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Introduction

● Who of you has heard about Functional Programming before?

● Tell me what you think of this Python code:

● Tell me what you think of this C++ code:

● Lies, lies lies! You can't trust the "definition" of variables!

int n = 10;

for(int i = 0; i < n; ++i)
{
    std::cout << i << " ";
}
std::cout << std::endl;

x = 4
print(x)
x = 5
print(x)
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But why do we lie so much?

● A historical sketch of programming:

● From machine code to assembly
● From assembly to e.g. Fortran or C

● We got used to variables standing for 
a location in memory…

● ...not as short-hands for values as in 
mathematics!

● What is the next level of abstraction?



6

Functional Programming

● Treat computation as the evaluation of mathematical functions
● Avoid changing-state and mutable data
● Higher level of abstraction requires very smart compilers
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The Lambda Calculus

● Lambda calculus: a formal system for expression computation based 
on functions as a universal model of computation

● Very interesting research topic that plays an important role in FP

Syntax Name Description

x Variable A character or string representing a parameter or 
mathematical/logical value 

(λx.M) Abstraction Function definition (M is a lambda term). The variable 
x becomes bound in the expression. 

(M N) Application Applying a function to an argument. M and N are 
lambda terms.

Operation Name Description

(λx.M[x]) → (λy.M[y]) α-conversion Renaming the bound (formal) variables in the 
expression. Used to avoid name collisions. 

((λx.M) E) → (M[x:=E]) β-reduction Replacing the bound variable with the argument 
expression in the body of the abstraction 
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Why was I showing this?

● Consider trivial expression (λx.x)
● In Python it would be
● That should look familiar! Lambda functions are now part of many 

languages so you can create unnamed "throw-away" functions
●  Example:
● We just saw another FP concept: Higher-order functions!

         is a function that takes a function as an argument

Now you know why it's called "lambda function" in Python.
But why "lambda calculus in the first place?

● Recursive problem… which is a good keyword

lambda x: x

map(lambda x: x**2, [1,2,3])

map
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Recursion in Lambda Calculus

How to implement recursion?
● Not possible to refer to the definition of a function in a function body!

● What we need is some higher-order function to apply on a function to 
call it recursively:

   fix f = f ( fix f ),        and therefore      fix f = f ( f ( … f ( fix f ) … )).

● This fixed-point combinator can be implemented in lambda Calculus 
by Haskell Curry's Y combinator:
                      
                                  Y = λf.( λx.f (x x) )( λx.f ( x x ) )
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Why was I showing this again?

● The US company Y Combinator is arguably the most famous startup 
incubator in silicon valley

● It invested in Dropbox, Airbnb, Reddit, Docker, etc.
● If FP concepts inspire trendy company names now, we are definitely 

up to something!
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Functional Programming Languages

● The most famous one is Haskell, which sticks close to the typed 
lambda calculus. These are the strong points of the language:
– Purity:

functions have no side-effects and outputs only depends on inputs
– Strong typing:

all variable types must be known at compile-time and no implicit casting,
which results in most bugs being caught at compile time and enables powerful 
static code analysis

– Elegance:
code often reads like a high-level algorithm description

– Laziness:
nothing is evaluated until it has to be evaluated

● In particular the first two bullet-points result in fewer bugs than you'd 
normally get in e.g. C++ and Python

● I will not go deeper in the topic of FP languages and will explain how 
to use these concepts in C++ or Python instead
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Functional Programming in the Real World

● Some companies use pure FP languages like Haskell or Ocaml
(the latter developed by INRIA)

● Mostly in silicon valley, startup scene, fin-tech sector and France

● Companies like FP languages for:
– Robustness
– Scalability
– Rapid development times (once you get the hang of it)
– Readability of code
– It attracts high quality nerds
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Functional Programming in High Energy Physics

● Google searches:
– physics+"object oriented programming"

2 Million results
– physics+"functional programing"

7000 results
– Conclusion: we definitely didn't jump on that bandwagon…

● High energy physics has an important Fortran legacy
– Fortran: as un-functional as it gets. Variables all have to be declared in the beginning 

and then you mutate them heavily!
– Many people still write code like this today

● Fortunately, we use a lot of C++ and Python, which now took over many 
concepts from PF for example:
– Powerful type systems (C++)
– Lambda functions and higher-order functions (both)
– Mutable variables can be avoided without loosing much speed thanks to

powerful optimizers in moders compilers (C++)
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What you can take from FP to write better code 
Today

● Stick to pure functions as much as possible.
– A pure functions output only depends on the input (not on some external state) and 

has no "side effects" (implicit effects on external state)
● Ensure that your variables have well-defined types

– In Python you can't really do that
– In C++ that means avoid                   , casts,

and violations of the Liskov Substitution principle
● Try to find elegant, abstract solutions to your problems

with powerful higher-level functions and define your own
– In C++ that means get familiar with function pointers
– In Python that means use libraries with a high level of functional abstraction like 

Pandas or sklearn
● Don't be afraid of avoiding mutable data

– Don't try to mutate variables to "make your program more efficient"
– Infest your C++ code with

nullptr void*

const
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Making a case for Pure Functions

● Typical C++ HEP coding pattern 
on the right

● Often huge "god classes" 
which have a lot of member 
variables that get mutated all 
over the place

● That's dangerous because 
information may "leak over" to 
other event because you didn't 
reset a variable for example

● You can never be sure what the 
actual inputs and outputs of a 
function are without reading it's 
body

● Don't be that guy

class MyAnalyzer() {

    public:
        MyAnalyzer(Configuration config);

 
        run(Event iEvent); // for event loop

    private:

   // Some functions that do
        // something to the class members.
        // Real inputs and outputs NOT CLEAR!

        void selectElectrons(float cut);
        void makeSuperClusters(bool keepBrems);
        bool fitTrack(int nHits);

        // Metric shit-ton of variables
        // which all get mutated in
        // the class member functions
        // (hidded side effects...)      
        int iEvent_;
        float pt_;
        float eta_;
        float phi_;
        // ..
        // ..
};
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Making a case for Type Safety

● Very nice negative example is the ROOT TTree's              method:

● Problem is the void pointer. Type of address is instead specified as 
argument, e.g.:

● What if you later change the type of          in the code from "Float_t" 
to "Double_t" and forget to change "F" to "D"?
The compiler won't complain and you'll get garbage in your tree

● Why not using the compiler and type system as your ally to detect 
bugs early? Missed opportunity here!

Branch

TBranch * TTree::Branch ( const char * name,
                          void *       address,
                          const char * leaflist,
                          Int_t        bufsize = 32000 );

Float_t mass;
tree→Branch("mass", &mass, "mass/F");

mass
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C++ case study:
filling a TTree

● Let's try to find the "non-FP" 
parts together:
– One mutated variable per tree 

branch
– Impure TTree::Fill() and 

TTree::Write() functions
–  Mutated TRandom
– Vectors mutated all over the place:

● std::vector<T>::clear()
● std::vector<T>::push_back()

#include "TFile.h"
#include "TRandom.h"
#include "TFile.h"
#include "Ttree.h"

#include <vector>
#include <cmath>

class MySimulator {
  public:
    MySimulator() {
        tree_ = new TTree("tree", "tree");
        tree_->Branch("n"    , &nElectrons_, "n/i");
        tree_->Branch("eta"  , &etaVec_);
        tree_->Branch("phi"  , &phiVec_);
        tree_->Branch("pt"   , &ptVec_);

        rng_ = new TRandom(); // random number generator
    }

    ~MySimulator() {
        tree_->Write();
        delete rng_;
    }

    void simulate(int iEvent) {
        etaVec_.clear(); // don't forget to clear vectors at each event
        phiVec_.clear();
        ptVec_.clear();

        nElectrons_ = 4 + rng_->Integer(4); // how many electrons?
        for(int iElectron = 0; iElectron < nElectrons_; ++iElectron) {
            phiVec_.push_back( rng_->Uniform() * 2.*M_PI - M_PI );
            etaVec_.push_back( rng_->Uniform() * 5.0 - 2.5      );
            ptVec_ .push_back( rng_->Exp(10.) + 20.             );
        }
        tree_->Fill(); // fill the TTree with event information
    }

  private:

    TTree* tree_;
    TRandom* rng_;

    unsigned int nElectrons_; // variables for TTree branches
    std::vector<float> etaVec_;
    std::vector<float> phiVec_;
    std::vector<float> ptVec_;

};

int main() {
    int nEvents = 10000; // number of events to simulate

    TFile* file = TFile::Open("data.root", "RECREATE");

    MySimulator simulator{};

    for(int iEvent = 0; iEvent < nEvents; ++iEvent) {
        simulator.simulate(iEvent);
    }
    delete file;
}
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The STree – a wrapper 
around TTree

● Let's first make a function to add 
branches of the correct type by 
matching the type of the variable

● Let's create a wrapper around 
TTree which provides a fill 
function that does not depend 
on the external state but takes 
the branch variables as inputs

● To use this class, one has to 
define the tree structure as a 
struct in C++. Type checking of 
branches is done at compile 
time and we avert bugs

● Put lock_guard in write function 
to make possible multithreaded 
filling

#ifndef __S_TREE__
#define __S_TREE__

#include "TTree.h"

#include <mutex>

template<class T>
void addTreeBranch(TTree* tree, const char* name,  T& variable) {
    tree->Branch(name, &variable);
}

#define TYPES_WITH_SUFFIX \
     X(char          , "/B") X(unsigned char , "/b") \
     X(short         , "/S") X(unsigned short, "/s") \
     X(int           , "/I") X(unsigned int  , "/i") \
     X(long          , "/L") X(unsigned long , "/l") \
     X(float         , "/F") X(double        , "/D") \
     X(char *        , "/C") X(bool , "/O")

#define X(Type, suffix) \
template<> \
void addTreeBranch<Type>(TTree* tree, \
                         const char* name, Type& variable) { \
    tree->Branch(name, &variable, \
                 (std::string(name) + suffix).c_str()); \
}
TYPES_WITH_SUFFIX
#undef X

#undef TYPES_WITH_SUFFIX

template <typename T>
class STree {

  Public:

    STree(const char* name, const char* title)
        : tree_(new TTree(name, title))
    { init(); }

    void init();

    void write() const { tree_->Write(); }
    void print() const { tree_->Print(); }

    void fill(T && structure) const {
        std::lock_guard<std::mutex> lock {mutex_};
        structure_ = std::move(structure);
        tree_->Fill();
    }

  private:

    template<class S>
    void addBranch(const char* name, S foo) {
        addTreeBranch(tree_, name, structure_.*foo);
    }

    TTree * tree_;
    mutable T structure_;
    mutable std::mutex mutex_;

};

#endif
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Defining the tree 
structure

● Next, we have to define the tree 
structure and corresponding 
STree<T>::init() function for this 
structure
– You might of course also write a 

preprocessor macro that does both 
at once

#ifndef __EVENT_TREE__
#define __EVENT_TREE__

#include "Stree.h"

struct EventRecord {
    unsigned int       nElectrons;
    std::vector<float> etaVec;
    std::vector<float> phiVec;
    std::vector<float> ptVec;
};

template<>
void STree<EventRecord>::init() {
    addBranch("n"    , &EventRecord::nElectrons);
    addBranch("eta"  , &EventRecord::etaVec);
    addBranch("phi"  , &EventRecord::phiVec);
    addBranch("pt"   , &EventRecord::ptVec);
}

using EventTree = STree<EventRecord>;

# endif
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Our final FP solution

● Impure part now mostly moved 
out to other files

● fill function now much more 
explicit as it was before

● Code is easier to read now: a 
look at the fill function call is 
enough to get the general idea

● No type-related bugs possible 
with the STree wrapper

● On the downside about
10 % slower

● Speed loss can be mitigated by 
simulating in multiple threads, 
which would not have been 
possible before

#include "TFile.h"
#include "TRandom.h"
#include "EventTree.h"

#include <vector>
#include <cmath>

class MySimulator {

  public:
    
    MySimulator() : tree_("tree", "tree") {}
    ~MySimulator() { tree_.write(); }
     
    void simulate(int iEvent) const
    {
        // how many electrons?
        const unsigned int nElectrons {4 + rng_.Integer(4)};

        std::vector<float> etaVec(nElectrons);
        std::vector<float> phiVec(nElectrons);
        std::vector<float> ptVec(nElectrons);

        for (auto& x : etaVec) x = rng_.Uniform() * 5.0 - 2.5;
        for (auto& x : phiVec) x = rng_.Uniform() * 2.*M_PI - M_PI;
        for (auto& x : ptVec)  x = rng_.Exp(10.) + 20.;

        tree_.fill({ .nElectrons = nElectrons,
                     .etaVec     = etaVec,
                     .phiVec     = phiVec,
                     .ptVec      = ptVec       });
    }

  private:

    EventTree tree_;
    mutable TRandom rng_;
};

int main()
{
    const int nEvents {10000}; // number of events to simulate

    TFile file {"data.root", "RECREATE"};

    MySimulator simulator{};

    for(int iEvent = 0; iEvent < nEvents; ++iEvent)
        simulator.simulate(iEvent);
}



22

Our final FP solution
(multi-threaded)

● Easy to speed up your analysis 
by factor n if you kept your use 
of mutable data under control

● Downside: the order of events is 
now not deterministic anymore, 
which makes the random 
numbers not deterministic

#include "TFile.h"
#include "TRandom.h"
#include "EventTree.h"

#include <vector>
#include <cmath>

class MySimulator {

  public:
    
    MySimulator() : tree_("tree", "tree") {}
    ~MySimulator() { tree_.write(); }
     
    void simulate(int iEvent) const
    {
        // how many electrons?
        const unsigned int nElectrons {4 + rng_.Integer(4)};

        std::vector<float> etaVec(nElectrons);
        std::vector<float> phiVec(nElectrons);
        std::vector<float> ptVec(nElectrons);

        for (auto& x : etaVec) x = rng_.Uniform() * 5.0 - 2.5;
        for (auto& x : phiVec) x = rng_.Uniform() * 2.*M_PI - M_PI;
        for (auto& x : ptVec)  x = rng_.Exp(10.) + 20.;

        tree_.fill({ .nElectrons = nElectrons,
                     .etaVec     = etaVec,
                     .phiVec     = phiVec,
                     .ptVec      = ptVec       });
    }

  private:

    EventTree tree_;
    mutable TRandom rng_;
};

int main()
{
    const int nEvents {10000}; // number of events to simulate
    const int nThreads {8};

    TFile file {"data.root", "RECREATE"};

    MySimulator simulator{};

    auto simulateEvents = [&]() {
        for(int iEvent = 0; iEvent < nEvents/nThreads; ++iEvent)
            simulator.simulate(iEvent);
    };

    std::vector<std::thread> threads;
    for(int i = 0; i < nThreads; ++i) threads.emplace_back(simulateEvents);
    for(auto& thread : threads) thread.join();
}
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Making Plot with Python

● The split-apply-combine idiom 
is a nice example of how higher-
oder functions can abstact away 
event loops

● In Pandas:
– Split step is done by df.groupby
– apply is the higher-order function
– Combination step is implicit in apply

● Pandas provides a very high 
level of abstaction and is fast 
enough for datasets with 
thousands of rows

● Pandas disencourages mutable 
data, but you can still do it with 
the                        argument

import uproot
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

df = uproot.open("data.root")["tree"].pandas.df()

def get_mass(leptons):
    leps = leptons.sort_values("pt")[-2:]

    pt_prod  = leps["pt"].prod()
    eta_diff = leps["eta"].diff().iloc[1]
    phi_diff = leps["phi"].diff().iloc[1]

    return np.sqrt(2*pt_prod*(np.cosh(eta_diff)-np.cos(phi_diff)))

mass = df.groupby("entry").apply(get_mass).values

plt.figure()
plt.hist(mass, bins=50, histtype='step')
plt.xlabel("dilepton mass [GeV]")
plt.savefig("dilepton_mass.png")

inplace=True
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Conclusions

● Functional programming is the natural next level of abstraction in 
the evolution of programming languages

● Functional programming languages like Haskell or OCaml (while not 
being mainstream yet) have significantly inspired the mainstream 
languages to implement features originating from FP

● These new aspects of C++ and Python can help Physicists write 
more bug-free and readable code, saving time for everyone

● Three most important lessons:
– Write pure functions
– The compiler and type-system is your friend
– Avoid mutating variables if possible
– Use higher-level functions

● Sticking to these rules results in code that can be easily parallelized
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