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WHO IS THIS CLOWN?
• Tamás Gál, born 1985 in Debrecen (Hungary) 
• PhD candidate in astroparticle physics at the 
Erlangen Centre for Astroparticle Physics (ECAP) working on 
the KM3NeT neutrino detector experiment 

• Programming background: 
• Coding enthusiast since ~1993 
• First real application written in Amiga Basic 
(toilet manager, tons of GOTOs ;) 

• Python, Julia, JavaScript and C/C!++/Obj-C for work 
• Haskell for fun 
• Earlier also Java, Perl, PHP, Delphi, MATLAB, whatsoever… 

• Other hobbies: ADV motorbikes, climbing, electronics, DIY
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PYTHON



BRIEF HISTORY OF PYTHON

• Rough idea in the late 1980s 

• Meant to descend the ABC language 

• First line of code in December 1989 by Guido van Rossum 

• Python 2.0 in October 2000 

• Python 3.0 in December 2008 

• Python 2.7 End Of Life date: 2020 (halleluja) 

• Current stable release: 3.7.3
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THE ZEN OF PYTHON 
!!>>> import this 
The Zen of Python, by Tim Peters  
Beautiful is better than ugly.  
Explicit is better than implicit.  
Simple is better than complex.  
Complex is better than complicated.  
Flat is better than nested.  
Sparse is better than dense.  
Readability counts.  
Special cases aren't special enough to break the rules. 
Although practicality beats purity.  
Errors should never pass silently.  
Unless explicitly silenced.  
In the face of ambiguity, refuse the temptation to guess. 
There should be one!-- and preferably only one !--obvious way to do it. 
Although that way may not be obvious at first unless you're Dutch. 
Now is better than never.  
Although never is often better than *right* now. 
If the implementation is hard to explain, it's a bad idea. 
If the implementation is easy to explain, it may be a good idea. 
Namespaces are one honking great idea !-- let's do more of those
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POPULAR LANGUAGES 
(MAY 2017)

Python is the fourth most popular language  
and rocks the top 10 since 2003.
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POPULAR LANGUAGES 
(MAY 2018)

Python is still the fourth most popular language  
and rocks the top 10 since 2003.
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May 2017



POPULAR LANGUAGES 
(APRIL 2019)

Python now the third most popular language! 
!!...and has beaten C!++ ;)
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May 2018

Julia is #42



PYTHONS POPULARITY

“Programming language of the year” in 2007, 2010 and 2018.
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YOUR JOURNEY THROUGH PYTHON?  
(JUST A VERY ROUGH GUESS, NOT A MEAN GAME)

• Have you ever launched the Python interpreter? 
• Wrote for/while-loops or if/else statements? 
• …your own functions? 
• …classes? 
• …list/dict/set comprehensions? 
• Do you know what a generator is? 
• Have you ever implemented a decorator? 
• …a metaclass? 
• …a C-extension? 
• Do you know and can you explain the output of the 
following line for Python? 

print(5 is 7 - 2, 300 is 302 - 2)

Raise your hand and keep it up until you answer a question with “no”.

Explorer

Intermediate

Advanced

Are you 
kidding me???

Novice
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ANSWER TO 
print(5 is 7 - 2, 300 is 302 - 2)

Python 2.7: True, False 
Python 3.6: True, False 
Python 3.7: True, True 
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EXPLANATION OF 
print(5 is 7 - 2, 300 is 302 - 2)

PyObject* PyLong_FromLong(long v) 
Return value: New reference. 
Return a new PyLongObject object from v, or NULL on failure. 

The current implementation keeps an array of integer objects for all 
integers between -5 and 256, when you create an int in that range you 
actually just get back a reference to the existing object. So it 
should be possible to change the value of 1. I suspect the behaviour 
of Python in this case is undefined. :-) 

In Python 3.7 the constant folding is moved from the peephole optimiser to 
the new AST optimiser, which effectively avoids the extra allocation. 
(https:!//github.com/python/cpython/commit/
7ea143ae795a9fd57eaccf490d316bdc13ee9065)
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https://github.com/python/cpython/commit/7ea143ae795a9fd57eaccf490d316bdc13ee9065
https://github.com/python/cpython/commit/7ea143ae795a9fd57eaccf490d316bdc13ee9065
https://github.com/python/cpython/commit/7ea143ae795a9fd57eaccf490d316bdc13ee9065


BASIC PYTHON INTERNALS
to understand the performance issues



FROM SOURCE TO RUNTIME

foo.py foo.pyccompiler interpret
er runtime

bytecodesource
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PYTHON BYTECODE
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import dis; dis.dis(compile('print(5 is 7 - 2, 300 is 302 - 2)', '', 'single')) 
  1           0 LOAD_NAME                0 (print) 
              2 LOAD_CONST               0 (5) 
              4 LOAD_CONST               0 (5) 
              6 COMPARE_OP               8 (is) 
              8 LOAD_CONST               1 (300) 
             10 LOAD_CONST               1 (300) 
             12 COMPARE_OP               8 (is) 
             14 CALL_FUNCTION            2 
             16 PRINT_EXPR 
             18 LOAD_CONST               2 (None) 
             20 RETURN_VALUE

import dis; dis.dis(compile('print(5 is 7 - 2, 300 is 302 - 2)', '', 'single')) 
  1           0 LOAD_NAME                0 (print) 
              2 LOAD_CONST               0 (5) 
              4 LOAD_CONST               6 (5) 
              6 COMPARE_OP               8 (is) 
              8 LOAD_CONST               3 (300) 
             10 LOAD_CONST               7 (300) 
             12 COMPARE_OP               8 (is) 
             14 CALL_FUNCTION            2 
             16 PRINT_EXPR 
             18 LOAD_CONST               5 (None) 
             20 RETURN_VALUEPy

th
on
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DATA IN PYTHON

• Every piece of data is a PyObject

>>> dir(42)
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__', 
'__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__', '__float__', 
'__floor__', '__floordiv__', '__format__', '__ge__', '__getattribute__', 
'__getnewargs__', '__gt__', '__hash__', '__index__', '__init__', 
'__init_subclass__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__', 
'__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__', '__pos__', 
'__pow__', '__radd__', '__rand__', '__rdivmod__', '__reduce__', '__reduce_ex__', 
'__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__', 
'__round__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', 
'__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', 
'__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'bit_length', 
'conjugate', 'denominator', 'from_bytes', 'imag', 'numerator', 'real', 
'to_bytes']

PyObject

ref.  
counttype

PyIntObject

type ref.  
count

field attr.

field attr.attr.

type
ref.  

count

42

structural  
subtype

PyTypeObject  
(_typeobject)
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THE TYPE OF A PyObject
“An object has a ‘type’ that determines what 
it represents and what kind of data it 
contains. 
An object’s type is fixed when it is created.  
Types themselves are represented as objects.  
The type itself has a type pointer pointing 
to the object representing the type ‘type’, 
which contains a pointer to itself!” 

— object.h
 19



YOUR BEST FRIEND AND WORST ENEMY: 

GIL - Global Interpreter Lock

• The GIL prevents parallel execution of (Python) bytecode  

• Even though Python has real threads, they never execute 
code at the same time 

• Context switching between threads creates overhead (the 
user cannot control thread-priority) 

• Threads perform pretty bad on CPU bound tasks 

• They do a great job speeding up I/O heavy tasks
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THREADS AND CPU BOUND TASKS

This is probably not really what you expected…

single thread: two threads:
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THREADS FIGHTING FOR THE GIL

By David M Beazley: http:!//dabeaz.com/GIL/gilvis
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OS X: 4 threads on 1 CPU (Python 2.6)

http://dabeaz.com/GIL/gilvis
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OS X: 4 threads on 4 CPUs (Python 2.6)

By David M Beazley: http:!//dabeaz.com/GIL/gilvis

THREADS FIGHTING FOR THE GIL

http://dabeaz.com/GIL/gilvis


OK, huge overhead for every single object, 
no real parallel execution of code!!... 

How should Python ever compete with all 
those super fast C/Fortran libraries?



C-extensions and interfacing C/Fortran! 

Those can release the GIL and do the 
heavy stuff in the background.



A DUMB SPEED COMPARISON 
CALCULATING THE MEAN OF 1000000 NUMBERS

pure Python: NumPy (~13x faster):

Numba (~8x faster):
Julia (~16x faster):
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CRAZY LLVM COMPILER OPTIMISATIONS 
SUMMING UP NUMBERS FROM 0 TO N=100,000,000

pure Python: NumPy (~80x faster):

Numba (~300000x faster):
Julia (~7000000x faster):
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pushq %rbp
movq %rsp, %rbp
xorl %eax, %eax

Source line: 3
testq %rdi, %rdi
jle L32
leaq -1(%rdi), %rax
leaq -2(%rdi), %rcx
mulq %rcx
shldq $63, %rax, %rdx
leaq -1(%rdx,%rdi,2), %rax

Source line: 6
L32:

popq %rbp
retq
nopw %cs:(%rax,%rax)



PYTHON LIBRARIES
for scientific computing



AstroPy
IPython

Matplotlib

NumPy

pandas

SymPy

Jupyter

SciPy
Numba Numexpr
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Not part of NumFocus but covered in this talk:



     SCIPY
Scientific Computing Tools for Python



THE SCIPY STACK
•Core packages 

• SciPy Library: numerical algorithms, signal processing, 
optimisation, statistics etc. 

• NumPy 
• Matplotlib: 2D/3D plotting library 
• pandas: high performance, easy to use data structures 
• SymPy: symbolic mathematics and computer algebra 
• IPython: a rich interactive interface to process data and test 
ideas 

• Jupyter: notebooks to document and code at the same time 
• nose: testing framework for Python code 

•Other packages: 
• Chaco, Mayavi, Cython, Scikits (scikit-learn, scikit-image), 
h5py, PyTables and much more

https:!//!!www.scipy.org
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https://www.scipy.org


SCIPY CORE LIBRARY
• Clustering package (scipy.cluster)
• Constants (scipy.constants)
• Discrete Fourier transforms 

(scipy.fftpack)
• Integration and ODEs 

(scipy.integrate)
• Interpolation (scipy.interpolate)
• Input and output (scipy.io)
• Linear algebra (scipy.linalg)
• Miscellaneous routines (scipy.misc)
• Multi-dimensional image processing 

(scipy.ndimage)
• Orthogonal distance regression 

(scipy.odr)
 32

• Optimization and root finding 
(scipy.optimize)

• Signal processing (scipy.signal)
• Sparse matrices (scipy.sparse)
• Sparse linear algebra 

(scipy.sparse.linalg)
• Compressed Sparse Graph Routines 

(scipy.sparse.csgraph)
• Spatial algorithms and data structures 

(scipy.spatial)
• Special functions (scipy.special)
• Statistical functions (scipy.stats)
• Statistical functions for masked 

arrays (scipy.stats.mstats)



SCIPY INTERPOLATE
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from scipy import interpolate

x = np.linspace(0, 10, 10)
y = np.sin(x)

x_fine = np.linspace(0, 10, 500)

f_linear = interpolate.interp1d(x, y, kind='linear')
f_bicubic = interpolate.interp1d(x, y, kind='cubic')

plt.plot(x, y, 'o',
         x_fine, f_linear(x_fine), '--',
         x_fine, f_bicubic(x_fine), ‘-.');



  NUMPY
Numerical Python



NUMPY
NumPy is the fundamental package for scientific computing 
with Python. 

• gives us a powerful N-dimensional array object: ndarray

• broadcasting functions 

• tools for integrating C/C!++ and Fortran 

• linear algebra, Fourier transform and random number 
capabilities 

• most of the scientific libraries build upon NumPy
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NUMPY: ndarray
ndim:   1
shape: (6,)

 36

4 5 61 2 3
Contiguous array in memory with a fixed type,  

no pointer madness! 
C/Fortran compatible memory layout,  

so they can be passed to those  
without any further efforts.



NUMPY: ARRAY OPERATIONS AND ufuncs

 37

easy and intuitive 
element-wise  
operations

a ufunc, which can operate both on scalars and arrays (element-wise)



RESHAPING ARRAYS
ndim:   1
shape: (6,)

4 5 61 2 3

No rearrangement of the elements 
but setting the iterator limits internally!
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a[0] a[1]



RESHAPING ARRAYS IS 
CHEAP

 39

Don’t worry, we will discover NumPy in the hands-on workshop!





MATPLOTLIB
A Python plotting library which produces publication quality 
figures in a variety of hardcopy formats and interactive 
environments. 

• Integrates well with IPython and Jupyter 

• Plots, histograms, power spectra, bar charts, error chars, 
scatterplots, etc. with an easy to use API 

• Full control of line styles, font properties, axes properties 
etc. 

• The easiest way to get started is browsing its wonderful gallery 
full of thumbnails and copy&paste examples:  
http:!//matplotlib.org/gallery.html
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http://matplotlib.org/gallery.html


MATPLOTLIB EXAMPLE

 42



MATPLOTLIB EXAMPLE
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PANDAS
A Python Data Analysis Library inspired by data frames in R: 

• gives us a powerful data structure: DataFrame

• database-like handling of data 

• integrates well with NumPy 

• wraps the Matplotlib API (which can also cause troubles ;) 

• has a huge number of I/O related functions to parse data:  
CSV, HDF5, SQL, Feather, JSON, HTML, Excel, and more…
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THE DataFrame

 46

A table-like structure, where you can access elements 
by row and column.



THE DataFrame

 47

Lots of functions to allow filtering, manipulating  
and aggregating the data to fit your needs.

Don’t worry, we will discover Pandas in the hands-on workshop!





PYTABLES 
HIERARCHICAL DATASETS IN PYTHON

 49

• An HDF5 library for Python 

• Database-like approach to data storage 

• Features like indexing and fast “in-kernel” 
queries 

• Custom system to represent data types 

• Used in Pandas 

•



PYTABLES 
HIERARCHICAL DATASETS IN PYTHON

 50

created with PyTables

opened in Julia



H5PY



H5PY
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• An alternative HDF5 wrapper 

• Feels more pythonic than PyTables 

• Maps the HDF5 feature set to NumPy 
as closely as possible 

• Lightweight



H5PY 
HIERARCHICAL DATASETS IN PYTHON

 53

created with h5py

opened in Julia



   NUMBA
JIT (LLVM) compiler for Python

sponsored by



NUMBA
Numba is a compiler for Python array and numerical functions that gives 
you the power to speed up code written directly in Python. 

• uses LLVM to boil down pure Python code to JIT optimised machine code 

• only accelerates selected functions decorated by yourself 

• native code generation for CPU (default) and GPU 

• integration with the Python scientific software stack (thanks to NumPy) 

• runs side by side with regular Python code or third-party C extensions 
and libraries 

• great CUDA support 

• N-core scalability by releasing the GIL (beware: no protection from race 
conditions!) 

• create NumPy ufuncs with the @[gu]vectorize decorator(s)
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FROM SOURCE TO RUNTIME

foo.py foo.pyccompiler runtime

bytecodesource

 56

Type inference
Typed 

Numba IR

Control flow graph Data flow graph

Numba IR

bytecode 
interpretation

Lowering LLVM IR

interpreter

Codegen via 
LLVM



NUMBA JIT-EXAMPLE

def sum2d(arr):
    M, N = arr.shape
    result = 0.0
    for i in range(M):
        for j in range(N):
            result += arr[i,j]
    return result

@nb.jit
def sum2d_jit(arr):
    M, N = arr.shape
    result = 0.0
    for i in range(M):
        for j in range(N):
            result += arr[i,j]
    return result

numbers = np.arange(1000000).reshape(2500, 400)

289 ms ± 3.02 ms per loop 2.13 ms ± 42.6 µs per loop

~135x faster, with a single line of code
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NUMBA VECTORIZE-EXAMPLE

np.abs(a - b) / (np.abs(a) + np.abs(b))

a = np.arange(1000000, dtype='f8') 
b = np.arange(1000000, dtype='f8') + 23

23 ms ± 845 µs per loop

3.56 ms ± 43.2 µs per loop

~6x faster
 58

@nb.vectorize 
def nb_rel_diff(a, b): 
    return abs(a - b) / (abs(a) + abs(b)) 

rel_diff(a, b) 

NumPy:

Numba @vectorize:



NUMEXPR
initially written by David Cooke

Routines for the fast evaluation of array expressions element-wise 
by using a vector-based virtual machine.



NUMEXPR USAGE EXAMPLE

import numpy as np 
import numexpr as ne 

a = np.arange(5) 
b = np.linspace(0, 2, 5) 

ne.evaluate("a!**2 + 3*b”) 

array([  0. ,   2.5,   7. ,  13.5,  22. ]) 

 60



NUMEXPR SPEED-UP

2 * a!**3 - 4 * a!**5 + 6 * np.log(a)

a = np.random.random(1000000)

82.4 ms ± 1.88 ms per loop

7.85 ms ± 103 µs per loop

~10x faster
 61

ne.set_num_threads(4) 

ne.evaluate("2 * a!**3 - 4 * a!**5 + 6 * log(a)")

NumPy:

Numexpr with 4 threads:



NUMEXPR - SUPPORTED OPERATORS

• Logical operators: &, |, ~ 

• Comparison operators: 
<, <=, ==, !=, >=, > 

• Unary arithmetic 
operators: - 

• Binary arithmetic 
operators: 
+, -, *, /, !**, %, !<<, !>>
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NUMEXPR - SUPPORTED FUNCTIONS

• where(bool, number1, number2): number !-- number1 if the bool condition is true, number2 otherwise. 
• {sin,cos,tan}(float|complex): float|complex !-- trigonometric sine, cosine or tangent. 
• {arcsin,arccos,arctan}(float|complex): float|complex !-- trigonometric inverse sine, cosine or 
tangent. 

• arctan2(float1, float2): float !-- trigonometric inverse tangent of float1/float2. 
• {sinh,cosh,tanh}(float|complex): float|complex !-- hyperbolic sine, cosine or tangent. 
• {arcsinh,arccosh,arctanh}(float|complex): float|complex !-- hyperbolic inverse sine, cosine or 
tangent. 

• {log,log10,log1p}(float|complex): float|complex !-- natural, base-10 and log(1+x) logarithms. 
• {exp,expm1}(float|complex): float|complex !-- exponential and exponential minus one. 
• sqrt(float|complex): float|complex !-- square root. 
• abs(float|complex): float|complex !-- absolute value. 
• conj(complex): complex !-- conjugate value. 
• {real,imag}(complex): float !-- real or imaginary part of complex. 
• complex(float, float): complex !-- complex from real and imaginary parts. 
• contains(str, str): bool !-- returns True for every string in `op1` that contains `op2`. 
• sum(number, axis=None): Sum of array elements over a given axis. Negative axis are not supported. 
• prod(number, axis=None): Product of array elements over a given axis. Negative axis are not 
supported.
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THE HISTORY OF ASTROPY
(standard situation back in 2011) 

• Example Problem: convert from EQ J2000 RA/Dec to 
Galactic coordinates 

• Solution in Python
• pyast 
• Astrolib 
• Astrophysics 
• PyEphem 
• PyAstro 
• Kapteyn 
• ???

huge discussion 
started in June 2011  

series of votes

First public version (v0.2) presented and described in the following paper: 
http:!//adsabs.harvard.edu/abs/2013A%26A!!...558A!..33A
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http://adsabs.harvard.edu/abs/2013A%26A...558A..33A


ASTROPY CORE PACKAGE 
A community-driven package intended to contain much of the core functionality 
and some common tools needed for performing astronomy and astrophysics with 
Python. 

• Data structures and transformations 
• constants, units and quantities, N-dimensional datasets, data tables, 
times and dates, astronomical coordinate system, models and fitting, 
analytic functions 

• Files and I/O 

• unified read/write interface 
• FITS, ASCII tables, VOTable (XML), Virtual Observatory access, HDF5, 
YAML, … 

• Astronomy computations and utilities 
• cosmological calculations, convolution and filtering, data 
visualisations, astrostatistics tools
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ASTROPY 
AFFILIATED PACKAGES 

• Tons of astronomy related packages 

• which are not part of the core package, 

• but has requested to be included as part 
of the Astropy project’s community
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ASTROPY EXAMPLE

!<- downloading via HTTP

!<- checking some FITS meta

!<- extracting image data

!<- plotting via Matplotlib



ASTROPY EXAMPLE

Don’t worry, we will discover AstroPy in the hands-on workshop!
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A Python library for symbolic mathematics.



SIMPY
• It aims to become a full-featured computer 
algebra system (CAS) 

• while keeping the code as simple as possible 

• in order to be comprehensible and easily 
extensible. 

• SymPy is written entirely in Python. 

• It only depends on mpmath, a pure Python library 
for arbitrary floating point arithmetic



SIMPY
• solving equations 
• solving differential equations 
• simplifications: trigonometry, polynomials 
• substitutions 
• factorisation, partial fraction decomposition 
• limits, differentiation, integration, Taylor 
series 

• combinatorics, statistics, … 
• much much more



SIMPY EXAMPLE
In [1]: import math 

In [2]: math.sqrt(8) 
Out[2]: 2.8284271247461903 

In [3]: math.sqrt(8)!**2 
Out[3]: 8.000000000000002 Ba

se
 P

yt
ho
n

In [4]: import sympy 

In [5]: sympy.sqrt(8) 
Out[5]: 2*sqrt(2) 

In [6]: sympy.sqrt(8)!**2 
Out[6]: 8

Sy
mP

y



SIMPY EXAMPLE

In [15]: x, y = sympy.symbols('x y') 

In [16]: expr = x + 2*y 

In [17]: expr 
Out[17]: x + 2*y 

In [18]: expr + 1 
Out[18]: x + 2*y + 1 

In [19]: expr * x 
Out[19]: x*(x + 2*y) 

In [20]: sympy.expand(expr * x) 
Out[20]: x!**2 + 2*x*y



SIMPY EXAMPLE
In [1]: import sympy 

In [2]: from sympy import init_printing, integrate, diff, exp, cos, sin, oo 

In [3]: init_printing(use_unicode=True) 

In [4]: x = sympy.symbols('x') 

In [5]: diff(sin(x)*exp(x), x) 
Out[5]: 
 x           x 
ℯ ⋅sin(x) + ℯ ⋅cos(x) 

In [6]: integrate(exp(x)*sin(x) + exp(x)*cos(x), x) 
Out[6]: 
 x 
ℯ ⋅sin(x) 

In [7]: integrate(sin(x!**2), (x, -oo, oo)) 
Out[7]: 
√2⋅√π 
───── 
  2
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IPYTHON
• The interactive Python shell! 
• Object introspection 
• Input history, persistent across sessions 
• Extensible tab completion 
• “Magic” commands (basically macros) 
• Easily embeddable in other Python programs and GUIs 
• Integrated access to the pdb debugger and the Python 
profiler 

• Syntax highlighting 
• real multi-line editing 
• Provides a kernel for Jupyter 
• …and such more!
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IPYTHON

• Synax highlighting
• TAB completion
• Function signatures
• etc...
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Project Jupyter is an open source project that offers a set of tools 
for interactive and exploratory computing.



JUPYTER

• Born out of the IPython project in 2014 

• Jupyter provides a console and a notebook server for all 
kinds of languages  
(the name Jupyter comes from Julia, Python and R) 

• An easy way to explore and prototype 

• Notebooks support Markdown and LaTeX-like input and rendering 

• Allows sharing code and analysis results 

• Extensible (slideshow plugins, JupyterLab, VIM binding, …)
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JUPYTER CONSOLE
A terminal frontend for kernels which use the Jupyter protocol.

 81



JUPYTER NOTEBOOK
• A Web-based application suitable for capturing the whole computation process:

• developing 
• documenting 
• and executing code 
• as well as communicating the results. 

• Two main components:
• a web application: a browser-based tool for interactive 
authoring of documents which combine explanatory text, 
mathematics, computations and their rich media output. 

• notebook documents: a representation of all content visible in 
the web application, including inputs and outputs of the 
computations, explanatory text, mathematics, images, and 
rich media representations of objects.
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JUPYTER NOTEBOOK

cells for code/markup input

rendered output
for text/images/tables etc.
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JUPYTERLAB

 84

• The next level of interacting with notebooks 

• Extensible: terminal, text editor, image 
viewer, etc. 

• Supports editing multiple notebooks at once 

• Drag and drop support to arrange panes



JUPYTERLAB
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JUPYTERHUB
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• JupyterHub creates a multi-user Hub 
which spawns, manages, and proxies 
multiple instances of the single-user 
Jupyter notebook server 

• A nice environment for teaching 

• Great tool for collaborations 
(ask your IT admin ;)



nteract



NTERACT
• stand-alone desktop application for 
developing computational notebooks 

• integrates into your system and file browser 

• convenient tool to quick-look notebooks, 
without the need to launch a Jupyter server 
or a browser 

• easy setup: discovers all available kernels 
(most of the time ;)
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NTERACT

 89



SOME OTHER USEFUL 
LIBRARIES



SEABORN
statistical data visualisation 

uses matplotlib as backend

https:!//seaborn.pydata.org

https://seaborn.pydata.org


CONVENIENT WRAPPER FUNCTIONS FOR MATPLOTLIB

 92

import seaborn as sns 
sns.set(style="ticks") 

df = sns.load_dataset("anscombe") 

# Show the results of a linear regression 
# within each dataset 
sns.lmplot(x="x", y="y", col="dataset", 
           hue="dataset", data=df, 
           col_wrap=2, ci=None, 
           palette="muted", size=4, 
           scatter_kws={"s": 50, "alpha": 1})



CONVENIENT WRAPPER FUNCTIONS FOR MATPLOTLIB
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import numpy as np 
from scipy.stats import kendalltau 
import seaborn as sns 
sns.set(style="ticks") 

rs = np.random.RandomState(11) 
x = rs.gamma(2, size=1000) 
y = -.5 * x + rs.normal(size=1000) 

sns.jointplot(x, y, kind="hex", 
              stat_func=kendalltau, 
              color="#4CB391")



CONVENIENT WRAPPER FUNCTIONS FOR MATPLOTLIB
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import seaborn as sns 
sns.set(style="ticks", 
        color_codes=True) 

iris = sns.load_dataset("iris") 
sns.pairplot(iris, 
             hue="species", 
             palette="husl")

You will learn more about 
seaborn from David Kirkby!



DOCOPT
creates beautiful command-line interfaces

by Vladimir Keleshev 
https:!//github.com/docopt/docopt

https://github.com/docopt/docopt


ARGPARSE/OPTPARSE
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Many classes and functions, 
default values, 
extensive documentation, 
very hard to memorise 
a basic setup.



DOCOPT
Naval Fate. 

Usage: 
  naval_fate ship new <name>!!... 
  naval_fate ship <name> move <x> <y> [!--speed=<kn>] 
  naval_fate ship shoot <x> <y> 
  naval_fate mine (set|remove) <x> <y> [!--moored|!--drifting] 
  naval_fate -h | !--help 
  naval_fate !--version 

Options: 
  -h !--help     Show this screen. 
  !--version     Show version. 
  !--speed=<kn>  Speed in knots [default: 10]. 
  !--moored      Moored (anchored) mine. 
  !--drifting    Drifting mine.

from docopt import docopt 
arguments = docopt(!__doc!__, version='Naval Fate 2.0')

"""

!#!/usr/bin/env python 
"""
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DOCOPT

naval_fate ship Guardian move 10 50 --speed=20

arguments =
{
  "--drifting": false, 
  "--help": false, 
  "--moored": false, 
  "--speed": "20", 
  "--version": false, 
  "<name>": [
    "Guardian"
  ], 
  "<x>": "10", 
  "<y>": "50", 
  "mine": false, 
  "move": true, 
  "new": false, 
  "remove": false, 
  "set": false, 
  "ship": true, 
  "shoot": false
}
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CLICK
a mature command line utility interface package

http:!//click.pocoo.org

http://click.pocoo.org


CLICK

import click 

@click.command() 
@click.option('!--count', default=1, help='Number of greetings.') 
@click.option('!--name', prompt='Your name', 
              help='The person to greet.') 
def hello(count, name): 
    """Simple program that greets NAME for a total of COUNT times.""" 
    for x in range(count): 
        click.echo('Hello %s!' % name) 

if !__name!__ !== '!__main!__': 
    hello()

• Much more advanced compared to docopt 
• The no.1 choice if you want to go crazy with 

command line utilities
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SO, WHAT NOW?



FINAL PERSONAL THOUGHTS

I spent a lot of time optimising Python code in the past years, here is a short summary 
of my personal experience. 

• There were several attempts to make Python itself faster w.r.t. low level programming, 
none of them are satisfying (PyPy, Pythran etc.), many of them were abandoned 

• Think twice (or more) before you bake Cython or any other static compilation into your 
project. The two language problem is real and it's hard to get it right. The 
performance gain is often disillusioning compared to the work, workarounds and "mess" 
one needs to deal with. 

• Me and my lovely dev-team made the best experiences with numba 
• no clutter or double bookkeeping, no (static) compilation 
• minimal dependencies (basically only LLVMlite) 
• often orders of magnitudes faster than comparable low level algorithms utilising 
custom Cython class instances or ctypes 

• dict support, finally! (v0.43+) 
• downside: the code is super slow without numba!!... 

• When it comes to high performance code using Python, you have to think in numpy arrays 
and cannot easily model your own datatypes like e.g. in C or C!++ (structs, classes!!...)



MY RECEIPT FOR PERFORMANT PYTHON CODE

• Avoid massive amounts of Python class instances  
(e.g. don't create a class for a Point and then a list of 10 million points!) 

• Use numpy arrays for large homogenous data 
(w.r.t. the "points" example above, create a 3xN numpy recarray instead, so you can access 
points.x, points.y and point.z. Subclass the array if you need some special functionality) 

• Vectorisation is a good idea (most of the time). 
For basic operations, you most likely find a dedicated function in numpy or scipy. 

• Try to reuse already allocated memory (allocations are expensive!) 

• Always profile first, before you do heavy optimisations! 
"[!!...] premature optimization is the root of all evil." –D. Knuth  
 
Keep in mind, this doesn't mean that you sit down and hack together code, whatever works, 
this is not what Donald meant! Take care of the basic principles of performant code from the 
very beginning, otherwise you will have a hard time to refactor.  

• Do not reinvent the wheel. 
You mostly find a lib which does what you need, better, faster and for no cost.



Ohne more thing!!...



AN EXAMPLE WHY IT'S SO HARD TO 
MAKE PYTHON FAST? 
JUST A SIMPLE, BUT CRUCIAL ASPECT!!...

• Python lets you do anything. 

• Here is a "pure" function, written in Python:
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def square(x): 
    return float(x)!**2

• Every decent compiler should now be able to optimise 
code using this function (repeated calls, tail recursion 
elimination, inlining, thread safety guarantees, etc.)

import builtins 
builtins.float = int



...also many thanks to Vincent, Jayesh, Thomas, 
and the whole organising committee!

THANK YOU!
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