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Millennium Simulation 2005  
Credit: Volker Springel

Baryon Acoustic Oscillations

Lecturer: Pierros Ntelis
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Theory  <—>  Observations

Theory  
-Current Picture 
-Brief Thermal History 
-Theoretical Framework 
-Smooth     Cosmology 
-Perturbed Cosmology 

Observations 
-Observables 
-Basic Statistics 
- Info-limitations 
-Experiments 
-Statistical Inference



FrancoChinoise course, July 2019P. Ntelis s. 3

Dark Ages
Quantum  
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Credit: WMAP team

CMB 
380.000 yrs

What’s 
Here? 

Galaxy Phase Transition 
Acceleration

Inflation 
10-32 s

Recombination 
Decoupling 

Reionisation 
400 106 yrs

BBN

Current Picture

13.8 109 yrs

Expansion
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(Some non exhaustive!) Thermal History

Theoretical Framework
Einstein     (1915)     Curvature - Matter
Friedmann (1922)     Homogeneous Solutions      
Lemaitre    (1931)     “Big Bang Paradigm”

Cosmic Microwave Background (CMB)
Alpher - Bethe - Gamow                   (1948)
Penzias - Wilson                               (1965)
Peebles - Roll - Dicke - Wilkinson   (1965)
Smooth - Mather                               (2006)

Reionization Epoch
Gunn - Peterson (1965)

Large Scale Structures (LSS)
Hubble                                  (1929)  Expansion
Zwicky - Rubyn        (1937 - 1970)   Dark Matter
Riess-Schmidt-Perlmutter  (1998)  Acceleration
SDSS/2dFGRS                     (2005)  BAO Peak
LIGO/VIRGO                         (2015)  Gravitational Waves

(t, z, T) ~ (380kyr, 1100, 0.3eV)

(t, z, T) ~ (200 Myr, 15, 5 meV )
(t, z, T) ~ (9 Gyr, 0.4, 0.3 meV)

Gμν
 ~ 
Τμν

Temperature Fluctuations

Density Fluctuations

Planck Team 2015

Scientific American

Volker Springel 2005

Present (t, z, T) ~ (13.8 Gyr, 0, 0.24 meV )
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https://hal.archives-ouvertes.fr/tel-01674537/document

Theoretical Framework

Perturbed  
Einstein-Boltzmann  

Equations

Perturbed Einstein Boltzmann Equation (Uni) 

DtfX(~x, ~p, t) = C[fX(~x, ~p, t)]

Einstein Field Equation (Curvature-Matter)

Gμν ~ Τμν  =>  δGμν ~ δΤμν

Smooth <-> Perturbation

gµ⌫ ' ḡµ⌫ + �gµ⌫

Boltzmann Equation (Diffusion-Collisions)

DtfX(~x, ~p, t) = C[fX(~x, ~p, t)]

Least Action Principle

SEH = c4
Z

d4x
p
�g

R

16⇡G
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General Relativity

Gµ⌫ =
8⇡G

c4
Tµ⌫

Friedmann-Lemaitre-Robertson-Walker (FLRW)

Theoretical Framework: Smooth Cosmology

α(t), ρ(t), P(t)

recall W. Gillard Talk

ΛCDM 
Dark Energy 

+  
Dark  Matter

Cosmological Principle 
Homogeneous + Isotropic  
on Large Enough Scales

ds2 = �c2dt2 + a2(t)


1

1� kr
dr2 + r2d⌦2

�
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Theoretical Framework: Perturbed Cosmology

Evolution Term Collision Term

To describe density fluctuations: ⇢(t, x) = ⇢̄(t) [1 + �(t, x)]

We need a perturbed metric:

Perturbed Boltzmann-Einstein Equations:

Distribution of Species X: fX(x,p,t)

DtfX(~x, ~p, t) = C[fX(~x, ~p, t)]

Dt = @t + a�1(t)p̂i + @t�(t) + a�1(t)p̂i@i (~x)Well defined Derivative: 

Spatial Curvature field: Φ(t)Newtonian Potential: Ψ(x)

8 coupled differential equations, see: Dodelson, 2003 
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Theoretical Framework: Perturbed Cosmology

⇥̇+ ikµ⇥ = ��̇� ikµ � ⌧̇


⇥0 �⇥+ µvb �

1

2
L2(µ)⇧

�

⇧ = ⇥2 +⇥P2 +⇥P0

⇥̇P + ikµ⇥P = �⌧̇


�⇥P +

1

2
(1� L2(µ))⇧

�

�(k)

v(k)

⇥(k)

⇥P (k)

L2(µ)

Number density fluctuation 

Velocity field 

Temperature Fluctuation 

Polarised Temperature  

Legendre Polynomial
�̇b + ikvb = �ikµ 

v̇b +
ȧ

a
vb = �ikµ +

⌧̇

R
[vb + 3i⇥1]

1

R
⌘ 4⇢(0)�

3⇢(0)b

�̇ + ikv = �3�̇

v̇ +
ȧ

a
v = �ikµ 

continuity eq.

velocity eq.

⇥̇⌫ + ikµ⇥⌫ = ��̇� ikµ trivial neutrini extension

Ma & Bertschinger arxiv:9506072 citations(1161),  Dodelson 2003

Φ(η)  Spatial Curvature Field

Ψ(η)  Newtonian PotentialPert
urbed

  

Einste
in-B

oltz
man

n  

Equati
ons

 μ = cos θ

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1995ApJ...455....7M&link_type=CITATIONS&db_key=AST
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Perturbed Einstein-Boltzmann Equations

CLASS (http://class-code.net/),  
CAMB (https://camb.info/) software

P(k): Solutions, i.e. Theoretical Prediction 

h�(~k)�⇤(~k0)i = (2⇡)3�3D(~k � ~k0)P (k)

<…>: ensemble average over the whole distribution

http://class-code.net/
https://camb.info/
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Perturbed Einstein-Boltzmann Equations

P(k): Solutions, i.e. Theoretical Prediction 

Pmatter(k, z; ~⌦) = Ask
ns�1T 2(k; ~⌦)D2(z, ~⌦)

Power spectrum of the large scale matter density inhomogeneities 

Transfer Function: evolution of perturbations through 
The epochs of horizon crossing and rad-mat transition

As kns-1 : Shape of Primordial fluctuations

Normalized scale independent linear growth-factor: 
the wavelength-independent  

growth of matter at late timesCLASS (http://class-code.net/),  
CAMB (https://camb.info/) software

http://class-code.net/
https://camb.info/
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https://hal.archives-ouvertes.fr/tel-01674537/document

Theoretical Framework

Pert
urbed

  

Boltz
man

n-E
inste

in 

Equati
ons

5 %
26 %

69 %
Planck 2018
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Theory <—> Observations
Basic aspects of this ΛCDM model: 

-Initial Conditions: Primordial fluctuations,  
-Inflation ? 
-Expansion 
-Acceleration 
-Statistical homogeneity and isotropy on large scales 

-Baryon Acoustic Oscillations (BAO)            

Cosmological Constant Problem 
Can these phenomenological aspects, 

be described in a better way than 

standard GR, Λ?
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Baryon Acoustic Oscillations (Briefly)

~300,000yr after Big Bang  
The universe was hot and dense. 
Fout : b, l, γ interact -> high Temperature -> kinetic energy -> outward Pressure  
Fin.  : Attractive gravitational potential of matter 
Counteracting forces create acoustic oscillations to the structures 

~360,000yr after Big Bang (Recombination) 
The universe cools down at a point were the baryons are combined with the leptons  
Acoustic oscillations “freeze” at the very large scales 

~380,000yr after Big Bang (Decoupling) 
The photons cannot interact anymore with atoms => free stream as CMB 
Frozen BAO start evolve with time 

~13Gyr after Big Bang (Today) 
We observe these frozen BAO in the universe: 

Either in the late universe with  
density          fluctuations of the        galaxy distributions 

or.      In the early universe with 
  temperature fluctuations of the total matter distributions 

Note: These is a very, very rough description!!
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Baryon Acoustic Oscillations (Briefly)

CREDIT: http://caastro.org/ 
https://www.youtube.com/watch?v=jpXuYc-wzk4

simulation

http://caastro.org/
https://www.youtube.com/watch?v=jpXuYc-wzk4
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Theory  <—>  Observations

Theory  
-Current Picture 
-Brief Thermal History 
-Theoretical Framework 
-Smooth     Cosmology 
-Perturbed Cosmology 

Observations 
-Observables 
-Basic Statistics 
- Info-limitations 
-Experiments 
-Statistical Inference
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Observations: What else is out there?
Large Scale Structures (LSS)

1703.00052 
SDSS-IV

Galaxy Clustering (GC)

Δn/n

Super Novae Type Ia (SN-Ia) 
Standard Candles

wiki

cmass

 See D. Fouchez Talk!

Gravitational Waves (GW)

GW speed 

GW Damping 

GW Dispersion 

GW Oscillations

2015

Cosmic Microwave Background (CMB)

1807.06205 
Planck

LensingΔΤ/Τ

1807.06209 
Planck

z~1090
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Observations

Combined to Constrain Perturbed Cosmology !!

Late time Observations

“Final” Conditions 
Galaxy density, n 

In the near past, z ~ [0.5,6]

Redshift Surveys

�(t; r) =
n(t; r)� n̄(t)

n̄(t)

Primordial Observations

“Initial” Conditions 
Temperature, T 

In the far past, z~1100 

Temperature Surveys

�T (t; r) =
T (t; r)� T̄ (t)

T̄ (t)
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Observations: What is a structure?

point objects without structure

Atom

Cosmic Web: Voids, Nodes, Filaments & Sheets

2dF

lss
Mpc - Gpc

objects with structure

density: 
 - # particles  
 - TemperatureAccording to what?

H2O
q± ,H0,l±,γ,W±,gc,GW

increasing scale

10-35m - 10-10m
Quantum Foam

 See Marie Aubert Talk!

Ανδρομέδα

galaxysolar system

galaxy clusters

1 A.U. - kpc 
 109 m - 1019 m

star cluster

Messier 45 
Πλειάδες
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Observations: Observables

Bi(k), Tri(k)

power 
bi-s

pec
tru

m 

power 
tri-

sp
ec

tru
m

fractal dimension

D2(<r)

counts-in-spheres

N(<r)

ξ(r)
co

rre
lat

ion fu
ncti

on

P(k)

power 
sp

ec
tru

m
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2pt Stat: 2pt Correlation Function

< ⇠(t; r1, r2) > =< �(t; r1)�
?(t; r1, r2) >

=< ⇠(t; r1 � r2) >

=< ⇠(t; |r1 � r2|) >
=< ⇠(t; r) >

1pt Stat: Overdensity �(t; r) =
n(t; r)� n̄(t)

n̄(t)

Due to: 
Homogeneity  

+ 
Isotropy

2pt Stat: Power Spectrum 
⇠(r) =

Z
d3k

(2⇡)3
P (k)e�ikrFourier Transform

Observations: Observables
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Observations: ξ-Observable

Two-Point Correlation Function (2PTCF): ξ(r)

r

r1
r2

Observer

d3r1
d3r2 ξ(r) > 0 :   correlation 

   independence 
ξ(r) = 0 :   no Correlation 

   homogeneity 

ξ(r) < 0 :  anti-correlation

ξ-definition: Excess probability to find another galaxy  
  in the neighbourhood of the observed one  
  separated by a given distance r.

dPpair(r) = n̄2 [1 + ⇠(r)] d3r
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Select a galaxy as a center 

Create a sphere of radius r

Compute number of galaxies 

repeat for every galaxy 

compute the mean dd(r)

repeat for different scales

Observable: Count-in-Cells

Randoms: Same Selection function

       
     dd(r) / rr(r)
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⇠ls(r) =
dd(r)� 2dr(r) + rr(r)

rr(r)
Optimal Estimator  

(Landy & Szalay 1993)

Estimator of ξ ⇠ph =
dd(r)

rr(r)
� 1

Not o
ptim

al!

dd(r): number of data catalog pairs 
rr(r): number of random catalog pairs

Observable: ξ-Observable
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Observable: Measure Distances

BAO peak position
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Observable: Measure Distances

BAO peak position

Compare with theory 
to extract cosmology

Bautista et Al. 2017

Mini-Project on Monday!
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Observed Power Spectrum

Suzuki et al. 2012



FrancoChinoise course, July 2019P. Ntelis s.27

Two ingredients are important: 

-A way to measure distances of a distribution      

-A way to study the distribution

Anisotropic Clustering: Alcock Pascynscki Test 

(not geometry test)

No, my corn!

My corn!

(maybe topology test)
My x!

No, my y!

(cosmometry test)

My model!

No, my model!
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Anisotropic Clustering: Alcock Pascynscki Test

Observer
https://hal.archives-ouvertes.fr/tel-01674537/document

Parallel to Line of Sight

Perpendicular to Line of Sight
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Shadab Alam  et. al. 2016 

Anisotropic Clustering: Alcock Pascynscki Test
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Theory  <—>  Observations

Theory  
-Current Picture 
-Brief Thermal History 
-Theoretical Framework 
-Smooth     Cosmology 
-Perturbed Cosmology 

Observations 
-Observables 
-Basic Statistics 
- Info-limitations 
-Experiments 
-Statistical Inference
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Observations:

Future

Past

Present

t=tlss
your CMB

x

t

your

world line

galaxies

lig
htco

ne

only on the 3D past lightcone

Inspired by F.Leclercq et al. 2014
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Observations: What we actually measure?

Redshift, z

3D Distribution 
depends on cosmology 
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Observations: Cosmic Bias

                                                   

δ

r [h-1Mpc]

δtracer  = b   δmatter 
ξtracer   = b2  ξmatter

Galaxies are biased tracers of matter
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Observations: Redshift Space Distortions

Kaiser effect Finger of God

Actual configurationover-
density clusterunder-

density

Apparent configuration
(view from below)

power is enhanced 
on large scales

power is suppressed
on small scales

under-
density

over-
density cluster

zobs = zpec + zexp



FrancoChinoise course, July 2019P. Ntelis s.35

Theory  <—>  Observations

Theory  
-Current Picture 
-Brief Thermal History 
-Theoretical Framework 
-Smooth     Cosmology 
-Perturbed Cosmology 

Observations 
-Observables 
-Basic Statistics 
- Info-limitations 
-Experiments 
-Statistical Inference
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Experiments: Redshift Surveys 
a.k.a Galaxy Surveys

Spectroscopic 
Photons transverse sequence of dispersive elements. 
Advantage 
 - Excellent δλ resolution 
Disadvantage
- Low S/N (since multiple detector element pipeline)
- Slow imaging. (Need large exposure times.)

Photometric 
Photons transverse coloured filters 
Advantage: 
- fast imaging
- good S/N (since one simple detector pipeline)
- massive data collection
Disadvantage: 
- Small δλ resolution 

Ground Based 
- Easy modifications

- Atmospheric noise


Satellites 
- Difficult modifications

- No Atmospheric noise
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Experiments: Redshift Surveys

SDSS-IV 2016,  0.2<z<3.5 
10,400o 
1.5x106 CMASS 
7.5x105 QSO

WiggleZ 2011,  z<1 
7,500o 
2.4x105 ELG

2dF-GRS2002, z<0.3 
1,500o 
3.3x105 ELG

Currently Analysing Data

LSST 2020, z<4  
18,000o 
103 x106 Gal

DESI 2019, 
14,000o 
30x106 Gal z<2 
Lya Forest  z>2

Future Projects

2023, 
15,000o 
103 x106 Gal

0.9<z<1.8Euclid

Euclid
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CMASS

SDSS
2000 2005

BAO detection

2020

Main project: 
Telescope (New Mexico, USA) 
2.5 m diameter 

Photometry (ugriz) (SDSS-II) 
Spectroscopic Survey: 

360 nm < λ < 1000 nm 
Asurv: 10 400 deg2: 
106 LUMINOUS RED GALAXIES  @ z~0.5  
105 QUASARS, Lyman-α Forests  @ z~2.0  

cmass

Sloan Digital Sky Survey (SDSS)

arXiv:1703.00052v1

Objectives: 
Large Scale Structure Science 
Constrain Cosmology

eBOSS

cmass
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eBOSS in a nutshell

Al PLATE Multiband Photometry1000 x

SPECTRO
METER

(z,θ,φ) —> (r,θ,φ)

FLRW-RECONSTRUCTIONSPECTROSCOPY
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Main project: 
Sun-Earth L2 point for 6 years 
1.2 SiC mirror telescope 

Imaging VIS  
550 < λ/nm < 900 

Photometry NISP (Y,J,H) 
900 < λ/nm < 2000   

Slitless Spectroscopy NISP : 
R=380 
920 < λ/nm < 1850 
30 Million Targets per 4000 sec 

Asurv: 15000 deg2 

First Light 2023 

Euclid Space Mission

Objectives: 
2.6 Billion Emission Line Galaxies  @ z < 2.3 
Nature of Dark Matter (WL) + Dark Energy (GC) 
Large Scale Structure Science

Credit: Wiki

Euclid
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Euclid Flagship Simulation

N-body Simulation 
Fast Multipole Model grav-solver 
Planck 2015 cosmology 
Largest # ~105 particles 
Lbox = 3780 h-1Mpc  
mag-H < 26 
log10 ( fHα ) < -16 
0 < z < 2.3   
> 2.6 Billion Galaxies 
Area      5000 deg2 

Volume      30 ( Gpc/h )3 Potter, Stadel, Teyssier 2016                     arXiv:1609.08621
Castander et al. 2018 (in preparation)

z=2.3

1000 Mpc/h

Euclid
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Observations

Combined to Constrain Perturbed Cosmology !!

Late time Observations

“Final” Conditions 
Galaxy density, n 

In the near past, z ~ [0.5,6]

Redshift Surveys

�(t; r) =
n(t; r)� n̄(t)

n̄(t)

Primordial Observations

“Initial” Conditions 
Temperature, T 

In the far past, z~1100 

Temperature Surveys

�T (t; r) =
T (t; r)� T̄ (t)

T̄ (t)
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Experiments: CMB
CMB = Cosmic Microwave Background

Now(COBE): TCMB=2.728±0.004 K

1965

TCMB=3.5K @ (4080MHz)  
Isotropic, 

unpolarised, 
constant on 1964-1965 

Pensias-Wilson

Temperature  
Fluctuations 

1993 20111992 2018

Temperature Polarisation E,B 
Primordial G-Waves!

ACT

BICEP3

Polar 
bear

?
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ΔΤ(x) = T(x) - T [μKCMB]

Experiments: CMB
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Experiments: CMB

Spectral Features of CMB map

D
l
=

l(
l
+
1)
C

l/
2⇡

[µ
K

2
]
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Theory  <—>  Observations

Theory  
-Current Picture 
-Brief Thermal History 
-Theoretical Framework 
-Smooth     Cosmology 
-Perturbed Cosmology 

Observations 
-Observables 
-Basic Statistics 
- Info-limitations 
-Experiments 
-Statistical Inference



FrancoChinoise course, July 2019P. Ntelis s.47

Observations: Statistical Inference

Statistical Inference 

Parameter Inference 

Model Comparison 

Parameter Inference 
    
  Fisher Analysis 
   
  MCMC

Model Comparison 
    
  χ2 - test 
   
  AIC/BIC test 
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Fisherology

Cramer-Rao bound theorem 
Any unbiased estimator for parameters delivers

a Covariance Matrix (C) that is no better than 

the inverse of the Fisher Matrix (F)

Usually 0: Cov does not depends on parameters

Need to model the error(Covariance) from the survey

Let: 
ob : observable in the bin b 
pi   : parameters
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Observations: Bayesian Approach

Modern observational cosmology relies on Bayes theory


M theoretical model  (Things assumed to be true)

θ parameters             (Hypothesis to be tested)

d data

posterior probability evidence

prior

Sampling distribution of data

Often called “Likelihood”


L(θ) = P(d|θ,Μ)

Assuming θ=(φ,n), with φ interesting and n nuissance, parameter inference is performed as:
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ΩmFiducial(Current Knowledge) = 0.3 

ΩmGalaxy Clustering = -0.3+0.3 

ΩmCMB = 0.4+0.1

ΩmGalaxy Clustering + CMB = 0.3+0.03

χCMB2 =  ( (Ωm - ΩmCMB )/ σΩmCMB )2 = ( (Ωm - 0.4 )/ 0.1)2

χGC2 =  ( (ξ(r,ΩmF ) - ξModel(r; αiso[Ωm , ΩmF] ) )/ σξ(r,ΩmF ) )^2

χ GC+CMB 2 =  ( (ξ(r,ΩmF ) - ξModel(r; αiso[Ωm , ΩmF] ) )/ σξ(r,ΩmF ) ) 2 + ( (Ωm - 0.4 )/ 0.1)^2 

Current  
Experiment

Other  
Experiment 

as Prior

Current  
Knowledge

Combination:

->Large error  
-> Take info From other

->small error

Minimize for Ωm 

Minimize for Ωm 
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(Remodified from W.Percival Talk)

Parametrizations in LSS

Content of  
the Universe: 

total energy density ratio

Ωtot (=1?) 

matter density ratio

Ωm  (=0.32?) 

baryon density ratio

Ωb (=0.004?) 

neutrini density ratio

Ων =0? 

neutrini species

Nν (=3.046?)  

Dark Energy eqn of state 

w0 (=-1?)  
wa (= 0?) 

Fluctuations  
after inflation 

scalar spectral index

ns (=0.96?) 

running spectral index

dns/dk (=0?) 

tensor spectral index

nt (=0?) 

tensor-scalar ratio

r (=0?) 

normalisation

σ8    

non gaussianity

fNL (=0?)

Evolution to  
present day 

hubble expansion rate

h (=0.67?) 

optical depth to CMB

τ  

growth rate of structures


fσ8

nuisance (ignored) 
parameters 

galaxy bias

b(k) (or cst?) 

peculiar velocities

σp 

CMB beam error

B 

CMB calibration error

C

nuisance, GW? 

Laser Beam Error

δLΒ 

Laser Calibration Error

δLC 

 + GW?

nuisance, Sn-Ia? 

Magnitude bias

a,b,c 

 + Sn-Ia?

EFTDE - MG (given flat ΛCDM) 
α-couplings = 0? 


μ, Σ, η = 1?
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Multi Parameters fit to multi-data

-Given CMB data, other data used to break degeneracies 

   (although CMB does a pretty good job by itself) to understand Dark Energy


-Main Problem: handle what is being constrained and why

-Difficult to assess systematics

-Need to be in consistency with all the data


-Always two sets of parameters:

-Those you fix ( part of the prior )

-Those you vary


-Need to define a prior

-What set of models?

-What prior assumptions to make on them 


(often uniform priors on physically motivated variables)


-Need a sampling method to explore the multi-parameter space

(Remodified from W.Percival Talk)
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Conclusions

Main interests in Cosmology are: 

-Explain the evolution and content of the universe 

-Baryon Acoustic Oscillations which  
   is a primordial phenomenon  
   that freezes in space and  
   we observe its pattern even today  

-Different ways of handling the data 

-Different kinds of observations 

-Competitive alternative scenarios 

-A lot more to explore!
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Thank you for your Attention!

I still do not 
understand?

How?

I do not believe him!

n+p -> v + e ?

Gμν ~ Τμν  ?

I had better lectures!

νe Enjoy 物理 !
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Astronomy 101: Obscuration effects

Flux

λ

Ha NIIb
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Astronomy 101: Obscuration effects

Flux

λ

Ha NIIb Clear Detection

Threshold

IDEAL Case 
Clear line identification
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Astronomy 101: Obscuration effects

Flux

λ

Ha Confusion

Threshold

Line misidentification: 
confusion of Hα with NIIb

Due to noisy instrument 
 noisy flux measurement

NIIb
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Astronomy 101: Obscuration effects

Flux

λ

Ha NIIb Clear Detection

Threshold

IDEAL Case 
Clear line identification
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Astronomy 101: Obscuration effects

Flux

λ

Ha Confusion

Threshold

Due to noisy instrument 
 noisy flux measurement

NIIb

Line misidentification: 
confusion of Hα with NIIb
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Overlapping spectra due to object occultation

Star contamination

star in front of target galaxy, 
the flux of the star  

contaminates the galaxy’s signal

Galaxy contamination

red  -galaxy-flux (front gal)  
contaminates 

blue-galaxy-flux (back gal)

Astronomy 101: Obscuration effects
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Observations: Alternative Observables

N(< r) =

Z r

0
dd(s)ds / rD2Counts-in-Spheres:

D2(r) =
d ln N(< r)

d ln r
Fractal Dimension:

D2(r) = 3Homogeneous 

@ large scales

D2(r) < 3Inhomogeneous 

@ small scales (clustering)

Transition to Homogeneity at: 


(Arbitrary Choice; Independent of survey)
D2(RH) = 3 @ 1%
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Observations: Cosmological Principle Tests

• Use of CMASS 
    galaxy sample  
    of SDSS/BOSS 

• Small Scale:  
• clustering 
• fractality 

• Large scales: 
• asymptotic 

      smoothness 

• Confirmation of  
• ΛCDM model 
• Cosmological Principle 
• Exclusion of fractal  
    models

 
1000 QPM catalogues    

—>   RHth = 62.9 h-1Mpc

                    

       
             

                                       
             

P.Ntelis et al. arXiv:1702.02159
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Simulation by David Kirkby 2017

Observable over “time”

ξ(r;z) = <δ(x;z)δ(r+x;z)>

https://arxiv.org/search/?searchtype=author&query=Kirkby%2C+D

