EEEEE
PPPPPPPPPPP

nnnnnnnnnnnnnnnnnnnnnn

How You in HEP can benefit from
Functional Programming

Jonas Rembser

28.11.2018
1st LLR Student and Postdoc Seminar

Contents

What is Functional Programming (FP)

Relation between the FP and High Energy Physics communities
FP in C++ and Python for your everyday work

FP-inspired techniques in data analysis

Some easy FP paradigms to improve your code

It

Introduction

Who of you has heard about Functional Programming before?

Tell me what you think of this Python code: Ering(x)
print(x)
Tell me what you think of this C++ code:
int n = 10;
for(int 1 = 0; 1 < n; ++1)
: std::cout << i << " ";

std::cout << std::endl;

Lies, lies lies! You can't trust the "definition" of variables! ‘

4

But why do we lie so much?

« A historical sketch of programming:

« From machine code to assembly
« From assembly to e.g. Fortran or C

Beginning of stack

Higher address

Saved eax
s « We got used to variables standing for
| [Foo0 a location in memory...
Argument 1 .
- tg‘”dd e ...not as short-hands for values as in
B mathematics!

Saved ehx

LR FERRERE local variable

} Bar() « What is the next level of abstraction?

End of stack = Y%esp

Y

Functional Programming

o =4
equations introduction % -E Tongent
bifferentiation bevelopmen{ E vl sy 1o "E Le'bnfz opics
infinitesimal & inputs S

der'vq.“ve mdhemQﬂclqns ‘D “ne) _E s : unlver‘SHy scistles

- first

Ri
anw§

SMH Used dsﬁn'ﬂvﬂ U) M {‘ -S 0”0’355 mmhe 2 ideas ‘§
ey T function s 251,

cahstth

infinitesinels method gistance

Slopé’.A mathematical
voume Traveled wark geometry W'de”""“ve 'Fﬂd drﬁ‘ e r en‘t ' ’ resu&s
8

5

= .E

wons 5 3l §Retrieved theorem n’so Rkl
1y %om definite T

qPPh thi oNs serles

called History

8 Q_
[functions =5
8

gives

- T[reat computation as the evaluation of mathematical functions
« Avoid changing-state and mutable data
« Higher level of abstraction requires very smart compilers

Y

The Lambda Calculus

- Lambda calculus: a formal system for expression computation based
on functions as a universal model of computation

« Very interesting research topic that plays an important role in FP

Syntax Name Description

X Variable A character or string representing a parameter or
mathematical/logical value

(AX.M) Abstraction Function definition (M is a lambda term). The variable
X becomes bound in the expression.

(M N) Application Applying a function to an argument. M and N are
lambda terms.

Operation Name Description

(Ax.M[x]) = (Ay.M[y]) a-conversion Renaming the bound (formal) variables in the

expression. Used to avoid name collisions.

((AX.M) E) -» (M[x:=E]) B-reduction Replacing the bound variable with the argument
expression in the body of the abstraction

Y

Why was | showing this?

Consider trivial expression (Ax.x)
In Python it would be lambda x: x

That should look familiar! Lambda functions are now part of many
languages so you can create unnamed "throw-away" functions

Example: map(lambda x: x**2, [1,2,3])

We just saw another FP concept: Higher-order functions!
map IS a function that takes a function as an argument

Now you know why it's called "lambda function” in Python.
But why "lambda calculus in the first place?

Recursive problem... which is a good keyword

It

Recursion in Lambda Calculus

How to implement recursion?
« Not possible to refer to the definition of a function in a function body!

« What we need is some higher-order function to apply on a function to
call it recursively:

fix f=f(fixf), andtherefore fixf=Ff(f(...f(fixf)...)).

« This fixed-point combinator can be implemented in lambda Calculus

by Haskell Curry's Y combinator:

Y = M.(AXF (X X))(AXT(X X))

Why was | showing this again?

The US company Y Combinator is arguably the most famous startup
incubator in silicon valley

It invested in Dropbox, Airbnb, Reddit, Docker, etc.

If FP concepts inspire trendy company names now, we are definitely
up to something!

Functional Programming Languages

« The most famous one is Haskell, which sticks close to the typed
lambda calculus. These are the strong points of the language:

— Purity:
functions have no side-effects and outputs only depends on inputs

- Strong typing:
all variable types must be known at compile-time and no implicit casting,
which results in most bugs being caught at compile time and enables powerful
static code analysis

- Elegance:
code often reads like a high-level algorithm description

- Laziness:
nothing is evaluated until it has to be evaluated

 In particular the first two bullet-points result in fewer bugs than you'd
normally get in e.g. C++ and Python

« | will not go deeper in the topic of FP languages and will explain how
to use these concepts in C++ or Python instead ’

11

Functional Programming in the Real World

« Some companies use pure FP languages like Haskell or Ocami
(the latter developed by INRIA)

« Mostly in silicon valley, startup scene, fin-tech sector and France

'i (@) Jane Street

« Companies like FP languages for:
— Robustness
- Scalability
- Rapid development times (once you get the hang of it)
- Readability of code

- It attracts high quality nerds ’

12

Functional Programming in High Energy Physics

« Google searches:

— physics+"object oriented programming”
2 Million results

- physics+"functional programing”
7000 results

— Conclusion: we definitely didn't jump on that bandwagon...

« High energy physics has an important Fortran legacy

- Fortran: as un-functional as it gets. Variables all have to be declared in the beginning
and then you mutate them heavily!

- Many people still write code like this today

« Fortunately, we use a lot of C++ and Python, which now took over many
concepts from PF for example:

- Powerful type systems (C++)
- Lambda functions and higher-order functions (both)

- Mutable variables can be avoided without loosing much speed thanks to
powerful optimizers in moders compilers (C++)

Y

What you can take from FP to write better code
Today

Stick to pure functions as much as possible.

— A pure functions output only depends on the input (not on some external state) and
has no "side effects" (implicit effects on external state)

:] INPUT x
Ensure that your variables have well-defined types v
— In Python you can't really do that
— In C++ that means avoid nullptr | casts, void* FUNCTION T
and violations of the Liskov Substitution principle) r
: - v
Try to find elegant, abstract solutions to your problems OUTPUT f(x)

with powerful higher-level functions and define your own
- In C++ that means get familiar with function pointers

— In Python that means use libraries with a high level of functional abstraction like
Pandas or sklearn

Don't be afraid of avoiding mutable data
- Don't try to mutate variables to "make your program more efficient"
- Infest your C++ code with const

Y

Making a case for Pure Functions

Typical C++ HEP coding pattern
on the right

Often huge "god classes”
which have a lot of member
variables that get mutated all
over the place

That's dangerous because
iInformation may "leak over" to
other event because you didn't
reset a variable for example

You can never be sure what the
actual inputs and outputs of a
function are without reading it's
body

Don't be that guy

class MyAnalyzer() {

public:
MyAnalyzer(Configuration config);

run(Event iEvent); // for event loop
private:

// Some functions that do
// something to the class members.
// Real inputs and outputs NOT CLEAR!

void selectElectrons(float cut);

void makeSuperClusters(bool keepBrems);

bool fitTrack(int nHits);

// Metric shit-ton of variables
// which all get mutated in

// the class member functions
// (hidded side effects...)

int iEvent ;

float pt ;

float eta ;

float phi_;

/] ..

// ..

YY

15

Making a case for Type Safety

Very nice negative example is the ROOT TTree's Branch method:

TBranch * TTree::Branch (const char * name,

void * address,
const char * leaflist,
Int t bufsize = 32000);

Problem is the void pointer. Type of address is instead specified as
argument, e.g.:

Float t mass;
tree-Branch("mass", &mass, "mass/F");

What if you later change the type of mass in the code from "Float_t"
to "Double_t" and forget to change "F" to "D"?
The compiler won't complain and you'll get garbage in your tree

Why not using the compiler and type system as your ally to detect

bugs early? Missed opportunity here! ’

16

#include "TFile.h"
#include "TRandom.h"
#include "TFile.h"
#include "Ttree.h"

C++ case study:

#include <cmath>

filling a TTree

MySimulator() {

tree = new TTree("tree", "tree");
tree ->Branch("n" , &nElectrons , "n/i");
tree ->Branch("eta" , &etaVec);

tree SBranch(*pt* | Shtvec T}’ o Let's try to find the "non-FP"
rng_ = new TRandom(); // random number generator parts together:

}
~MySimulator() { e i
R WU One mutated variable per tree
) delete rng_; t)r21r1(3f1
void simulate(int iEvent) { ool =8
etaVec .clear(); // don't forget to clear vectors at each event - Impure TTreeFI”() and
hiV .cl g = . .
e ey TTree::Write() functions
nElectrons = 4 + rng ->Integer(4); // how many electrons?
for(int iElectron = 0; iElectron < nElectrons ; ++iElectron) { oy Mutated TRandOm
phiVec .push back(rng_ ->Uniform() * 2.*M PI - M PI);
etaVec .push back(rng ->Uniform() * 5.0 - 2.5); .
) ptVec .push back(rng ->Exp(10.) + 20.) e \/EB()t()rES rT1LJtEltEB(j Eill ()\/EBF tf]GB F)IEi(:EB.
tree ->Fill(); // fill the TTree with event information .. Il
} « std::vector<T>::clear()
private:

« std:ivector<T>::push_back()

TTree* tree ;
TRandom* rng_;

unsigned int nElectrons ; // variables for TTree branches
std::vector<float> etaVec ;

std::vector<float> phiVec ;
std::vector<float> ptVec ;

int main() {
int nEvents = 10000; // number of events to simulate

TFile* file = TFile::Open("data.root", "RECREATE");
MySimulator simulator{};

for(int iEvent = 0; iEvent < nEvents; ++iEvent) {
simulator.simulate(iEvent);

}
delete file;

#ifndef S TREE
#define S TREE

#include "TTree.h"
#include <mutex>

template<class T>

void addTreeBranch(TTree* tree, const char* name, T& variable) {

tree->Branch(name, &variable);

)

#define TYPES WITH SUFFIX \
X(char , "/B") X(unsigned char , "/b") \
X(short , "/S") X(unsigned short, "/s") \
X(int , "/I") X(unsigned int , "/i") \
X(long , "/L") X(unsigned long , "/1") \
X(float , "/F") X(double , "/D") \
X(char * , "/C") X(bool , "/0")

#define X(Type, suffix) \
template<> \
void addTreeBranch<Type>(TTree* tree, \
const char* name, Type& variable) { \
tree->Branch(name, &variable, \
(std::string(name) + suffix).c str()); \

)

TYPES WITH SUFFIX

#undef X

#undef TYPES WITH SUFFIX

template <typename T>
class STree {

Public:

STree(const char* name, const char* title)
: tree (new TTree(name, title))

{ init(); }

void init();

void write() const { tree ->Write(); }

void print() const { tree ->Print(); }

void fill(T && structure) const {
std::lock guard<std::mutex> lock {mutex };

structure = std::move(structure);
tree ->Fill();
)
private:

template<class S>
void addBranch(const char* name, S foo) {
addTreeBranch(tree , name, structure .*foo0);

}

TTree * tree ;
mutable T structure_;
mutable std::mutex mutex ;

+
#endif

The STree — a wrapper

around T Tree

Let's first make a function to add
branches of the correct type by
matching the type of the variable

Let's create a wrapper around
TTree which provides a fill
function that does not depend
on the external state but takes
the branch variables as inputs

To use this class, one has to
define the tree structure as a
struct in C++. Type checking of
branches is done at compile
time and we avert bugs

Put lock _guard in write function
to make possible multithreaded
filling

Y

19

Defining the tree
#ifndef EVENT TREE Stru Ctu re

#define EVENT TREE

#include "Stree.h"

T — « Next, we have to define the tree
unsigned int NELect ons; structure and corresponding
std: :vector<float> etaVec; nr - 5
std: ivector<float> phivec; STree<T>::init() function for this
.. std::vector<float> ptVec; StrUCture
e) { - You might of course also write a
< t > t
vor addgf‘gncxfnn"ecor, &E\l/E;tRecord: :nElectrons); preprocessor macro that doeS bOth
addBranch("eta" &EventRecord: :etaVec); at once

addBranch("phi" , &EventRecord::phiVec);
addBranch("pt" , &EventRecord: :ptVec);
}

using EventTree = STree<EventRecord>;

endif

#include "TFile.h"
#include "TRandom.h"
#include "EventTree.h"

#include <vector>
#include <cmath>

class MySimulator {
public:

MySimulator() : tree ("tree", "tree") {}
~MySimulator() { tree .write(); }

void simulate(int iEvent) const
{
// how many electrons?
const unsigned int nElectrons {4 + rng_.Integer(4)};

std::vector<float> etaVec(nElectrons);
std::vector<float> phiVec(nElectrons);
std::vector<float> ptVec(nElectrons);

for (auto& x : etaVec) x = rng_.Uniform(5.0 - 2.5;

) *
for (auto& x : phiVec) x = rng_.Uniform() * 2.*M PI - M PI;

for (auto& x : ptVec) x = rng .Exp(10.) + 20.;

tree .fill({ .nElectrons = nElectrons,

.etaVec = etaVec,
.phiVec = phiVec,
.ptVec = ptVec });
)
private:

EventTree tree ;
mutable TRandom rng_;
}

int main()

{
const int nEvents {10000}; // number of events to simulate
TFile file {"data.root", "RECREATE"};

MySimulator simulator{};

for(int iEvent = 0; iEvent < nEvents; ++iEvent)
simulator.simulate(iEvent);

Our final FP solution

Impure part now mostly moved
out to other files

fill function now much more
explicit as it was before

Code is easier to read now: a
look at the fill function call is
enough to get the general idea

No type-related bugs possible
with the STree wrapper

On the downside about
10 % slower

Speed loss can be mitigated by
simulating in multiple threads,
which would not have been

possible before

Y

#include "TFile.h"
#include "TRandom.h"

#include "EventTree.h" Our final FP SOlUtiOn

#include <vector>
#include <cmath> (l I Iu |ti th read ed)
class MySimulator {

public:

MySimulator() : tree ("tree", "tree") {}

~MySimulator() { tree .write(); } L4 Easy tO Spe.ed Up your anaIySiS
void simulate(int iEvent) const by factor N |f you kept your use

{
// h lect ?
consgwuﬂzgéngdeingogélectrons {4 + rng_.Integer(4)}; Of mUtable data Under ContrOI
td:: t float taVec(nElect); u i .
2td: vector<tloate phiVec(nElectrons), e Downside: the order of events is
std::vector<float> ptVec(nElectrons); . . .
for (auto& x : etaVec) x = rng_.Uniform() * 5.0 - 2.5; nOW nOt determlnlStIC anymore’
for (auto& x : phiVec) x = .Uniform() * 2.*M PI - M PI; I
ng (Zﬂtg&i 3 ﬁt\l/eif i: ?23:.52;1)(35".1) +20.; B Wh|Ch makeS the I‘andom
tree . fill({ .gisg’érons - gisgzrons, numbers nOt determ"“Sth
:phiVec = phiVec:
.ptVec = ptVec 1)
}
private:

EventTree tree ;
mutable TRandom rng_;

};

int main()

{
const int nEvents {10000}; // number of events to simulate
const int nThreads {8};

TFile file {"data.root", "RECREATE"};
MySimulator simulator{};

auto simulateEvents = [&]() {
for(int iEvent = 0; iEvent < nEvents/nThreads; ++iEvent)
simulator.simulate(iEvent);

};

std::vector<std::thread> threads;
for(int i = 0; i < nThreads; ++i) threads.emplace back(simulateEvents);
for(auto& thread : threads) thread.join();

import uproot
import numpy as np
import matplotlib.pyplot as plt

st pandas =5 7 Making Plot with Python

df = uproot.open("data.root")["tree"].pandas.df()

def get mass(leptons):
leps = leptons.sort values("pt")[-2:]

« The split-apply-combine idiom

t3 0iff - leps["eta’] GiFF().iloc(1] is a nice example of how higher-
PREGHTT = Tepstiphid QIR0 Afocl] oder functions can abstact away
return np.sqrt(2*pt prod*(np.cosh(eta diff)-np.cos(phi diff))) event |OOpS

mass = df.groupby("entry").apply(get mass).values ° In Pandas

pLt. figure() - Split step is done by df.groupby

plt.hist(mass, bins=50, histtype='step')
plt.xlabel("dilepton mass [GeV]")

plt.savetig("dilepton mass.png") — apply is the higher-order function
— Combination step is implicit in apply
« Pandas provides a very high

: level of abstaction and is fast
enough for datasets with
2 thousands of rows
! « Pandas disencourages mutable
:] data, but you can still do it with
400:_ ; the inplace=True argument

0 100 200 300 400 500 600 700 800
dilepton mass [GeV]

Conclusions

Functional programming is the natural next level of abstraction in
the evolution of programming languages

Functional programming languages like Haskell or OCaml (while not
being mainstream yet) have significantly inspired the mainstream
languages to implement features originating from FP

These new aspects of C++ and Python can help Physicists write
more bug-free and readable code, saving time for everyone

Three most important lessons:
- Write pure functions
- The compiler and type-system is your friend
- Avoid mutating variables if possible
- Use higher-level functions

Sticking to these rules results in code that can be easily parallelized

A4

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

