

Evolution of underground science in LSM

Laboratoire souterrain de Modane From digging to modern experiments

Laboratoire Souterrain de Modane

- Located in Modane
- 12 permanents
- 1000 visitors days per year

- Wide range of interdisciplinary topics
- Astroparticles, nuclear physic, environment, electronics, radioactivity measurement, biology

Laboratoire Souterrain de Modane

- Merger with Laboratoire de Physique Subatomique & Cosmologie (LPSC-IN2P3) in Grenoble
 - 70 researchers, 90 Engineers & technicians
 - Covering fields in particle & nuclear physics, astroparticle and cosmology
- LSM now becomes a « national facility » as labelled by the CNRS
 - National facility for IN2P3 / CNRS
- LSM as an national experimental facility for :
 - Fundamental Physics
 - Neutrino property determination
 - Direct Dark matter search
 - Gamma spectrometry measurement
 - 14 detectors measuring continuously
 - Open to geosciences, materials, biology and medecine
 - Actually 1000 samples measured per year
 - PARTAGe project to automatize measurments
 - Increase significantly the scope of the LSM

Location and access

History of LSM

Digging

Proton decay

- 4 µ/m2.d
- 3500m3
- 400m2

Prototypes ----- Experiments

- 15Bq/m3 Rn in air
- Radonless air 125m3/h 15mBq/m3

Double beta decay

 $bb0n: (A,Z) \rightarrow (A,Z+2)+2e^{-}$

Full electron energy

 $< m_n > \Rightarrow$ mass hierarchy

SuperNemo experiment

- 82 Se source
- Extreme radiopurity requirement
- Special granularity to obtain the source

Dark matter search

- Major physics goal
- Direct detection would answer to a lot of question
- WIMP candidate is a target for underground detection

CMB anisotropy

Dark matter search

• Edelweiss

Guillaume Warot

• NEWS

Field simulation art(es.Ex*es.Ex+es.Ey*es.Ey+es.Ez*es.Ez) (V/m)

Dark matter search

• DAMIC-M

- MIMAC
 - Directional recoil

Galactic coordinates

Guillaume Warot

SHIN

- Super heavy element with half life >²³⁸U
- Z=108 targeted with self fission producing >5n

Nuclear physicsSuper Heavy Element In natureSHIN (osmium ore surroundedby 3He neutron detectors)

Events	Single	Double	Triple	Quadruple
Measured 550g Os	1 ev/ minute	1 ev./ 10days	2 events	1 event
Random events (100µs)		2 ev/ year	0 ev/ year	0 ev./ year

From these results, we can deduce an upper limit of 10^{-14} g/g for the concentration of EKA-Os super-heavy element in Osmium (with a sample of 550 g sample of Os and assuming a half-life of ~ 10^9 years for this EKA-Os)

This leads to a limit of the mean concentration of EKA-Os of **10**⁻²²g/g in the earth crust

Guillaume Warot

Low radioactivity constraints

- Requirement on material below mBq
- Strong pressure on analytical capabilities
- Increased number of pieces and longer time
- Main measurement performed by gamma ray spectrometry
- Constant effort took place in LSM to develop ultra low background germanium
- Expected 24 HPGe by 2020

High purity germanium

- Semi conductor crystal cooled down to 77 K
- Sample at room temperature
- Sensitive to gammas from 20keV up to 3MeV
- Non destructive measurement
- Sensitive to muons and cosmic activation
- Different detectors adapted to samples shape

Future of measurement at LSM

- PARTAGe project
 - Combining shields in common walls

- Robotisation
- Optimisation of measurement time based on the radiopurity objectives

Germanium detector

• Example of detection limits

Mafalda : (our swiss army knife)

- Size 150 cc 43,1%
- Resolution
- Background

- Ф 80mm h 31,7mm
- 122 keV 920 eV
- 1,33MeV 1,97keV
- Integral 115±3,5 count/day
- 133 c/kg
- Peaks
- 46,5 keV 1,49 ± 0,37 c/d [210Pb]
- 75 keV 3,6 ± 0,62c/d [Pb]

limit (Bq) =
$$\frac{1,43+2,36\sqrt{1,36+bdf\times t}}{\varepsilon(m) m t}$$

 $\varepsilon = \frac{detected}{emitted}$

Guillaume Warot

Shielding

Silicon wafer measurement 700 000s 650g

Nucleide		Bq/kg
210Pb	<	1,58E-02
²²⁶ Ra	<	1,27E-03
238U	<	6,27E-03
228Ra	<	3,82E-03
228Th	<	8,66E-04

Analitycal power for interdiciplinarity

- Possibility to measure a wide range of nucleides
- Used in many environmental datation

$$({}^{210}Pb)_{ex}^{t} = ({}^{210}Pb)_{ex}^{0} \times e^{-\lambda}$$

$$Ln(^{210}Pb)_{ex}^{t} = -\lambda \frac{z}{V} + Ln(^{210}Pb)_{ex}^{0}$$
Guillaume Warct

Absolute datation

¹³⁷Cs + ²⁴¹Am 1963

> ¹³⁷Cs only 1986

Lake survey

- 210Pb gives the sedimentation rate
- Confirmed by artificials nucleides
- Allowing to reconstruct the history of a lake without archives

Guillaume Warot

Ice survey

- Datation of ice core in antartica
- Calibration of radar
- Temporal marker for climate change
- 2 days measure needed in underground lab

Erosion survey

Sources of sediment in mining catchments of New Caledonia

Two main sources of sediment to the main river **Non-mining**

137

tributaries

Mining tributaries

- Discrimination of contributions of both types of tributaries based on their activities in natural/artificial radionuclides
- Quantification using mixing models
- Analysis of sediment cores collected in the delta to reconstruct changes in source contributions with time

Electronic SER test

- Sensitivity of electronic to ionising radiation
- At sea level neutron and alpha contribution
- LSM reference point in JEDEC standard for 0 neutron

Biology at LSM

- Evolution driven by radiation
- Comparison between surface and underground bacteria culture 800 generations harvested

Stem cell storage

- LSM-pasteur institute collaboration
- Funded by interdisciplanary mission from CNRS
- Allowed to test a stem cell storage shielded from natural radioactivity and terrestrial cosmic rays
- Patented solution
- Publication in progress
- Industrial prototype in development

Conclusion

- Underground labs are designed for large scale fundamental physics
- Unique environment find always a use sometimes unforeseen at digging
- Leaves room for interdisciplinary program at moderate cost
- New fields and discoveries made possible by the access to low level radiation environment

