
Optimisation :

Reduction

Pierre Aubert



The Reduction (sum)

α =
N∑
i=1

xi

Pierre Aubert, Optimisation of reduction 2



The reduction : first performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Optimisation of reduction 3



The reduction : first performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Optimisation of reduction 4



The Performance : what is the issue ?

I Performances -O0 : slow but reasonable

I Other performances (-O1, -O2, -O3, -Ofast) are too fast (non sence)

GCC is smart of guileful depending on the points of view.

I GCC noticed you do not use the result of the reduction function.

I The call to reduction is considered as dead code (or never called code).

To avoid that, you have to compile the reduction function in an other file.

Pierre Aubert, Optimisation of reduction 5



Pierre Aubert, Optimisation of reduction 6



Pierre Aubert, Optimisation of reduction 7



Pierre Aubert, Optimisation of reduction 8



Pierre Aubert, Optimisation of reduction 9



Pierre Aubert, Optimisation of reduction 10



Pierre Aubert, Optimisation of reduction 11



The reduction : real performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Optimisation of reduction 12



Modifications for vectorization

I Data alignement :
I All the data to be aligned on vectorial registers size.
I Change new or malloc to memalign or posix memalign

You can use asterics malloc to have LINUX/MAC compatibility (in evaluateReduction):

The restrict keyword (arguments of reduction function):

The builtin assume aligned function call (in reduction function):

I The Compilation Options become :
I -O3 -ftree-vectorize -march=native -mtune=native -mavx2

Pierre Aubert, Optimisation of reduction 13



The reduction : vectorize performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Optimisation of reduction 14



The reduction : intrinsics performances

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Optimisation of reduction 15



Pierre Aubert, Optimisation of reduction 16



Pierre Aubert, Optimisation of reduction 17



Pierre Aubert, Optimisation of reduction 18



Pierre Aubert, Optimisation of reduction 19



Pierre Aubert, Optimisation of reduction 20



Pierre Aubert, Optimisation of reduction 21



The reduction : intrinsics interleaved 2

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Optimisation of reduction 22



The reduction : intrinsics interleaved 4

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Optimisation of reduction 23



The reduction : intrinsics interleaved 8

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Optimisation of reduction 24



The reduction : summary

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

5000 elements, Intrinsics is 166 times faster than -O0 and 7 times faster than -Ofast vectorized

Pierre Aubert, Optimisation of reduction 25



What about the Hadamard product ?

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Optimisation of reduction 26



The reduction : Python

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

1000 elements, GCC vectorized version is 13 times faster than numpy sum

Pierre Aubert, Optimisation of reduction 27



The reduction : Python Summary

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

1000 elements, our python reduction is 10 times faster than numpy sum

Pierre Aubert, Optimisation of reduction 28


