Future of Particle Physics: Part 3

$\mathrm{D^r}$ Steve Muanza: CPPM Marseille, CNRS-IN2P3 & AMU

Physics of the two infinities: Ecole d'étÉrance Excellence 2019

July 10, 2019

Aix+Marseille

Outline

Overview of the Projects

Precision Measurements in Higgs Sector

Introduction

Overview of the Projects Precision Measurements in Higgs Sector Search for SUSY

Introduction

High Energy PHysics Current Context

- The major recent and most important discovery was the Higgs boson in 2012
- The Higgs sector in the SM is thought as the most promising portal for possible Physics Beyond the SM (BSM)
- $\bullet\,$ Therefore the priority at the LHC for short and medium terms is to search for BSM
 - Indirectly: through precision measurements, espcially of the Higgs boson properties
 - Directly: through production of new particles or phenomena

LHC & Its Immediate Extensions

Where we stand & where we know we're heading to

- LHC: Large Hadron Collider (website) Circular tunnel of C=27 km, SC dipole magnets B = 8.3T in NbTi, mainly pp collider at $\sqrt{s} = 14$ TeV and $\mathcal{L} = 1 - 2 \times 10^{34} cm^{-2} s^{-1}$
- Ending date ("low lumi. LHC"): 2026 (after LS3) $\leftrightarrow \int \mathcal{L} dt = 300 f b^{-1}$
- HL-LHC: High Luminosity Large Hadron Collider (website) mainly pp collider at $\sqrt{s} = 14$ TeV and $\mathcal{L} = 5 20 \times 10^{34} cm^{-2} s^{-1}$
- Ending date: 2035 (after LS5) $\leftrightarrow \int \mathcal{L} dt = 3.000 f b^{-1}$

LHC & Its Immediate Extensions

How we could go beyond ... through DIS

- LHeC: Large Hadron Electron Collider (website) LHC tunnel, $e^{\pm}p$ collider at $\sqrt{s} = \sqrt{4E_eE_p} = 1.3$ TeV, with $E_e = 60$ GeV, $E_p = 7$ TeV
- Polarization: $\mathcal{P}_{e^-} = 40\%$ & $\mathcal{P}_{e^+} = 40\%$
- $\mathcal{L} = 10^{33} cm^{-2} s^{-1} \leftrightarrow \int \mathcal{L} dt = 1.000 fb^{-1}$

LHC & Its Immediate Extensions

How we could go beyond ... breaking the Energy Frontier

- HE-LHC: High Energy Large Hadron Collider (workshop) LHC tunnel, mainly pp collider at $\sqrt{s} = 27$ TeV and $\mathcal{L} = 25 \times 10^{34} cm^{-2} s^{-1} \leftrightarrow \int \mathcal{L} dt = 10.000 fb^{-1}$
 - Key instrumental ingredients
 - B=16T dipole magnets using Nb₃Sn
 - New vacuum system
 - These R&D's are conducted in view of FCC-hh
 - Possible starting date: 2040

16T High Field dipole design FCC options

D^r Steve Muanza: CPPM Marseille, CNRS-IN2P3 & AMU

Future of Particle Physics: Part 3

Linear Colliders

New Era of Precision Measurements (Higgs,...)

- ILC: International Linear Collider (website)
 - 31 km tunnel, including 2 Linacs of 11 km each
 - e^+e^- collider at $\sqrt{s} = 0.25 0.35 0.50 1$ TeV $\leftrightarrow \int \mathcal{L} dt = 500 - 200 - 5.000 - 1.000 fb^{-1}$
 - Polarization: $\mathcal{P}_{e^-} = 80\%$ & $\mathcal{P}_{e^+} = 30\%$
 - Possible starting date: 2030
 - Meetings: Recent Workshop in Strasbourg

D^r Steve Muanza: CPPM Marseille, CNRS-IN2P3 & AMU

Future of Particle Physics: Part 3

Overview of the Projects Precision Measurements in Higgs Sector

Linear Colliders

Extending Precision Measurements & Direct Discovery Potential (1)

• CLIC: Compact Linear Collider (website)

- e^+e^- collider at $\sqrt{s} = 0.38 1.5 3 \text{ TeV} \leftrightarrow \int \mathcal{L} dt = 500 1.500 2.000 \text{ fb}^{-1}$
- $\mathcal{L} = (1 2 5) \times 10^{34} cm^{-2} s^{-1}$
- Polarization: P_e = 80% & P_e = 0%
 Document: CERN Yellow Report
- Meetings: Next Workshop at CERN
- Possible starting date: 2035

Circular Colliders

Extreme Statistics for Precision Measurements

- FCC-ee: Future Circular Collider- e^+e^- (website) Circular tunnel of C=100 km, $\sqrt{s} = (91.2 - 160 - 240 - 365)GeV$ $\mathcal{L} = (230 - 32 - 8 - 1.5) \times 10^{34} cm^{-2} s^{-1} \leftrightarrow \int \mathcal{L} dt = 88.000 - 15.000 - 1.000 fb^{-1}/y$
- ${ullet}$ Polarization: under study, ${\cal P}_{e^-}=30\%$ achievable $\sqrt{s}=(91.2-160){\it GeV}$
- Possible starting date: 2039
- Similar Project: CEPC (Circular Electron Positron Collider) in China (website)

Circular Colliders

Playing the "Super-Hera"

- FCC-eh: Future Circular Collider- $e^{\pm}p$ FCC-ee tunnel, $e^{\pm}p$ collider at $\sqrt{s} = \sqrt{4E_eE_p} = 3.5$ TeV, with $E_e = 60$ GeV, $E_p = 50$ TeV
- R&D in Common with LHeC: see recent workshop
- $\mathcal{L} = 1.1 \times 10^{34} cm^{-2} s^{-1} \leftrightarrow \int \mathcal{L} dt = 400 fb^{-1}/y$
- Possible starting date: 2045

Circular Colliders

Ultimate Conceivable Energy Frontier

- FCC-hh: Future Circular Collider-pp (website) FCC-ee tunnel, $\sqrt{s} = 100$ TeV and $\mathcal{L} = 5 - 30 \times 10^{34} cm^{-2} s^{-1} \leftrightarrow \int \mathcal{L} dt = 17.500 fb^{-1}$
- Physics potential: see recent CERN Yellow Report
- Possible starting date: 2043
- Similar Project: SppC (Super pp Collider) in China (see recent workshop)

Circular Colliders

Extending Precision Measurements & Direct Discovery Potential (2)

- Muon Collider: Future $\mu^+\mu^-$ Circular Collider (website) L=2 km tunnel (LINACs+colliding rings) at FERMILAB, $\sqrt{s} = 1.5 - 3$ TeV
- $\mathcal{L} = 1.25 3 \times 10^{34} cm^{-2} s^{-1} \leftrightarrow \int \mathcal{L} dt = 400 1.000 fb^{-1}/y$
- Source of high energy neutrinos

Comparing Facilities (1/2)

Features

Future Colliders in a chart

Collider	Туре	\sqrt{s}	$\mathscr{P}[\%]$ [e^{-}/e^{+}]	N(Det.)	\mathscr{L}_{inst} [10 ³⁴] cm ⁻² s ⁻¹	\mathscr{L} [ab ⁻¹]	Time [years]	Refs.	Abbreviation	
HL-LHC	pp	14 TeV		2	5	6.0	12	[10]	HL-LHC	nn
HE-LHC	pp	27 TeV	<u>_</u>	2	16	15.0	20	[10]	HE-LHC	m
FCC-hh	pp	100 TeV	-	2	30	30.0	25	[1]	FCC-hh	
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[1]		
		$2M_W$	0/0	2	25	10	1-2			ee
		240 GeV	0/0	2	7	5	3		FCC-ee ₂₄₀	
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5		FCC-ee ₃₆₅	
							(+1)	(1y SD	before 2mtop run)	
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[3,11]	ILC250	
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1		ILC350	
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5		ILC500	
							(+1)	(1y SD after 250 GeV run)		
CEPC	ee	M_Z	0/0	2	17/32	16	2	[2]	CEPC	
		$2M_W$	0/0	2	10	2.6	1			
		240 GeV	0/0	2	3	5.6	7			
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[12]	CLIC ₃₈₀	
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7		CLIC ₁₅₀₀	
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8		CLIC ₃₀₀₀	
							(+4)	(2y SDs between energy stages)		
LHeC	ep	1.3 TeV		1	0.8	1.0	15	[9]	LHeC	-
HE-LHeC	ep	1.8 TeV	-	1	1.5	2.0	20	[1]	HE-LHeC	eh
FCC-eh	ep	3.5 TeV	2	1	1.5	2.0	25	[1]	FCC-eh	

D^r Steve Muanza: CPPM Marseille, CNRS-IN2P3 & AMU

Future of Particle Physics: Part 3

Comparing Facilities (2/2)

Timelines

	To	+5			+10		+15		+20		+26
ILC	0.5/ab 250 Ge	,	2	1.5/al 250 Ge	b ⊧V		1.0/ab 500 GeV	0.2/ab 2m _{top}	3/ab 500 GeV		
CEPC	5 24	.6/ab IO GeV	16, N	/ab 1 _z	2.6 /ab 2M _W						SppC =>
сис		1.0/ab 380 GeV			2.5/ab 1.5 TeV			5.0/ab 3.	5.0/ab => until +28 3.0 TeV		
FCC	150/ab ee, M _z	10/ab ee, 2Mw	5/ab ee, 240 0	GeV		1.7/ab ee, 2m _{top}				ł	nh,eh =>
LHeC	0.06/	0.06/ab 0.2/ab			0.72	2/ab					
HE- LHC		10/ab per experiment in 20y									
FCC h/hh		20/ab per experiment in 25y									

Higgs Properties

Higgs Production at FCC-ee

Exploiting a very large Higgs boson sample, produced under clean experimental conditions, and collected with superb precision detectors

working point	[10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ year	physics goal	run time [years]
Z first 2 years	100	26 ab ⁻¹ /year	150 ab ⁻¹	4
Z later	200	52 ab 1/year		
W	30	7.8 ab ⁻¹ /year	10 ab ⁻¹	~1
н	7.0	1.8 ab ⁻¹ /year	5 ab-1	3
top	1.6	0.4 ab ⁻¹ /year	1.5 ab 1	4

	FCC-ee 240 GeV	FCC-ee 350 GeV
Total Integrated Luminosity (ab-1)	5	1.5
Number of Higgs bosons from e⁺e⁻→HZ	1,000,000	200,000
Number of Higgs bosons form fusion process	25,000	40,000

Higgs Coupling to Z

D^r Steve Muanza: CPPM Marseille, CNRS-IN2P3 & AMU Future of

Higgs Properties

Higgs Coupling to Z

- Recoil method provides unique opportunity for model independent measurement of HZ coupling
 - Higgs events are tagged Higgs decay mode independent
 - expected precision ~0.5% on ZH cross section
 - . using only leptonic Z decays and only measurement at 240 GeV so far

Higgs Properties

Higgs Production at FCC-ee

Higgs Total Decay Width

Total Higgs boson width can be extracted from a combination of measurements in a model independent way

• 1) tagging Higgs final states

$$\sigma(ee \to ZH) \cdot BR(H \to ZZ) \propto \frac{g_{HZ}^4}{\Gamma}$$

2) measurements of vector boson fusion production at 350 GeV

Higgs Properties

Higgs Production at FCC-ee

Higgs Coupling to Z

Precision on Higgs Coupling Measurements

Coupling	HL-LHC	FCC-ee	FCC-ee
		$\sqrt{s} = 240 \text{ GeV}$	$\sqrt{s} = 350 \text{ GeV}$
gнz	2-4	0.21	0.21
Внw	2-5	1.25	0.43
бнь	5-7	1.25	0.64
ВНс	-	1.49	1.04
в́нg	3-5	1.59	1.18
ВНт	5-8	1.34	0.81
$g_{H\mu}$	5	8.85	8.79
$g_{H\gamma}$	2-5	2.37	2.12
Γ _H	5-8	2.61	1.55

Table: Accuracy on Higgs couplings measurements in [%]

Higgs Properties

Higgs Production at FCC-hh

• Cross sections and expected statistics:

smaller impact of systematics

Higgs Properties

Top Yukawa Coupling

- Can be measured very accurately through $\sigma(t\bar{t}H)/\sigma(t\bar{t}Z)$: $\left[\frac{\delta y_t}{y_t}\right]_{Stat \oplus Syst_{TH}} \approx 1\%$
- ${\scriptstyle \bullet }$ Highest sensitivity in 1/2-leptonic boosted topology

 $H
ightarrow \mu^+ \mu^-$

 $H \rightarrow \gamma \gamma$

 $H \to 4\ell^{\pm}$

Higgs Properties

$H \rightarrow \mu^+ \mu^-$

$H \rightarrow \gamma \gamma$

 $H \to 4\ell^{\pm}$

Summary

- Very large stats for S, but also for B (assume pprox infinite stat. in CRs)
- More accurate measurements of Higgs couplings than FCC-ee ($\mu^+\mu^-$, $\gamma\gamma$)
- Measurement of ratios of BR can break the "syst. ⊕ lumi. wall (2-3%)"

D^r Steve Muanza: CPPM Marseille, CNRS-IN2P3 & AMU Future of Particle Physics: Part 3

Overview of the Projects Precision Measurements in Higgs Sector

Higgs Properties

• Can be measured very accurately through $\sigma(t\bar{t}H)/\sigma(t\bar{t}Z)$: $\left[\frac{\delta y_t}{y_t}\right]_{Stat \oplus Syst_{TH}} \approx 1\%$

Summary

- Very large stats for S, but also for B (assume \approx infinite stat. in CRs)
- More accurate measurements of Higgs couplings than FCC-ee ($\mu^+\mu^-$, $\gamma\gamma$)
- Measurement of ratios of BR can break the "syst.⊕ lumi. wall (2-3%)"

SUSY

Stop pairs HL-LHC vs FCC-hh

- SM objects boosted into a single calo cell: std tagging techniques bound to fail
- Ex: Simpl. Model $BR(\tilde{t} \to t + \tilde{B}) = 100\%$, choose a semi-muonic event topology
- Event selection: $p_T(\mu^{\pm}) > 200$ GeV, $\Delta R(\mu^{\pm}, jet) < 0.5$, $E_{miss}^T > 3 4$ TeV

Result: discovery reach 6 TeV, exclusion 8 TeV

SUSY

Stop pairs HL-LHC vs FCC-hh

- Orawbacks:
 - μ^{\pm} does not distinguish between b- or top-jet
 - semi-muonic topology applies for short DK chains, not for long DK cascades
 - hence efforts to also tag hadronic top-jets
- Stop Simplified Models:

Stop pairs HL-LHC vs FCC-hh

• Processes w/ multiple boosted t's (b's) in the FS:

SUSY

Stop pairs HL-LHC vs FCC-hh

Sensitivity to stop-higgsino signal:

SUSY

Stop pairs HL-LHC vs FCC-hh

• Distinguishing the associated LSP: $r_{-} = \frac{N_b - N_t}{N_b + N_t}$

