
Optimisation :

The Hadamard Product

Pierre Aubert

The Hadamard product

zi = xi × yi , ∀i ∈ 1,N

Pierre Aubert, Optimisation of Hadamard Product 2

Compilation options

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Pierre Aubert, Optimisation of Hadamard Product 3

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Compilation options

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

I -O0
I Try to reduce compilation time, but -Og is better for debugging.

Pierre Aubert, Optimisation of Hadamard Product 4

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Compilation options

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

I -O0
I Try to reduce compilation time, but -Og is better for debugging.

I -O1
I Constant forewarding, remove dead code (never called code)...

Pierre Aubert, Optimisation of Hadamard Product 5

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Compilation options

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

I -O0
I Try to reduce compilation time, but -Og is better for debugging.

I -O1
I Constant forewarding, remove dead code (never called code)...

I -O2
I Partial function inlining, Assume strict aliasing...

Pierre Aubert, Optimisation of Hadamard Product 6

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Compilation options

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

I -O0
I Try to reduce compilation time, but -Og is better for debugging.

I -O1
I Constant forewarding, remove dead code (never called code)...

I -O2
I Partial function inlining, Assume strict aliasing...

I -O3
I More function inlining, loop unrolling, partial vectorization...

Pierre Aubert, Optimisation of Hadamard Product 7

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Compilation options

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

I -O0
I Try to reduce compilation time, but -Og is better for debugging.

I -O1
I Constant forewarding, remove dead code (never called code)...

I -O2
I Partial function inlining, Assume strict aliasing...

I -O3
I More function inlining, loop unrolling, partial vectorization...

I -Ofast
I Disregard strict standards compliance. Enable -ffast-math,

stack size is hardcoded to 32 768 bytes (borrowed from gfortran).
Possibily degrades the computation accuracy.

Pierre Aubert, Optimisation of Hadamard Product 8

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

The Hadamard product : Performance

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Speed up of 14 between -O0 and -O3 or -Ofast

Pierre Aubert, Optimisation of Hadamard Product 9

What is vectorization ?

The idea is to compute several elements at the same time.

Nb float
Architecture Instruction CPU Computed at the

Set same time
SSE4 2006 2007 4
AVX 2008 2011 8

AVX 512 2013 2016 16

LINUX : cat /proc/cpuinfo | grep avx MAC : sysctl -a | grep machdep.cpu | grep AVX

Pierre Aubert, Optimisation of Hadamard Product 10

What is vectorization ?

The CPU has to read several elements at the same time.

I Data contiguousness :
I All the data to be used have to be adjacent with the others.
I Always the case with pointers but be careful with your applications.

Pierre Aubert, Optimisation of Hadamard Product 11

What is vectorization ?

I Data alignement :
I All the data to be aligned on vectorial registers size.
I Change new or malloc to memalign or posix memalign

Pierre Aubert, Optimisation of Hadamard Product 12

What do we have to do with the code ?

I The restrict keyword :
I Specify to the compiler there is no overhead between pointers

=⇒

Pierre Aubert, Optimisation of Hadamard Product 13

What do we have to do with the code ?

I The builtin assume aligned function :
I Specify to the compiler pointers are aligned

I If this is not true, you will get a Segmentation Fault.
I Here VECTOR ALIGNEMENT = 32 (for float in AVX or AVX2 extensions).

Definition in the file ExampleMinimal/CMakeLists.txt :

Pierre Aubert, Optimisation of Hadamard Product 14

Compilation Options

I The Compilation Options become :
I -O3 -ftree-vectorize -march=native -mtune=native -mavx2

I -ftree-vectorize
I Activate the vectorization

I -march=native
I Target only the host CPU architecture for binary

I -mtune=native
I Target only the host CPU architecture for optimization

I -mavx2
I Vectorize with AVX2 extention

Pierre Aubert, Optimisation of Hadamard Product 15

Modifications Summary

I Data alignement :
I All the data to be aligned on vectorial registers size.
I Change new or malloc to memalign or posix memalign

You can use asterics malloc to have LINUX/MAC compatibility (in evaluateHadamardProduct):

The restrict keyword (arguments of hadamard product function):

The builtin assume aligned function call (in hadamard product function):

I The Compilation Options become :
I -O3 -ftree-vectorize -march=native -mtune=native -mavx2

Pierre Aubert, Optimisation of Hadamard Product 16

Code Correction

Pierre Aubert, Optimisation of Hadamard Product 17

The Hadamard product : Vectorization

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Optimisation of Hadamard Product 18

Vectorization by hand : Intrinsic functions

The idea is to force the compiler to do what you want and how you want it.

The Intel intrinsics documentation : https://software.intel.com/en-us/node/523351.

I Some changes (for AVX2):
I Include : immintrin.h
I float =⇒ m256 (= 8 float)
I Data loading : mm256 load ps
I Data Storage : mm256 store ps
I Multiply : mm256 mul ps

Only on aligned data of course.

Pierre Aubert, Optimisation of Hadamard Product 19

https://software.intel.com/en-us/node/523351

The Hadamard product : Intrinsics

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

Pierre Aubert, Optimisation of Hadamard Product 20

The Hadamard product : Summary

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

For 1000 elements : intrinsics version is 43.75 times faster than O0
For 1000 elements : intrinsics version is 3.125 times faster than O3
Intrinsics version is a bit faster than vectorized version. Compiler is very efficient

Pierre Aubert, Optimisation of Hadamard Product 21

By the way... what is this step ?

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

For 1000 elements : intrinsics version is 43.75 times faster than O0
For 1000 elements : intrinsics version is 3.125 times faster than O3
Intrinsics version is a bit faster than vectorized version. Compiler is very efficient

Pierre Aubert, Optimisation of Hadamard Product 22

It is due to the Caches !

Let’s call hwloc-ls

Pierre Aubert, Optimisation of Hadamard Product 23

It is due to the Caches !

Let’s call hwloc-ls

I Time to get a data :
I Cache-L1 : 1 cycle
I Cache-L2 : 6 cycles
I Cache-L3 : 10 cycles
I RAM : 25 cycles

Pierre Aubert, Optimisation of Hadamard Product 24

It is due to the Caches !

Let’s call hwloc-ls

I Time to get a data :
I Cache-L1 : 1 cycle
I Cache-L2 : 6 cycles
I Cache-L3 : 10 cycles
I RAM : 25 cycles

With no cache, 25 cycles to
get a data implies a 2.0GHz
CPU computes at 80MHz
speed.

Pierre Aubert, Optimisation of Hadamard Product 25

The Hadamard product : Python

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

For 1000 elements : vectorized version is 3400 times faster than pure Python !!! (on numpy tables)
For 1000 elements : vectorized version is 8 times faster than numpy version

So, use numpy instead of pure Python (numpy uses the Intel MKL library)

Pierre Aubert, Optimisation of Hadamard Product 26

The Python Hadamard product : Summary

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

For 1000 elements : intrinsics C++ version is 4 times faster than our Python intrinsics
For 1000 elements : python intrinsics version is 1.2 times faster than O3

The Python function call cost a lot of time

Pierre Aubert, Optimisation of Hadamard Product 27

The Python Hadamard product : list

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

If you want to get elements one per one : lists are faster than numpy arrays
If you want to global computation : numpy arrays are faster than lists
If you want to be able to wrap you code : use numpy arrays

Pierre Aubert, Optimisation of Hadamard Product 28

The Python Hadamard product : list

Total Elapsed Time (cy) Elapsed Time per element (cy/el)

If you want to get elements one per one : lists are faster than numpy arrays
If you want to global computation : numpy arrays are faster than lists
If you want to be able to wrap you code : use numpy arrays

Pierre Aubert, Optimisation of Hadamard Product 29

