proof-of-concept server running processing software written in C,
FORTRAN, Python using Pyraf and Anaconda.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 31

Repo and docs

• Gitlab repo
 http://mercury.bao.ac.cn:9006/mh/spdc
 welcome to register and try out
 Products and vvpp:

• http://mercury.bao.ac.cn:9006/svom-csc/svom

• Document by Sphinx
 Will move to readthedoc.io

• To do:
 Validate with GRM, GFT prototype pipelines
 Generate product classes from data model description
 history
 Beta release
 Define messaging architecture
 Serialization and toString based on STATE.

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 32

thanks

2019/10/16 Self-describing Portable Data Container, SVOM Workshop, Nanning. Maohai Huang, NAOC 33

