
How You in HEP can benefit from
Functional Programming

Jonas Rembser
28.11.2018

1st LLR Student and Postdoc Seminar

2

Contents

● What is Functional Programming (FP)

● Relation between the FP and High Energy Physics communities

● FP in C++ and Python for your everyday work

● FP-inspired techniques in data analysis

● Some easy FP paradigms to improve your code

4

Introduction

● Who of you has heard about Functional Programming before?

● Tell me what you think of this Python code:

● Tell me what you think of this C++ code:

● Lies, lies lies! You can't trust the "definition" of variables!

int n = 10;

for(int i = 0; i < n; ++i)
{
 std::cout << i << " ";
}
std::cout << std::endl;

x = 4
print(x)
x = 5
print(x)

5

But why do we lie so much?

● A historical sketch of programming:

● From machine code to assembly
● From assembly to e.g. Fortran or C

● We got used to variables standing for
a location in memory…

● ...not as short-hands for values as in
mathematics!

● What is the next level of abstraction?

6

Functional Programming

● Treat computation as the evaluation of mathematical functions
● Avoid changing-state and mutable data
● Higher level of abstraction requires very smart compilers

7

The Lambda Calculus

● Lambda calculus: a formal system for expression computation based
on functions as a universal model of computation

● Very interesting research topic that plays an important role in FP

Syntax Name Description

x Variable A character or string representing a parameter or
mathematical/logical value

(λx.M) Abstraction Function definition (M is a lambda term). The variable
x becomes bound in the expression.

(M N) Application Applying a function to an argument. M and N are
lambda terms.

Operation Name Description

(λx.M[x]) → (λy.M[y]) α-conversion Renaming the bound (formal) variables in the
expression. Used to avoid name collisions.

((λx.M) E) → (M[x:=E]) β-reduction Replacing the bound variable with the argument
expression in the body of the abstraction

8

Why was I showing this?

● Consider trivial expression (λx.x)
● In Python it would be
● That should look familiar! Lambda functions are now part of many

languages so you can create unnamed "throw-away" functions
● Example:
● We just saw another FP concept: Higher-order functions!

 is a function that takes a function as an argument

Now you know why it's called "lambda function" in Python.
But why "lambda calculus in the first place?

● Recursive problem… which is a good keyword

lambda x: x

map(lambda x: x**2, [1,2,3])

map

9

Recursion in Lambda Calculus

How to implement recursion?
● Not possible to refer to the definition of a function in a function body!

● What we need is some higher-order function to apply on a function to
call it recursively:

 fix f = f (fix f), and therefore fix f = f (f (… f (fix f) …)).

● This fixed-point combinator can be implemented in lambda Calculus
by Haskell Curry's Y combinator:

 Y = λf.(λx.f (x x))(λx.f (x x))

10

Why was I showing this again?

● The US company Y Combinator is arguably the most famous startup
incubator in silicon valley

● It invested in Dropbox, Airbnb, Reddit, Docker, etc.
● If FP concepts inspire trendy company names now, we are definitely

up to something!

11

Functional Programming Languages

● The most famous one is Haskell, which sticks close to the typed
lambda calculus. These are the strong points of the language:
– Purity:

functions have no side-effects and outputs only depends on inputs
– Strong typing:

all variable types must be known at compile-time and no implicit casting,
which results in most bugs being caught at compile time and enables powerful
static code analysis

– Elegance:
code often reads like a high-level algorithm description

– Laziness:
nothing is evaluated until it has to be evaluated

● In particular the first two bullet-points result in fewer bugs than you'd
normally get in e.g. C++ and Python

● I will not go deeper in the topic of FP languages and will explain how
to use these concepts in C++ or Python instead

12

Functional Programming in the Real World

● Some companies use pure FP languages like Haskell or Ocaml
(the latter developed by INRIA)

● Mostly in silicon valley, startup scene, fin-tech sector and France

● Companies like FP languages for:
– Robustness
– Scalability
– Rapid development times (once you get the hang of it)
– Readability of code
– It attracts high quality nerds

13

Functional Programming in High Energy Physics

● Google searches:
– physics+"object oriented programming"

2 Million results
– physics+"functional programing"

7000 results
– Conclusion: we definitely didn't jump on that bandwagon…

● High energy physics has an important Fortran legacy
– Fortran: as un-functional as it gets. Variables all have to be declared in the beginning

and then you mutate them heavily!
– Many people still write code like this today

● Fortunately, we use a lot of C++ and Python, which now took over many
concepts from PF for example:
– Powerful type systems (C++)
– Lambda functions and higher-order functions (both)
– Mutable variables can be avoided without loosing much speed thanks to

powerful optimizers in moders compilers (C++)

14

What you can take from FP to write better code
Today

● Stick to pure functions as much as possible.
– A pure functions output only depends on the input (not on some external state) and

has no "side effects" (implicit effects on external state)
● Ensure that your variables have well-defined types

– In Python you can't really do that
– In C++ that means avoid , casts,

and violations of the Liskov Substitution principle
● Try to find elegant, abstract solutions to your problems

with powerful higher-level functions and define your own
– In C++ that means get familiar with function pointers
– In Python that means use libraries with a high level of functional abstraction like

Pandas or sklearn
● Don't be afraid of avoiding mutable data

– Don't try to mutate variables to "make your program more efficient"
– Infest your C++ code with

nullptr void*

const

15

Making a case for Pure Functions

● Typical C++ HEP coding pattern
on the right

● Often huge "god classes"
which have a lot of member
variables that get mutated all
over the place

● That's dangerous because
information may "leak over" to
other event because you didn't
reset a variable for example

● You can never be sure what the
actual inputs and outputs of a
function are without reading it's
body

● Don't be that guy

class MyAnalyzer() {

 public:
 MyAnalyzer(Configuration config);

 run(Event iEvent); // for event loop

 private:

 // Some functions that do
 // something to the class members.
 // Real inputs and outputs NOT CLEAR!

 void selectElectrons(float cut);
 void makeSuperClusters(bool keepBrems);
 bool fitTrack(int nHits);

 // Metric shit-ton of variables
 // which all get mutated in
 // the class member functions
 // (hidded side effects...)
 int iEvent_;
 float pt_;
 float eta_;
 float phi_;
 // ..
 // ..
};

16

Making a case for Type Safety

● Very nice negative example is the ROOT TTree's method:

● Problem is the void pointer. Type of address is instead specified as
argument, e.g.:

● What if you later change the type of in the code from "Float_t"
to "Double_t" and forget to change "F" to "D"?
The compiler won't complain and you'll get garbage in your tree

● Why not using the compiler and type system as your ally to detect
bugs early? Missed opportunity here!

Branch

TBranch * TTree::Branch (const char * name,
 void * address,
 const char * leaflist,
 Int_t bufsize = 32000);

Float_t mass;
tree→Branch("mass", &mass, "mass/F");

mass

18

C++ case study:
filling a TTree

● Let's try to find the "non-FP"
parts together:
– One mutated variable per tree

branch
– Impure TTree::Fill() and

TTree::Write() functions
– Mutated TRandom
– Vectors mutated all over the place:

● std::vector<T>::clear()
● std::vector<T>::push_back()

#include "TFile.h"
#include "TRandom.h"
#include "TFile.h"
#include "Ttree.h"

#include <vector>
#include <cmath>

class MySimulator {
 public:
 MySimulator() {
 tree_ = new TTree("tree", "tree");
 tree_->Branch("n" , &nElectrons_, "n/i");
 tree_->Branch("eta" , &etaVec_);
 tree_->Branch("phi" , &phiVec_);
 tree_->Branch("pt" , &ptVec_);

 rng_ = new TRandom(); // random number generator
 }

 ~MySimulator() {
 tree_->Write();
 delete rng_;
 }

 void simulate(int iEvent) {
 etaVec_.clear(); // don't forget to clear vectors at each event
 phiVec_.clear();
 ptVec_.clear();

 nElectrons_ = 4 + rng_->Integer(4); // how many electrons?
 for(int iElectron = 0; iElectron < nElectrons_; ++iElectron) {
 phiVec_.push_back(rng_->Uniform() * 2.*M_PI - M_PI);
 etaVec_.push_back(rng_->Uniform() * 5.0 - 2.5);
 ptVec_ .push_back(rng_->Exp(10.) + 20.);
 }
 tree_->Fill(); // fill the TTree with event information
 }

 private:

 TTree* tree_;
 TRandom* rng_;

 unsigned int nElectrons_; // variables for TTree branches
 std::vector<float> etaVec_;
 std::vector<float> phiVec_;
 std::vector<float> ptVec_;

};

int main() {
 int nEvents = 10000; // number of events to simulate

 TFile* file = TFile::Open("data.root", "RECREATE");

 MySimulator simulator{};

 for(int iEvent = 0; iEvent < nEvents; ++iEvent) {
 simulator.simulate(iEvent);
 }
 delete file;
}

19

The STree – a wrapper
around TTree

● Let's first make a function to add
branches of the correct type by
matching the type of the variable

● Let's create a wrapper around
TTree which provides a fill
function that does not depend
on the external state but takes
the branch variables as inputs

● To use this class, one has to
define the tree structure as a
struct in C++. Type checking of
branches is done at compile
time and we avert bugs

● Put lock_guard in write function
to make possible multithreaded
filling

#ifndef __S_TREE__
#define __S_TREE__

#include "TTree.h"

#include <mutex>

template<class T>
void addTreeBranch(TTree* tree, const char* name, T& variable) {
 tree->Branch(name, &variable);
}

#define TYPES_WITH_SUFFIX \
 X(char , "/B") X(unsigned char , "/b") \
 X(short , "/S") X(unsigned short, "/s") \
 X(int , "/I") X(unsigned int , "/i") \
 X(long , "/L") X(unsigned long , "/l") \
 X(float , "/F") X(double , "/D") \
 X(char * , "/C") X(bool , "/O")

#define X(Type, suffix) \
template<> \
void addTreeBranch<Type>(TTree* tree, \
 const char* name, Type& variable) { \
 tree->Branch(name, &variable, \
 (std::string(name) + suffix).c_str()); \
}
TYPES_WITH_SUFFIX
#undef X

#undef TYPES_WITH_SUFFIX

template <typename T>
class STree {

 Public:

 STree(const char* name, const char* title)
 : tree_(new TTree(name, title))
 { init(); }

 void init();

 void write() const { tree_->Write(); }
 void print() const { tree_->Print(); }

 void fill(T && structure) const {
 std::lock_guard<std::mutex> lock {mutex_};
 structure_ = std::move(structure);
 tree_->Fill();
 }

 private:

 template<class S>
 void addBranch(const char* name, S foo) {
 addTreeBranch(tree_, name, structure_.*foo);
 }

 TTree * tree_;
 mutable T structure_;
 mutable std::mutex mutex_;

};

#endif

20

Defining the tree
structure

● Next, we have to define the tree
structure and corresponding
STree<T>::init() function for this
structure
– You might of course also write a

preprocessor macro that does both
at once

#ifndef __EVENT_TREE__
#define __EVENT_TREE__

#include "Stree.h"

struct EventRecord {
 unsigned int nElectrons;
 std::vector<float> etaVec;
 std::vector<float> phiVec;
 std::vector<float> ptVec;
};

template<>
void STree<EventRecord>::init() {
 addBranch("n" , &EventRecord::nElectrons);
 addBranch("eta" , &EventRecord::etaVec);
 addBranch("phi" , &EventRecord::phiVec);
 addBranch("pt" , &EventRecord::ptVec);
}

using EventTree = STree<EventRecord>;

endif

21

Our final FP solution

● Impure part now mostly moved
out to other files

● fill function now much more
explicit as it was before

● Code is easier to read now: a
look at the fill function call is
enough to get the general idea

● No type-related bugs possible
with the STree wrapper

● On the downside about
10 % slower

● Speed loss can be mitigated by
simulating in multiple threads,
which would not have been
possible before

#include "TFile.h"
#include "TRandom.h"
#include "EventTree.h"

#include <vector>
#include <cmath>

class MySimulator {

 public:

 MySimulator() : tree_("tree", "tree") {}
 ~MySimulator() { tree_.write(); }

 void simulate(int iEvent) const
 {
 // how many electrons?
 const unsigned int nElectrons {4 + rng_.Integer(4)};

 std::vector<float> etaVec(nElectrons);
 std::vector<float> phiVec(nElectrons);
 std::vector<float> ptVec(nElectrons);

 for (auto& x : etaVec) x = rng_.Uniform() * 5.0 - 2.5;
 for (auto& x : phiVec) x = rng_.Uniform() * 2.*M_PI - M_PI;
 for (auto& x : ptVec) x = rng_.Exp(10.) + 20.;

 tree_.fill({ .nElectrons = nElectrons,
 .etaVec = etaVec,
 .phiVec = phiVec,
 .ptVec = ptVec });
 }

 private:

 EventTree tree_;
 mutable TRandom rng_;
};

int main()
{
 const int nEvents {10000}; // number of events to simulate

 TFile file {"data.root", "RECREATE"};

 MySimulator simulator{};

 for(int iEvent = 0; iEvent < nEvents; ++iEvent)
 simulator.simulate(iEvent);
}

22

Our final FP solution
(multi-threaded)

● Easy to speed up your analysis
by factor n if you kept your use
of mutable data under control

● Downside: the order of events is
now not deterministic anymore,
which makes the random
numbers not deterministic

#include "TFile.h"
#include "TRandom.h"
#include "EventTree.h"

#include <vector>
#include <cmath>

class MySimulator {

 public:

 MySimulator() : tree_("tree", "tree") {}
 ~MySimulator() { tree_.write(); }

 void simulate(int iEvent) const
 {
 // how many electrons?
 const unsigned int nElectrons {4 + rng_.Integer(4)};

 std::vector<float> etaVec(nElectrons);
 std::vector<float> phiVec(nElectrons);
 std::vector<float> ptVec(nElectrons);

 for (auto& x : etaVec) x = rng_.Uniform() * 5.0 - 2.5;
 for (auto& x : phiVec) x = rng_.Uniform() * 2.*M_PI - M_PI;
 for (auto& x : ptVec) x = rng_.Exp(10.) + 20.;

 tree_.fill({ .nElectrons = nElectrons,
 .etaVec = etaVec,
 .phiVec = phiVec,
 .ptVec = ptVec });
 }

 private:

 EventTree tree_;
 mutable TRandom rng_;
};

int main()
{
 const int nEvents {10000}; // number of events to simulate
 const int nThreads {8};

 TFile file {"data.root", "RECREATE"};

 MySimulator simulator{};

 auto simulateEvents = [&]() {
 for(int iEvent = 0; iEvent < nEvents/nThreads; ++iEvent)
 simulator.simulate(iEvent);
 };

 std::vector<std::thread> threads;
 for(int i = 0; i < nThreads; ++i) threads.emplace_back(simulateEvents);
 for(auto& thread : threads) thread.join();
}

23

Making Plot with Python

● The split-apply-combine idiom
is a nice example of how higher-
oder functions can abstact away
event loops

● In Pandas:
– Split step is done by df.groupby
– apply is the higher-order function
– Combination step is implicit in apply

● Pandas provides a very high
level of abstaction and is fast
enough for datasets with
thousands of rows

● Pandas disencourages mutable
data, but you can still do it with
the argument

import uproot
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

df = uproot.open("data.root")["tree"].pandas.df()

def get_mass(leptons):
 leps = leptons.sort_values("pt")[-2:]

 pt_prod = leps["pt"].prod()
 eta_diff = leps["eta"].diff().iloc[1]
 phi_diff = leps["phi"].diff().iloc[1]

 return np.sqrt(2*pt_prod*(np.cosh(eta_diff)-np.cos(phi_diff)))

mass = df.groupby("entry").apply(get_mass).values

plt.figure()
plt.hist(mass, bins=50, histtype='step')
plt.xlabel("dilepton mass [GeV]")
plt.savefig("dilepton_mass.png")

inplace=True

24

Conclusions

● Functional programming is the natural next level of abstraction in
the evolution of programming languages

● Functional programming languages like Haskell or OCaml (while not
being mainstream yet) have significantly inspired the mainstream
languages to implement features originating from FP

● These new aspects of C++ and Python can help Physicists write
more bug-free and readable code, saving time for everyone

● Three most important lessons:
– Write pure functions
– The compiler and type-system is your friend
– Avoid mutating variables if possible
– Use higher-level functions

● Sticking to these rules results in code that can be easily parallelized

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

