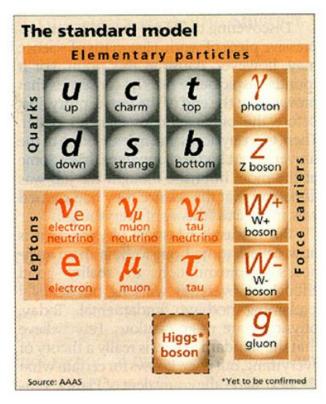
Identify the decaying particles through ATLAS data analysis

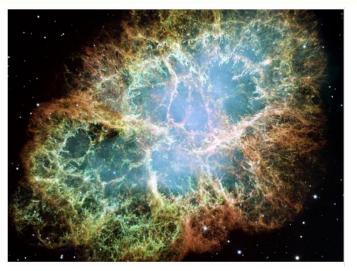
—— leptons and photons in Z path

Reporters: Mingya DUAN (GXU)

Jumin YUAN (Meng WANG, SDU)

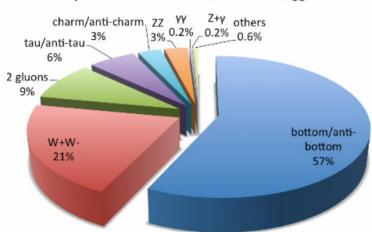

Supervisor: Ana DUMITRIU (CPPM)

10.07.2019

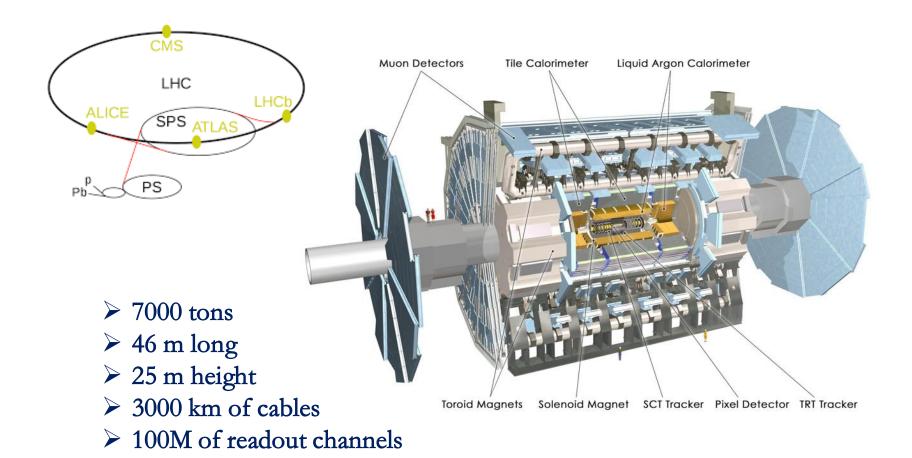

Outline

- 1. The standard model of particle physics
- 2. ATLAS detector
- 3. Identification of particles
- 4. Result
- 5. Summary and outlook

1. The standard model of particle physics

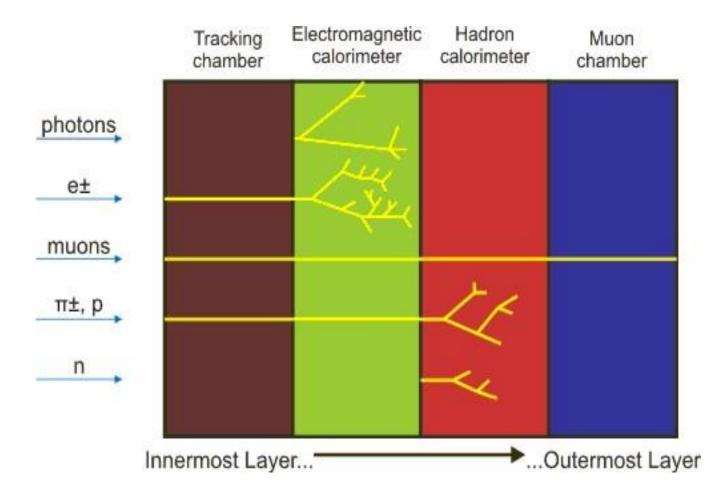


The standard model



In such extreme conditions as a supernova explosion, Z bosons are produced as an "everyday" particle

Decays of a 125 GeV Standard-Model Higgs boson



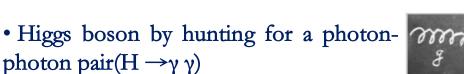
2. ATLAS detector

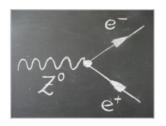
2.1 The principle of identifying particles

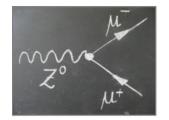
According to different kinds of particles have different kinds of interactions with the mediums in the detectors.

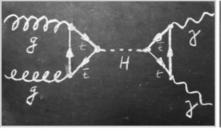
3. Identification of particles

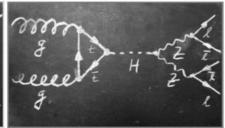
A Data sample: the data sample of many thousand events is divided into smaller packages with 50 events each.


Tool: HYPATIA

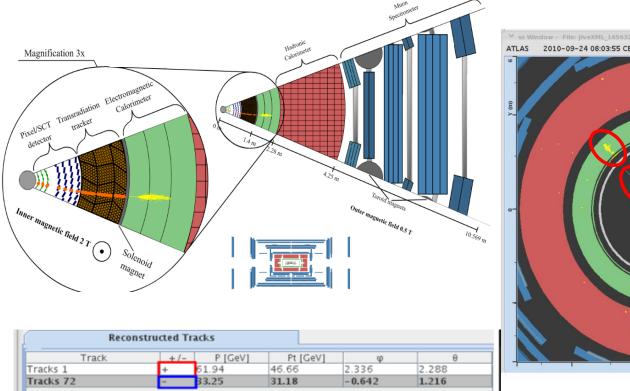

hands on particle physics

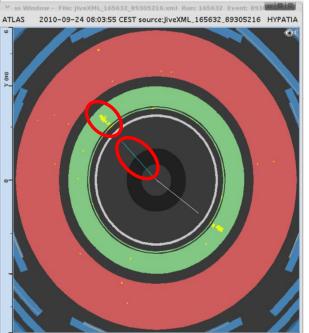

Purposes:


• Z boson, by hunting for an electron-positron pair or a muon-antimuon pair $(Z\rightarrow l^+l^-)$



• Higgs boson by hunting for 2 leptonpairs (H \rightarrow l⁺l⁻ l⁺l⁻)

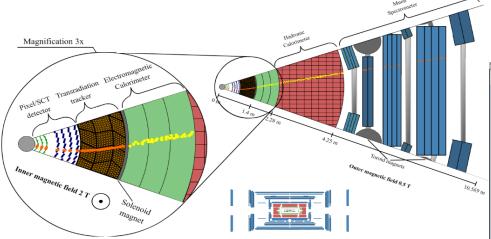




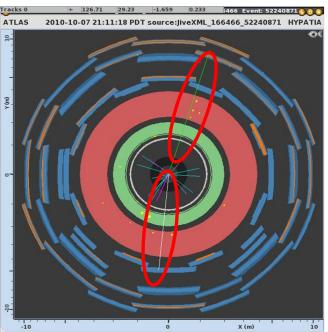
 $Z \rightarrow e^+e^-$

Steps to identify

- Two footprints in innermost detector from the vertex detector
- Two clusters in the electromagnetic calorimeter
- Sum of electrical charge is 0



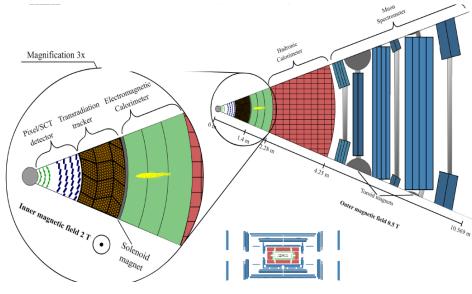
3.2 case 2: $Z \rightarrow \mu^+ \mu^-$


$Z {\longrightarrow} \mu^+ \mu^-$

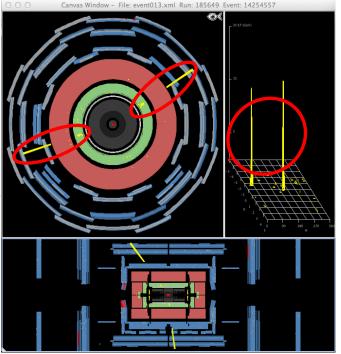
Steps to identify

- Two footprints from the vertex detector to muon spectrometer
- Sum of electrical charge is 0

Reconstructed Tracks							
Track	+/-	P [GeV]	Pt [GeV]	Φ	θ		
Tracks 0	+	126.71	29.23	-1.659	0.233		
Tracks 3	+	7.78	4.24	-1.928	0.577		
Tracks 5	-	120.76	61.66	1.257	0.536		
Tracks 6	+	2.97	1.31	-0.477	2.686		
Tracks 7	-	2.83	1.06	-0.062	2.757		
Tracks 9	-	2.99	1.20	-2.356	0.415		
Tracks 10	+	8.03	1.47	-2.472	2.958		
Tracks 11	+	5.87	1.19	-2.757	0.204		
Tracks 15	+	6.06	2.69	-0.771	2.681		
Tracks 17	-	8.08	4.16	-2.043	0.540		
Tracks 24	-	1.50	1.36	2.582	2.002		

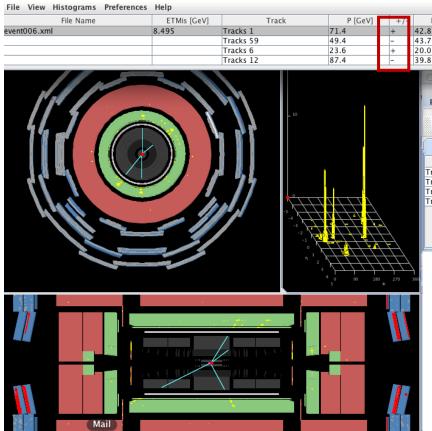


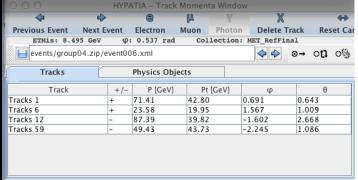
3.3 case 3: $H \rightarrow \gamma \gamma$


$H{\longrightarrow}\;\gamma\;\gamma$

Steps to identify

- Two clusters in the electromagnetic calorimeter
- Two tracks in the muon spectrometer
- Two peaks




Tracks	Physics (Objects		
Track	P [GeV]	Pt [GeV]	φ	θ
Object 0	49.03	48.71	-2.834	1.456
Object 1	67.27	54.15	0.588	2.206

3.4 case 4: $H \rightarrow e^+e^-e^+e^-$

$H \rightarrow e^+e^-e^+e^-$

87.551

M(2) [GeV] M(4) [GeV

Steps to identify

Pt [GeV]

0.691

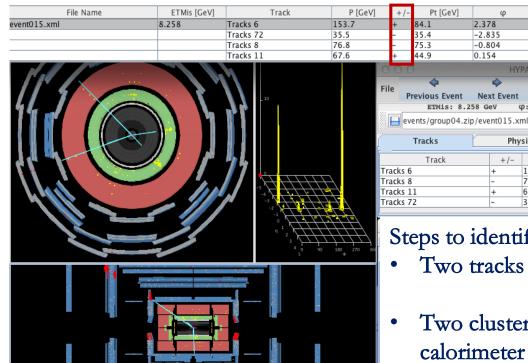
1.567

-2.245

-1.602

1.100

0.505


0.594

-1.423

- Four tracks in the tracking chamber
- Four clusters in the electromagnetic calorimeter
- Sum of electrical charge is 0

3.5 case 5: $H \rightarrow e^+e^-\mu^+\mu^-$

$H \rightarrow e^+e^-\mu^+\mu^-$

Steps to identify

-2.835

-0.804

0.154

Two tracks in the tracking chamber

-1.212

0.027

0.200

-0.968

φ: 0.541 rad

P [GeV]

Physics Objects

153.74

76.79

67.65

35.46

M(2) [GeV]

Pt [GeV]

84.09

75.28

35.44

Collection: MET RefFinal

2.378

-0.804

-2.835

0.154

91.056

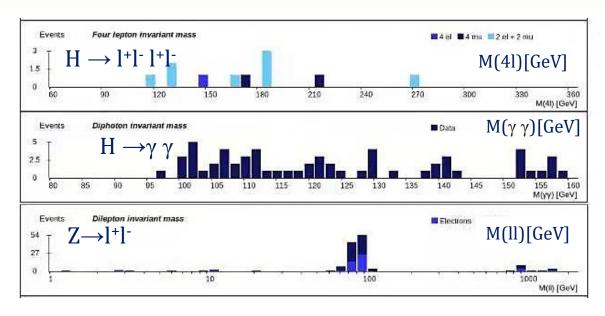
89.645

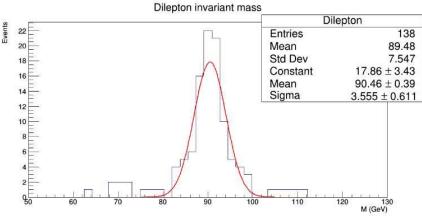
e/m/g

Reset Canvas

o→ otl o%

2.563


1.372


2.416

1.544

- Two clusters in the electromagnetic calorimeter
- Two tracks in the muon spectrometer
- Sum of electrical charge is 0

4. Result

- Not see the Higgs boson (lack of data)
- See Z boson (Gaussian)
 Mean of mass is 90.46 ± 0.39 GeV
 Sigma is 3.555 ± 0.611 GeV

5. Summary and outlook

- •Learn more details about the SM, Higgs boson, Z boson and particle physics
- •Study ATLAS detector and the principle to identify particles
- •Learn about how to use the HYPATIA to identify particles
- •Plan to identify particles in batch mode

Thank You!
Merci!

谢谢!