From Majorana to SuperNEMO

The nature of neutrino

Pr. Jose Busto CPPM / Université d'Aix Marseille

Marseille July 6th 2019

Standard Model of particle and interactions

Charge and mass

Neutrino : Only fundamental particle without electric charge and practically no mass

Remark : In Minimum Standard Model neutrino is massless particle

The evolution of a microscopic system in Quantum Mechanics

Non relativistic Particle : Schrodinger Equation

$$\left[\frac{-\hbar^2}{2m}\nabla^2 + V\right]\Psi = i\hbar\frac{\partial}{\partial t}\Psi$$

Relativistic Particle : Dirac Equation

$$\left(i\gamma^{\mu}\partial_{\mu}-m\right)\psi^{\dagger}=0$$

$$E^2 = p^2 c^2 + m^2 c^4 \longrightarrow$$
 Positive and Negative energy solutions
 \hookrightarrow Particle (p), \hookrightarrow antiparticle (p^c)

If charge particle is Q < 0, antiparticle is Q > 0 => Charge conjugation operator (C)

$$e^{-}$$
 (particle) $\xrightarrow{C} e^{+}$ (antiparticle)

Four solutions in Dirac Equation (spin $\frac{1}{2}$): $e^{-}(+\frac{1}{2}), e^{-}(-\frac{1}{2}), e^{+}(+\frac{1}{2}), e^{+}(-\frac{1}{2})$

What about neutral particles ?

Helicity operator

Projection of spin on momentum

Helicity is not a good quantum number. It depends on the framework

Helicity is a good quantum number for massless particles (Helicity = Chirality)

Massive particle
$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$$

Massless particle $i\gamma^{\mu}\partial_{\mu}\psi = 0$
 $\psi = \psi_{R} + \psi_{L}$
 $(i\gamma^{\mu}\partial_{\mu}\psi) = 0$
 $\psi = \psi_{R} + \psi_{L}$
 $(i\gamma^{\mu}\partial_{\mu}\psi) = 0$
 $\psi = \psi_{R} + \psi_{L}$
 $(i\gamma^{\mu}\partial_{\mu}\psi) = 0$
 $\psi = \psi_{R} + \psi_{L}$

If neutrino is massless, or very light => two possibilities : Left Handed or Right Handed

Which one is the good helicity for a massless particle ?

 $\frac{dN}{dE}$

Fermi 1933

New, neutral and very small mass, particle

п

Point interaction, no W boson

What's "v"?

very small mass =>

Anti-neutrino : Left Handed or Right Handed ??

Goldhabert measure the neutrino helicity in 1958

The Goldhaber experiment

• K-shell electron capture \Rightarrow 2-body decay

$152m$
Eu $(J = 0) + e^- \to {}^{152}$ Sm $^*(J = 1) + \nu_e$

- Fast to decay $\Rightarrow T_{1/2} = 9.53$ h
- Total angular momentum of the initial state is the spin of the captured electron \Rightarrow in the final state, spins of Sm and ν_e are always opposite
- The recoiling nucleus has the same polarization (or helicity) as the neutrino

Decay of Sm*:

$${}^{152}\mathrm{Sm}^*(J=1) \rightarrow {}^{152}\mathrm{Sm}(J=0) + \gamma(960 \text{ keV})$$

• If the photon is emitted along the direction of motion of excited Samarium:

Decay of Sm*:

$${}^{152}\text{Sm}^*(J=1) \to {}^{152}\text{Sm}(J=0) + \gamma(960 \text{ keV})$$

• If the photon is emitted along the direction of motion of excited Samarium:

- Hence to measure neutrino helicity we need:
 - to select photons emitted along the direction of excited Samarium (= forward photons)
 - to measure their polarization

- Hence to measure neutrino helicity we need:
 - to select photons emitted along the direction of excited Samarium (= forward photons)
 - to measure their polarization
- Use resonant scattering method

$$\gamma + {}^{152}\text{Sm} \longrightarrow {}^{152}\text{Sm}^* \longrightarrow {}^{152}\text{Sm} + \gamma$$

only possible for > 960 keV photons!

- Photons do not possess all the energy of de-excitation of Samarium because of the recoiling nucleus
- Only photon that are emitted along the direction of Samarium are Doppler shifted and have energy > 960 keV ⇒ only forward emitted photon can excite a Sm atom again

- Hence to measure neutrino helicity we need:
 - to select photons emitted along the direction of excited Samarium (= forward photons)
 - to measure their polarization
- Scattering on polarized electrons in a iron magnet

 Compton scattering is bigger for opposite spin orientation of electron and photon ⇒ only photons with same spin orientation than electrons will be able to do resonant scattering

- Electron capture by $^{152}\mathrm{Eu}$
- Decay of $^{152}\mathrm{Sm}^*$ with emission of γ
- Measurement of γ polarization by scattering on polarized electrons in iron
- Resonant scattering in $^{152}{\rm Sm}$ selects only forward emitted γ
- $\bullet~{\rm Reemitted}~\gamma~{\rm measured}$ by NaI
- Count number of γ s and change B-field

Neutrino helicity, $H = -1.0 \pm 0.3$

 v_{LH} and v_{RH}^c

What is the nature of the neutrino ?

« Symmetric theory of electron and positron »

Ettore Majorana 1937 (brilliant student of Fermi)

In Dirac equation, fields ψ (x) are complex functions.

$$(i\gamma^{\alpha}\partial_{\alpha}-m)\psi(x)=0$$

Majorana looks for real solutions of Dirac equation.

$$\psi(x) = \frac{1}{\sqrt{2}}\chi_1 + i\frac{1}{\sqrt{2}}\chi_2$$
$$(i\gamma^{\alpha}\partial_{\alpha} - m)\chi_{1,2}(x) = 0$$

However 🗖

 $\mathsf{Particle} \equiv \mathsf{anti-Particle}$

Only possible for neutrinos (Q =0)

If v is Majorana, Lepton number is not conserved.

Need new physics beyond de SM

From single beta to double beta

Single beta decay

Two decays in the same nucleus at the same time

Prosed by Maria Goeppert – Mayer en 1935 Observed for the first time in 1987 by Michael Moe $\rightarrow 10^{19}$ to 10^{21} y

Very rare but allowed process (longest radioactive process)

Two neutrinos spectrum

$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+2}Y + 2e^{-} + 2v^{c}_{e}$$

$$Q_{\beta\beta} = M\binom{A}{Z}X - M\binom{A}{Z+2}Y$$

$$\frac{1}{T_{1/2}^{2\nu}} = G_{2\nu}(Q_{\beta\beta}^{11}, Z) \bullet \left| M_{2\nu} \right|^2$$

G = phase space (well known) M = nuclear matrix element (challenging)

Which nucleus can decay by $(\beta\beta)_{2\nu}$

Bethe Weizsaecker formula

(Liquid drop model)

 $E_{b}(MeV) = a_{V}A - a_{S}A^{\frac{2}{3}} - a_{C}\frac{Z^{2}}{A^{\frac{1}{3}}} - a_{A}\frac{(A - 2Z)^{2}}{A} \pm \delta(A, Z) \qquad \qquad \delta(A, Z) = \begin{array}{c} +\delta_{0} \ for \ Z, N \ even \\ 0 \\ -\delta_{0} \ for \ Z, N \ odd \end{array}$

Mass or binding energy of nucleus

A = constant

Some $\beta\beta$ candidates

Isotope	Q _{ββ} (MeV)	Nat. Abund. (%)
⁴⁸ Ca	4.274	0.187
⁷⁶ Ge	2.039	7.8
⁸² Se	2.996	9.2
⁹⁶ Zr	3.348	2.8
¹⁰⁰ Mo	3.035	9.6
¹¹⁰ Pd	2.004	11.8
116Cd	2.809	7.6
¹²⁴ Sn	2.530	5.6
¹³⁰ Te	2.530	34.5
¹³⁶ Xe	2.462	8.9
¹⁵⁰ Nd	3.367	5.6

$$^{A}_{Z}X \rightarrow {}^{A}_{Z+2}Y + 2e^{-}$$

Racah mecanism

$$\begin{bmatrix}
n \to p + e^{-} + "v" & \text{Beta Decay} & \text{BD} \\
"v" + n \to p + e^{-} & \text{Inverse Beta Decay} & \text{IBD} \\
(Neutrino capture) & \text{IBD}
\end{bmatrix}$$

In SM $\begin{vmatrix} : v (BD) & \text{is a RH anti-Neutrino} \\ : v(IBD) & \text{is a LH neutrino} \end{vmatrix}$

Neutrinoless Double Beta Decay (ββ)_{0ν}

Neutrinoless Double Beta Decay

Neutrinoless ββ spectrum

Oscillations of neutrino

 $(\beta\beta)_{0\nu}$ has never been observed

 $(\beta\beta)_{0\nu}$ is a very good process to test physics beyond the SM in which Lepton Number is not conserved. Grand Unification Theories, Super Symetry, . . .

In general Quantum Field Theory, and in particular in GUT the see-saw mechanism is a generic model to produce neutrinos with very small mass. Those neutrinos are Majorana

Some experimental aspects

Two electrons from the same point at the same time

How to make a $\beta\beta$ experiment

Few words about radioactive background

Origin of the background

Need very few radioactive atoms per gram Ex: SuperNEMO < 70 atoms of radon/m³

Natural radioactive chains

Many, α , β and γ particles. Up to 5 MeV electrons

How to make a $\beta\beta$ experiment

Large number of techniques

	Experiments	lsotope	Technique	Advantages
-	GERDA - Majorana	★ ⁷⁶ Ge	Ge diodes	$\mathcal{E}_{0 u}$ - ΔE - PSD
	CUORE	🕇 ¹³⁰ Te	Bolometer	$\mathcal{E}_{0} = \Delta E$
	AMoRE	★ ¹⁰⁰ Mo		$c_{0\nu}$ - ΔE
	EXO-200 - nEXO	★ ¹³⁶ Xe	Liquid TPC	mass
ر ک	SNO+	★ ¹³⁰ Te	Scintillation	$\mathcal{E}_{0 u}$ - mass
_	KamLAND-Zen	★ ¹³⁶ Xe	Semination	- existing
	SuperNEMO	82 Se (150 Nd - 48 Ca)	Tracko-calo	bkg - full topology - multi isotopes
La	NEXT - EXO-gas	★ ¹³⁶ Xe	Gas TPC	$\mathcal{E}_{0 u}$ - tracking - ΔE

⁷⁶Ge

GERDA Very good ∆E

Bare Ge diodes in liquid argon

- $\blacktriangleright\,$ enriched in $^{76}{\rm Ge}$ at 86 $\%\,$
- gradual deployment of the detector strings in the 64 m³ cryostat
- ► LNGS 3800 m.w.e.

Phase 1 - 2011-2013:

 \blacktriangleright \sim 18 kg of $^{76}{
m Ge}$

1400

1600

1800

2000

2200

2400

LEGEND

Merge of two Ge experiments

"standard" Ge detector

⁷⁶Ge

GERDA

Exposure: 59 kg × y Background index: $0.6^{+0.4}_{-0.3}$ c/(keV ton y) $T_{1/2} > 0.9 \times 10^{26}$ y $m_{\beta\beta} < 110 - 260$ meV

MAJORANA demonstrator

Exposure: $26 \text{ kg} \times \text{y}$ Background: $11.9 \pm 2 \text{ c/(FWHM ton y)}$ $T_{1/2} > 2.7 \times 10^{25} \text{ y}$ $m_{\beta\beta} < 210 - 440 \text{ meV}$

Combining the best of MAJORANA and GERDA \rightarrow LEGEND

Radiopurity of parts near detectors (FETs, cables, Cu mounts, etc.)

- Low noise electronics → better pulse-shape discrimination
- Low energy threshold → improved cosmogenic background rejection

Both

- LAr veto
- Low-A shield, no Pb

Posters #41,51,64,68 M

- Clean fabrication techniques
- Control of time on surface to reduce cosmogenic backgrounds
- Development of large point-contact detectors

Mission of LEGEND: discovery potential at a half-life > 10²⁸ y

 $m_{BB} < 11 - 23 \text{ meV}$

LEGEND

LEGEND-200:

LNGS – Italy

- Initial Phase
- ~200 kg in upgraded existing GERDA infrastructure
- Improvements:
 - LAr optical purity (light yield, attenuation)
 - Light detection (add readout between detector strings)
 - Cleaner materials and smaller parts near detectors
 - Larger detectors (fewer cables, readout channels)
 - Surface betas (⁴²Ar progeny): Reduce LAr volume and improve pulseshape
 - Discrimination (better electronics)
 - New inverted-coaxial larger detectors (1.5 2 kg)
- Background goal: 0.6 counts/FWHM t yr (3x lower than GERDA)
- Data-taking could start as early as 2021
- Sensitivity: > 10^{27} y for 1 tonne × y $m_{\beta\beta} < 35 75$ meV

LEGEND-1000:

- Ultimate goal
- 1000 kg (phased) required to cover neutrino-mass IO
- Timeline connected to US DOE down-select process
- Background goal: 0.1 counts/FWHM-t-yr
- Location TBD
- Required depth under investigation

⁷⁶Ge

¹³⁰Te, ¹⁰⁰Mo, ⁸²Se

CUORE

- 62 ${\rm TeO}_2$ crystals
- FWHM \sim 5 keV @ $Q_{\beta\beta}$
- Sensitivity: $\mathcal{T}_{1/2}^{0\nu} > 1 \ 10^{26} \text{ y}$ in 5 years
- First tower already assembled and 18 others by 2014

Bolometer technique

example: 750 g of TeO₂ @ 10 mK $C \sim T^{3}$ (Debye) $\Rightarrow C \sim 2 \times 10^{-9}$ J/K 1 MeV γ -ray $\Rightarrow \Delta T \sim 80 \ \mu K$ $\Rightarrow \Delta Q \sim 10 \ eV$

$CUORE \rightarrow CUPID$

¹³⁰TeO₂ + Cherenkov light Q=2527 keV

Zn⁸²Se Q=2998 keV

Mission: half-life sensitivity higher than 10^{27} y With background < 0.1 counts/(ton y) in the ROI, ¹⁰⁰Mo sensitivity is 2.1x10²⁷ y $m_{\beta\beta} < 6 - 17$ meV

Enriched Xenon Observatory

Liquid-xenon TPC with ionisation & scintillation readout

- Easy and cheap ¹³⁶Xe enrichment (80 %)
- 200 kg liquid xenon TPC in WIPP USA
- FWHM 3.8 % @ Q_{ββ}

 $T_{1/2} > 1.8 \times 10^{25} \text{ y}$ $m_{\beta\beta} < 150 - 400 \text{ meV}$

¹³⁶Xe

EXO-200 → nEXO

Moving forwards towards nEXO

LXe mass (kg)	Diameter or length (cm)
5000	130 ~nEXO
150	40~ EXO-200
5	13

Already existing detector (Reactor Neutrino oscillations)

KamLAND-Zen 400,800→KamLAND2-Zen¹³⁶Xe

 $T_{1/2} > 1.07 \times 10^{26} \text{ y}$ **Results:** KamLAND-Zen 400: data taking completed $m_{\beta\beta} < 45 - 160 \text{ meV}$ Kamioka – Japan Leading experiment Similar to KamLAND-400 Present Major new points: More isotope – **750 kg of** ¹³⁶**Xe** KamLAND-Zen 800 New balloon ~750 kg of Xenon T_{1/2} > 4.6×10²⁶ y DAQ to start in this year $m_{\beta\beta} < 25 - 80 \text{ meV}$ Substantiantial changes Major new points: Future More isotope – ~1 ton of ¹³⁶Xe Improve light collection KamLAND2-Zen Brighter liquid scintillator ~1 ton of ¹³⁶Xe $\rightarrow \Delta E_{FWHM}$: 280 keV \rightarrow < 170 keV Better energy resolution Accomodate scintillating crystals → multi-isotope search $m_{\beta\beta} < 20 \text{ meV}$

Already existing detector (Solar Neutrino oscillations)

130**Te** SNO+ Reuse existing infrastracture of SNO – Canada **SNO+ phase I**: SNO acrylic vessel filled with LS and 1.3 tons of 0 meV Possible SNO+ phase II (ongoing R&D) Increase Te concentration (it does not affect background) $T_{1/2} > 1 \times 10^{27} \text{ y}$ $m_{\beta\beta} < 15 - 60 \text{ meV}$

natural Te in an organometallic compound (0.5% mass loading)

Te loading foreseen in 2019

> 5 y sensitivity:
$$T_{1/2} > 1.9 \times 10^{26}$$
 y $m_{\beta\beta} < 35 - 14$

- Increase light yield
- Improve transparency
- Improve light detectors

Further evolution of this technology with new concepts: THEIA project

- 50 kton water-based liquid scintillator detector
- High coverage with fast photon detectors
- Deep underground
- 8-m radius balloon with high-LY LS and isotope
- 7-m fiducial, 3% ^{nat}Te, 10 years
- Dominant background: ⁸B solar v's

Posters #122,123 M

 $T_{1/2} > 1.1 \times 10^{28} \text{ y}$

 $m_{BB} < 5 - 18 \text{ meV}$

without enrichement!

Neutrino Ettore Majorana Observatory

From NEMO III

to SuperNEMO

The NEMO-3 Technique

The multi-observable principle: topology, kinematics, timing

Plastic scintillator calorimeter

NEMO-3 detector

Source: 10 kg of $\beta\beta$ isotopic foils area = 20 m², thickness ~60 mg/cm²

✓ <u>Tracking detector</u>:

- drift wire chamber (9 layers) in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O
- Calorimeter:
 1940 plastic scintillators
 low radioactivity 3" & 5" PMTs
 - B field : 25 Gauss
 - Shielding:
 - gamma shield: pure iron (d = 18cm)
 neutron shield:

30 cm water (ext. wall) 40 cm wood (top / bottom) (since March 2004: water + boron)

NEMO-3 data taking: 2003 - 2010

NEMO3 Lab.

LSM Modane, France (Tunnel Frejus, depth of ~4,800 mwe)

NEMO-3: 7 isotopes + events images

Isotope	Mass (g)	$\mathbf{Q}_{\beta\beta}$ (keV)
¹⁰⁰ Mo	6 914	3035
⁸² Se	932	2995
¹¹⁶ Cd	405	2805
⁹⁶ Zr	9.4	3350
¹⁵⁰ Nd	37	3367
⁴⁸ Ca	7	4272
¹³⁰ Te	454	2529
^{nat} Te	491	
^{nat} Cu	621	
		02 01 00 19 18 16

- ✓ <u>Trigger</u>: at least 1 PMT > 150 keV
 ≥ 3 Geiger hits (2 neighbouring layers+1)
- \checkmark Trigger rate = 7 Hz
- ✓ 25 $\beta\beta$ events per hour

Results

> 700 000 of 2-electron

Signal/Background: 76

$$T_{1/2}$$
 (2νββ) = (7.16 ± 0.01) × 10¹⁸ y

¹⁰⁰Mo and ⁸²Se $(\beta\beta)_{0\nu}$ results

[2.8 – 3.2] MeV 18 observed events, 16.4 ± 1.3 expected

[2.6 - 3.2] MeV 14 observed events, 11.3 ± 1.3 expected

$$\begin{split} ^{82}Se & (\text{for exposure of } 4.2 \text{ kg }^* \text{ y }) \\ T_{1/2} & (0\nu\beta\beta) > 3.2 \text{ x } 10^{23} \text{ y } (90\% \text{ C.L.}) \\ & m_{\beta\beta} \ < 0.94 - 2.6 \text{ eV} \end{split}$$

Physics Studies: RHC

NEMO-3 $(\beta\beta)_{2\nu}$ results

From NEMO-3 to SuperNEMO

NEMO-3	R&D since 2006	SuperNEMO
¹⁰⁰ Mo	Isotope	⁸² Se (or ¹⁵⁰ Nd or ⁴⁸ Ca)
7 kg x 5 years	Exposure	100 kg x 5 years
18%	0vββ efficiency	30%
$T_{1/2}^{0\nu\beta\beta} > (1-2) \times 10^{24}$ years $< m_v > < 0.3 - 0.8 \text{ eV}$	Sensitivity	$T_{1/2}^{0\nu\beta\beta} > 1 \times 10^{26}$ years $< m_{v} > < 0.04 - 0.1 \text{ eV}$

SuperNEMO demostrator

Objective: to reach the background level for 100 kg to perform a no background experiment with 7 kg isotope of ⁸²Se in 2 yr

Global efficiency : 30 % (NEMO3 8%)

Current-generation experiments

- Neutrino is a fantastic particle to explore new physics beyond de SM.
- Despite the important advances in neutrino physics (neutrino oscillations demonstrate that MSM is wrong), we don't know what is the nature of neutrino : Dirac or Majorana.
- Neutrinoless double beta decay is the best way to test the neutrino nature and open the door to new physics beyond the SM.
- The field is extremely active : Variety of approaches and technologies

Backup

SuperNEMO R&D: Tracker

- Design verified with 90-cell prototype
 - Resolution: 0.7mm transverse, 1cm longitudinal
 - Cell efficiency > 98%
- Automated wiring robot being commissioned for mass production in ultra low background conditions

 500000 wires to string, crimp and terminate
- Readout electronics under development

SuperNEMO R&D: Calorimeter

 Target ΔE/E reached with hexagonal and cubic blocks and high QE 8" Hamamatsu R519MOD PMTs:

> 7.2% FWHM at 1 MeV (equivalent to 4% at $Q_{\beta\beta}$ = 3.0 MeV)

Open minded search fo any 0νββ decay mechanism

η can be due to mass mechanism, V+A, majoron, SUSY, ... with different topology in the final state

Isotope enrichment

Nucleus	Existing method	R&D	
⁴⁸ Ca		Laser separation, gazeous diffusion	
⁷⁶ Ge	Centrifugation		
⁸² Se	Centrifugation		
⁹⁶ Zr		Laser separation	
¹⁰⁰ Mo	Centrifugation		
¹¹⁶ Cd	Centrifugation		
¹³⁰ Te	Centrifugation		
¹³⁶ Xe	Centrifugation		
¹⁵⁰ Nd		Centrifugation, Laser	\rightarrow

R&D in KAERI (Korea) for ⁴⁸Ca enrichment by laser

R&D in Russia for ¹⁵⁰Nd enrichment by centrifugation R&D in France for ¹⁵⁰Nd enrichment by laser

En 1957 Bruno Pontecorvo

Si les états propres de saveur et les états propres de masse ne sont pas confondus => Oscillations de neutrinos $|\nu_{\alpha}\rangle = \sum U_{\alpha i} |\nu_i\rangle$

Pontecorvo-Maki-Nakasawa-Sakata

OSCILLATIONS DE NEUTRINOS

$$\sin^2 \theta_{12} = 0.307, \qquad \sin^2 \theta_{23} = 0.39,$$
$$\sin^2 \theta_{13} = 0.0241 \ (0.0244) \ ,$$

 $E_v \simeq 1 \text{ MeV}$ L ~ 1 Km –100 Km $v_{e,}$

Hiérarchie de masse

$\beta\beta$ v.s. oscillations

Neutrinos abundance in the Univers

Second most abundance particle in the universe

413 photons/m³ 340 neutrinos/cm³ ($v_e^{(-)}, v_{\mu}^{(-)}, v_{\tau}^{(-)}$)

Better knowledge of neutrino physics => direct impact in astrophysics and cosmology