

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Current status of the $^{76}{\rm Ge}$ $0\nu\beta\beta$ decay search and future prospects with Legend

Yoann KERMAÏDIC

Seminar

LPNHE Paris

07 January 2019

Understanding the matter-antimatter asymmetry of the Universe

Understanding the matter-antimatter asymmetry of the Universe

Baryonic asymmetry of the Universe :

$$\eta_{\text{CMB}} = rac{n_b - n_{\overline{b}}}{n_{\gamma}} = (6.05 \pm 0.07) \times 10^{-10}$$

- Sakharov criteria:

B, C, CP, int. out of equilibirium

[Sakharov, 1967]

- Many theoretical scenarios including

High energy scale leptogenesis (electroweak baryogenesis ...)

- Leptogenesis popular because ν is a unique particle Only left-handed, $\nu = \overline{\nu}$?, no electric charge

	Standard Model scenario	Beyond SM scenario
[Huet, 1994]	Baryogenesis Excluded $m_{\rm H}$ too high / phase transition of 1st order Too weak CPV $n \sim 10^{-26}$	 Leptogenesis Plausible - to be falsified Enriched neutrino sector CPV in the neutrino sector Majorana v Lepton Number Violation

• There are 3 left-handed u -> e.g. LEP / Planck satellite

where are the right-handed ones? is there a 4-th hidden neutrino? (SoLiD, ...)

• ν flavours oscillate ($\nu_e \leftrightarrow \nu_\mu$) -> Super K in 1998

neutrinos are not massless!

KATRINat KIT has started in 2018!ECHOat the Heidelberg universityPROJECT8at UW - SeattleCMB (Planck satellite) : $\sum_{\nu=1}^{3} m(\nu_i) < 120 - 660$ meV[Planck - PDG, 2018]

- There are 3 left-handed ν -> e.g. LEP / Planck satellite where are the right-handed ones? is there a 4-th hidden neutrino? (SoLiD, ...)
- ν flavours oscillate ($\nu_e \leftrightarrow \nu_\mu$) -> Super K in 1998 neutrinos are not massless!

coherent modelling of these oscillations -> PMNS framework (CKM-like for quarks)

[NuFit, 2018]

LPNHE Paris, 07.01.19

- There are 3 left-handed ν -> e.g. LEP / Planck satellite where are the right-handed ones? is there a 4-th hidden neutrino? (SoLiD, ...)
- ν flavours oscillate ($\nu_e \leftrightarrow \nu_\mu$) -> Super K in 1998 neutrinos are not massless!

coherent modelling of these oscillations -> PMNS framework (CKM-like for quarks)

why neutrino masses are so small?

- 1. standard Higgs mechanism?
 - successful for explaining electron, muon, quarks, ... masses
 - but for neutrinos: couplings to Higgs should be extremely small ($< 10^{-12}$)

2. See-saw mechanism?

- requires neutrinos to be Majorana Lepton Number is violated
- new mass term in the Lagrangian explaining the smallness of masses
- provides a mechanism for effective leptogenesis

- There are 3 left-handed ν -> e.g. LEP / Planck satellite where are the right-handed ones? is there a 4-th hidden neutrino? (SoLiD, ...)
- ν flavours oscillate ($\nu_e \leftrightarrow \nu_\mu$) -> Super K in 1998 neutrinos are not massless!

coherent modelling of these oscillations -> PMNS framework (CKM-like for quarks)

why neutrino masses are so small?

- 1. standard Higgs mechanism?
 - successful for explaining electron, muon, quarks, ... masses
 - but for neutrinos: couplings to Higgs should be extremely small ($< 10^{-12}$)

2. See-saw mechanism?

- requires neutrinos to be Majorana Lepton Number is violated
- new mass term in the Lagrangian explaining the smallness of masses
- provides a mechanism for effective leptogenesis

HOW TO RELATE THIS TO ⁷⁶Ge?

Two neutrinos double beta decay - $2\nu\beta\beta$

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{\nu}$

Such process:

- ✓ energetically favored in some isotopes (⁷⁶Ge, ⁸²Se, ¹³⁰Te, ¹³⁶Xe)
- \checkmark is predicted by the SM
- \checkmark is measured experimentally

Neutrinoless double beta decay - $0\nu\beta\beta$

 $(A,Z) \quad \rightarrow \quad (A,Z+2) + 2e^{-}$

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

Such process:

- ✓ violates the Lepton Number by 2 units = New Physics!
- \checkmark determines the nature of neutrinos: Majorana particle $\nu = \overline{\nu}$
- ✓ gives information on the ν mass via $m_{\beta\beta}$ (light neutrino exchange scenario)
- ✓ has never been observed so far

Experiments comparison

Light neutrino exchange model:

$$T_{1/2}^{0\nu}{}^{-1} = g_A^4 G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$

- $T_{1/2}^{0\nu}$ experimentally probed half-life
- g_A axial vector coupling cnst = 1.25(?)
- $M^{0\nu}$ nuclear matrix element (NME)
- $G^{0\nu}$ phase space factor
- *m_e* electron mass
- $m_{\beta\beta} \qquad \text{coupling strength (function of lightest ν mass)} \\ = \sum_{i=1}^{3} m_i U_{ei}^2 (U = 3 \times 3 \text{ PMNS matrix})$

٠

lallenges

Experiments comparison

Light neutrino exchange model:

$$T_{1/2}^{0\nu}{}^{-1} = g_A^4 G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$

Sensitivity to reach $m_{\beta\beta} = 0.01 \text{ eV}$ 10⁰ 10^{-1} + 10⁰ 10⁰ $G^{0\nu}$ **π**0ν CUORE (2018), 90% CL $M^{0\nu}$ Isotope 1/2Gerda-II (2018), 90% CL $[\times 10^{-15} \text{ yr}]$ $[\times 10^{28} \text{ yr}]$ KamLAND-Zen (2016) 90% CL 10-1 10^{-1} ⁷⁶Ge 2.3 [3 - 6]m_{ββ} [eV] 2.310-2 10-2 "Next-gen" $0\nu\beta\beta$ sensitivity Planck (2016) 95 ⁸²Se [2.5 - 5.5]1.2 10 10^{-3} **Preferred scenario** 10-3 de Salas et al. (2018) by NOvA and T2K NO @ **2-**σ! 10 + 10⁻⁴ 10⁰ ¹³⁰Te 10-4 [1.5 - 5.5]14 0.5 10^{-1} $\sum m_{\nu}$ [eV] ¹³⁶Xe [1.5 - 4.5]15 0.6 Stoica & Mirea Engels & Menéndez $g_A = 1.25$ (2013)(2017)

Yoann Kermaïdic

⁷⁶Ge based $0\nu\beta\beta$ decay experiment

- $Q_{\beta\beta} = 2039 \text{ keV}$ relatively low value as compared to other isotopes
- Calorimetry
- **High detection efficiency** $\geq 2\beta$ decay source = detector
- Excellent energy resolution
 - > 3 keV FWHM @ $Q_{\beta\beta}$ (0.15%)
- Enrichment up to 88% in ⁷⁶Ge
 - current mass scale: 30 40 kg
- "Background-free experiment" :
 - Nbkg < 1 expected at full exposure (~100 kg.yr) $\sigma T_{1/2}^{0\nu} \propto M.t$
- Motivating larger mass ⁷⁶Ge based experiment for the future

Current and planned experiments

Sanford

esearch

MAJORANA DEMONSTRATOR

Courtesy: Vincente Guiseppe

Searching for neutrinoless double-beta decay of ⁷⁶Ge in HPGe detectors and additional physics beyond the standard model

Source & Detector: Array of p-type, point contact detectors 29.7 kg of 88% enriched ⁷⁶Ge crystals

Excellent Energy resolution: 2.5 keV FWHM @ 2039 keV

Low Background: 2 modules within a compact graded shield and active muon veto using ultra-clean materials

Operating underground at the 4850' level of the Sanford Underground Research Facility

LPNHE Paris, 07.01.19

Yoann Kermaïdic

Runtime and Exposure

Courtesy: Vincente Guiseppe

LPNHE Paris, 07.01.19

Yoann Kermaïdic

LPNHE Paris, 07.01.19

2018 Ovββ Result

Courtesy: Vincente Guiseppe

Background Model Development

a dealer

Courtesy: Vincente Guiseppe

Observed background of 11.9 +/- 2.0 c/(FWHM t y) based on the 1950-2350 keV window

Currently reviewing available assay information and updating the assay-based model with asbuilt simulations, detector configurations, and updated physics lists

Complete background model fits under development

Initial spectral fits suggest that the dominant source of background above assay estimates is not from nearby components

Developing a plan to implement a change in cables/connectors, components, and detector configuration to increase ultimate exposure and study backgrounds

GERDA collaboration

LPNHE Paris, 07.01.19

Yoann Kermaïdic

GERDA location @ LNGS

• Cosmic ray background mitigation

GERDA location @ LNGS

- Cosmic ray background mitigation
 - Deep underground lab➢ Muon flux suppression

Pure water tank equipped with PMTs

Muon and neutron induced mitigation

• signal signature

background mitigation

LPNHE Paris, 07.01.19

background mitigation

Pure water Liquid Ar $\beta\beta$ decay signal: single energy deposition in LAr veto based on Ar a 1 mm³ volume scintillation light read by fibers and PMT Muon veto based on Optical Cherenkov light and fibers plastic scintillator u

background mitigation

Pure water Liquid Ar Ge detector anti-coincidence $\beta\beta$ decay signal: single energy deposition in LAr veto based on Ar a 1 mm³ volume scintillation light read by fibers and PMT Muon veto based on Optical Cherenkov light and fibers plastic scintillator

background mitigation

 $\beta\beta$ decay signal: single energy deposition in a 1 mm³ volume

Pulse shape discrimination (PSD) for multi-site and surface α events

Ge detector anti-coincidence

LAr veto based on Ar scintillation light read by fibers and PMT

Muon veto based on Cherenkov light and plastic scintillator

Ge detectors phase II

7 strings with 40 detectors:

- 3 natural semi-coaxial (7.6 kg)
- 7 enriched semi-coaxial (15.6 kg)
 - Large contact = large capacitance
 - Signal from all charge carriers

30 enriched BEGe (20.0 kg)

- Point-contact = small capacitance
- Signal from holes only

Energy calibration

3 weak ²²⁸Th sources lowered every ~ week

Pulse shape discrimination calibration

- ²⁰⁸TI DEP (1592 keV) used as a proxy for Single-Site Events (SSE)
- Multi-Site Events (MSE) cut set such that 90% of ²⁰⁸TI DEP events survive
- Alphas cut due to specific signal time profile

 Coax cut parameter: Artificial Neural network

Pulse shape discrimination calibration

- ²⁰⁸TI DEP (1592 keV) used as a proxy for Single-Site Events (SSE)
- Multi-Site Events (MSE) cut set such that 90% of ²⁰⁸TI DEP events survive
- Alphas cut due to specific signal time profile

• **BEGe** cut parameter: A/E

 Coax cut parameter: Artificial Neural network

Phase II data taking overview

- Phase II started in Dec. 2015
- Online data blinding: store events at $Q_{\beta\beta} \pm 25$ keV in non-public repository
- Unblinding session ~once per year

Very stable operation especially during the last 9 months of phase II

Phase II physics data modeling before cuts

35

Phase II PSD cut topology

Signal rise time

- Strong suppression of ⁴⁰K and ⁴²K gamma lines (MSE) [1450-1530] keV
- Suppression of almost all *α* events (p+ contact) [> 3000] keV Rise time cut for coax

Соах

Phase II physics data after PSD and LAr

- [600-1300] keV $2\nu\beta\beta$ decays produce single-site events -> No suppression
- [1450-1530] keV Strong suppression of ⁴⁰K and ⁴²K gamma lines (MSE)
- [> 3000] keV Suppression of almost all α events (p+ contact)

Energy spectrum after unblinding!

No new events in the Coax dataset

3 events in the former **BEGe dataset**

+ one new @ 2042 keV ($Q_{\beta\beta} = 2039$ keV / FWHM = 3 keV)

LPNHE Paris, 07.01.19

Since May 2018 #1

Gerda upgrade:

- Improved electronics noise
- Increased LAr light collection (new fibers + new central module)
- Increased the enriched mass by 9.5 kg (remove nat. detectors -> add inverted coax "IC")

Since May 2018 #2

Restart of the data taking

• Already 6.6 kg.yr exposure validated

New

Since May 2018 #3

Restart of the data taking

- Already 6.6 kg.yr exposure validated
- Improved energy resolution in BEGe strings
- No sign of significant alpha re-contamination
- Run until we reach 100 kg.yr

New

After GERDA and Majorana:

Legend collaboration:

- 52 institutions, ~250 members
- GERDA / Majorana / external contributors

Staged approach to reach 10^{28} yr sensitivity:

- LEGEND-200 $\rightarrow 10^{27} \ yr$ after 5 years
- LEGEND-1000 ightarrow 10^{28} yr (hosting lab under investigation)

LEGEND-200 phase:

- Up to 200 kg of ⁷⁶Ge
- Modification of existing GERDA infrastructure at LNGS
- Improved background index
- Start in 2021
- NEWS:
 - $\circ~$ Most of funding already secured
 - First detectors delivery expected early next year!

Hardware improvements #1

New Inverted Coaxial Point-Contact Ge detector technology

➢ First design proposed in 2011 [R. Cooper et al, 11']

- Large active mass up to 3 kg (R&D for 6 kg!)
- Excellent Pulse Shape Discrimination (PSD) between signal and background events [YK et al 18']

Reduced background due to smaller number of channels

• Low Mass Front End (LMFE) electronics

Reduce the signal noise w.r.t. GERDA situation

Experience from Majorana Demonstrator

Ongoing test in LAr

Better energy resolution+ pulse shape discrimination

Hardware improvements #2

• LAr veto

- Take advantage of GERDA experience
- Design studies ongoing
- Optimization of light collection

Ge detector strings positioning

- Extensive Monte-Carlo simulations
- Compromise between background and cuts efficiency
- Statistics for weekly calibration

LEGEND Timescale

3σ discovery sensitivity projection at full exposure

⁷⁶Ge (88% enr.)

Yoann Kermaïdic

Summary

- $0\nu\beta\beta$ decay, if discovered, has far reaching consequences in particle physics! $\nu = \overline{\nu} / LNV / interplay$ with cosmology (many isotopes needed!)
- ⁷⁶Ge isotope offers excellent properties especially for signal discovery
 - > Energy resolution, background-free regime, high detection efficiency
 - > Possibility to reach $T_{1/2}^{0\nu} = 10^{28}$ yr sensitivity

"the new physics is at any corner!" therefore we should continue measuring in all directions, regardless of physics models

- GERDA and Majorana Demonstrator best technologies provide the path to next generation experiment
 - > First time to surpass the 10^{26} yr sensitivity: 1.1×10^{26} yr (90% CL)
 - LEGEND-200 phase has secured funding Ongoing efforts to start in 2021!

LPNHE Paris, 07.01.19