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The Reduction (sum)

α =
N∑
i=1

xi
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The reduction : first performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)
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The reduction : first performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)
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The Performance : what is the issue ?

I Performances -O0 : slow but reasonable

I Other performances (-O1, -O2, -O3, -Ofast) are too fast (non sence)

GCC is smart of guileful depending on the points of view.

I GCC noticed you do not use the result of the reduction function.

I The call to reduction is considered as dead code (or never called code).

To avoid that, you have to compile the reduction function in an other file.
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The reduction : real performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)
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Modifications for vectorization

I Data alignement :
I All the data to be aligned on vectorial registers size.
I Change new or malloc to memalign or posix memalign

You can use asterics malloc to have LINUX/MAC compatibility (in evaluateReduction):

The restrict keyword (arguments of reduction function):

The builtin assume aligned function call (in reduction function):

I The Compilation Options become :
I -O3 -ftree-vectorize -march=native -mtune=native -mavx2
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The reduction : vectorize performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)
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The reduction : intrinsics performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)
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The reduction : intrinsics interleaved 2

Total Elapsed Time (cy) Elapsed Time per element (cy/el)
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The reduction : intrinsics interleaved 4

Total Elapsed Time (cy) Elapsed Time per element (cy/el)
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The reduction : intrinsics interleaved 8

Total Elapsed Time (cy) Elapsed Time per element (cy/el)
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The reduction : summary

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

5000 elements, Intrinsics is 166 times faster than -O0 and 7 times faster than -Ofast vectorized
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What about the Hadamard product ?

Total Elapsed Time (cy) Elapsed Time per element (cy/el)
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The reduction : Python

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

1000 elements, GCC vectorized version is 13 times faster than numpy sum

Pierre Aubert, Optimisation of reduction 27



The reduction : Python Summary

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

1000 elements, our python reduction is 10 times faster than numpy sum
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