
Good coding practices (#GCP)
Tips to make your code better for you and others

Vanessa Moss
ASTRON

I M A G E C R E D I T : A . C H E R N E Y

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

Introduction
• My title: observatory astronomer, based at

ASTRON in the Netherlands

• Previously affiliated with University of Sydney,
CSIRO, Sydney Observatory in Australia

• NCSS Challenge during 2nd year uni (Python),
previously Matlab or more basic computing

• Astronomers writing code vs. programmers
developing for astronomy (different skills)

• Code-savvy astronomers help bridge the gap!

Selfie with a confirmed peryton-generating microwave

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

This talk
• Goal: to introduce you to some guiding

principles that will help make your code better

• First half from a talk by Zheng Meyer-Zhao,
given at last year’s school, second half is new

• The last 60 min of this talk will be spent on an
exercise getting you to put some good coding
practices into use

• There is no *one* way to code things*, but
there are definitely good ways and bad ways to
approach programming!

Overall guidelines

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

With credit to Zheng’s 2018 talk

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

1. Write programs for people

• Write programs for people, not computers

• A program shouldn’t need people to hold many
facts in their head at once to understand it  
- good clear comments help with this!

• Variable names should be consistent, distinct
and meaningful to aid with reading the code

• Keep a consistent code style/formatting (there
are various styles, but consistency is key!)

import os
import sys
from astropy.io import ascii
import matplotlib.pyplot as plt

Read RA/dec values from table
table_data = ascii.read('table.txt')
ra_list = table_data['ra']
dec_list = table_data['dec']

Plot the results as a scatter plot
fig, ax = plt.subplots(figsize=(10,6))
ax.scatter(ra_list, dec_list)

Save the results in a PNG
plt.savefig("radec_plot.png", dpi=200,
bbox_inches='tight')

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

2. Develop pragmatically
• Approach development of a new script or

package in a pragmatic way

• The amount of effort should be proportional
to the scope of the code, and its legacy value

• Fast code, good code, or cheap code: pick two

• Whatever time you think the code will take to
develop, double it (at least)

• Best learnt over time, but invest the right
amount of effort for different parts of the code

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

3. Let the computer do the work
• Make use of the tools that exist to be as

efficient as you can

• Make the computer repeat tasks (e.g. cron job)

• Use IDE/build tool to make workflow efficient

• "If you’ve only got a hammer, everything looks
like a nail" = use the right tool for the job

• Pycharm/Sublime, etc are good for quick runs
of code, iPython for interactive commands

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

4. Make incremental changes

• Small constant changes are the best way to
prevent destabilising your code

• Work in small steps, and if your code is in
version control, commit these changes often

• Which also means: use version control!

• Version control is critical for code shared with
others, but is also incredibly useful for your
own code for history, backups, deploys, etc…

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

5. Don’t repeat yourself
• Repetitive code is usually redundant, and is

really difficult to both read and debug

• If you find yourself copying and pasting code,
then this usually means it would make a good
function or module

• Re-use code instead of rewriting it: identify
code that you need often, and make that into
easily-accessible functions (when modular)

• That doesn’t mean you shouldn’t look for ways
to improve the re-used code though!

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

6. Plan for mistakes
• If it works the first time, be suspicious

• No matter how carefully you program, there
will always be bugs, often in unusual places

• For debugging, print statements* are
extremely useful to check if the code does what
you think it should be doing (*better: logging)

• Make use of existing libraries for testing (e.g.
off the shelf libraries)

• Use bugs as good tests (e.g. unit tests)

See: https://nedbatchelder.com/text/test0.html

https://nedbatchelder.com/text/test0.html

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

7. Make it work, then optimise
• You should optimise software after it works

correctly, based on the use case required

• The first goal should always be to get the code
working - it is rarely the case that the design
from the beginning limits optimisation

• Use profilers to identify bottlenecks e.g.
SnakeViz (https://jiffyclub.github.io/snakeviz)

• Write code in a high-level language, and avoid
re-inventing the wheel where possible

• But also optimise as you go, where you can!
e.g. "First do it, then do it right, then do it fast"

https://jiffyclub.github.io/snakeviz

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

8. Document what you’ve done
• Don’t trust your future self to remember what

you coded and why

• Documentation should favour design + purpose
over mechanics, but all are important

• Block comments above code can be helpful for
keeping track of what sections do (docstrings)

• Revisit code even after it works (plan this!),
and refactor to make the flow clearer/better

• Keep documentation close to the software

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

9. Collaborate
• Your code will always find improvements

when others try to understand or use it

• Use pre-merge code reviews (e.g. pull requests)
for a double-check on what you have changed

• Pair-programming can help a lot when trying
to implement new or complicated code

• Use issue-tracking tools to keep track of
progress (e.g. JIRA, Redmine, Github issues)

• Ask people to try using your code, in order to
find out what you should change or improve

Specific coding tips

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

These will be important in the exercise!

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

Argparse for argument handling
• Python allows you to pass variables as

arguments after the code, e.g. sys.argv[1]

• Argparse is a better way to handle input
variables into your scripts, giving you more
control over their types and format: https://
docs.python.org/2/howto/argparse.html

• It also enables users of the script to get an
overview of what each parameter means: 
e.g. python vam_plots.py --help

• As part of the exercise, you will add a (long) list
of arguments to an argparse formatter :)

https://docs.python.org/2/howto/argparse.html
https://docs.python.org/2/howto/argparse.html
https://docs.python.org/2/howto/argparse.html

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

Make the code importable
• Scripts are useful, and by default what we tend

to write for uses in astronomy (e.g. a linear flow
to do a specific task, such as make a plot)

• If you make the bulk of your code a function
(skyviewbot() for example), you can use it as a
function as well as running it with default
settings as normal Python code

• This means the functionality can then be called
by another script, as well as being used on its
own - so you’ve made your code importable

• This is done by default in the exercise later

if __name__ == '__main__':
 skyviewbot()

def skyviewbot():
 ...

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

Modularisation and functions
• Whenever you use some calculation or more

complicated code more than once, you should
make it into a function

• Functions enable much more flexibility
because you break down the "function" of that
command into its input parameters

• Often you can put the functions at the top of
the script, but when there are many, it is neater
to store them in a dedicated functions.py or so

• You’ll turn code into a function in the exercise

https://phiresky.github.io/emojidome/

https://phiresky.github.io/emojidome/

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

Docstrings
• Inline comments and block comments are nice

for someone reading the code, but they don’t
help you get an overview of the whole code
from the outside

• Docstrings are a good way to include an
overview of functionality, arguments, and
return variables in a structured way

• For the exercise, we recommend using the
Google docstring conventions: https://
sphinxcontrib-napoleon.readthedocs.io/en/
latest/example_google.html

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html

Exercise: SkyviewBot

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

Let’s make some code better using #GCP

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

Exercise: SkyviewBot
• Goal: to put together a Python script (using

good coding practices!) that will fetch a survey
region of your choice from NASA Skyview,
image the FITS file using APLpy and then send
your masterpiece to Slack using Webhooks

• Dependencies: APLpy, PyDrive, Java for
Skyview (1.8.0_151, or use the included FITS)

• There is a base repository on Github: https://
github.com/cosmicpudding/skyviewbot

• Tomorrow: package the resulting scripts as a
proper pip-installable (T. Dijkema)

https://github.com/cosmicpudding/skyviewbot
https://github.com/cosmicpudding/skyviewbot
https://github.com/cosmicpudding/skyviewbot

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

NASA Skyview
• Skyview is a VO tool that provides easy access

to 100+ multi-wavelength surveys

• Easily accessible from Python using a thin
wrapper around the skyview.jar file (provided
you can get Java working!)

• The astroquery package also provides
alternative access to Skyview (try this if you get
stuck later with the .jar wrapper)

• See their documentation for more info: https://
skyview.gsfc.nasa.gov/current/docs/jar.html

Skyview homepage: https://skyview.gsfc.nasa.gov/current/cgi/titlepage.pl

https://skyview.gsfc.nasa.gov/current/docs/jar.html
https://skyview.gsfc.nasa.gov/current/docs/jar.html
https://skyview.gsfc.nasa.gov/current/docs/jar.html
https://skyview.gsfc.nasa.gov/current/cgi/titlepage.pl

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

Sidequest: Java

>> which java
/usr/bin/java
>> /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin/Contents/Home/bin/java -version
java version "1.8.0_151"
Java(TM) SE Runtime Environment (build 1.8.0_151-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode)

Java
export PATH="/Library/Internet Plug-Ins/JavaAppletPlugin.plugin/Contents/Home/bin:$PATH"

• You *may* have to add to your .bash_profile if the above isn’t working:

• Downloading the skyview.jar file might just "work"… here are my settings:

Alternative method: https://astroquery.readthedocs.io/en/latest/skyview/skyview.html

https://astroquery.readthedocs.io/en/latest/skyview/skyview.html

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

APLpy
• Partner package of astropy, developed by T.

Robitaille and E. Bressert (v2 = Python 3.5+)

• Allows quick visualisation of astronomical FITS
images, with coordinates and wrappers around
standard Matplotlib functions

• APLpy website: https://aplpy.readthedocs.io or
http://aplpy.github.io

• APLpy examples: http://aplpy.sourceforge.net/
static_gallery_mirror (cloned? 🤷)

• Code for making a figure included in exercise

https://aplpy.readthedocs.io
http://aplpy.github.io
http://aplpy.sourceforge.net/static_gallery_mirror
http://aplpy.sourceforge.net/static_gallery_mirror
http://aplpy.sourceforge.net/static_gallery_mirror

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

API: Google upload
• Various APIs exist to assist with automating

otherwise manual actions such as uploading an
image to Google Drive, sending batch emails or
tweeting from Python (e.g. @zootopialicense)

• Once you’ve made your image using APLpy, you
can use PyDrive to automatically upload it via
the Google Drive API to make it web-accessible

• Google Dev: https://console.cloud.google.com

• PyDrive: https://pypi.org/project/PyDrive

• We may have fun times authorising… TBD!
autoskyview@gmail.com

astericsannecy

https://console.cloud.google.com
https://pypi.org/project/PyDrive
mailto:autoskyview@gmail.com

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

API: Slack web hooks
• Slack webhooks allow you to easily send

automated messages to a channel on Slack

• Slack webhooks are a custom integration that
you can add to any Slack, resulting in a URL that
hooks into the particular channel

• In this case, we’ll send your awesome images to
the ASTERICS Slack channel for this talk: #gcp

• You can also do outgoing Slack webhooks

• See documentation here: https://api.slack.com/
docs/message-attachments

See: https://obelics-school.slack.com/apps/A0F7XDUAZ-incoming-webhooks?next_id=0

https://api.slack.com/docs/message-attachments
https://api.slack.com/docs/message-attachments
https://api.slack.com/docs/message-attachments
https://obelics-school.slack.com/apps/A0F7XDUAZ-incoming-webhooks?next_id=0

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

Extra: your Slack ID
• You should tag your Slack ID with any posts

that you make to the #gcp channel

• Go to ASTERICS OBELICS Slack (better: app):  
http://obelics-school.slack.com

• Click your name under "Direct Messages", then
click the username in the DM window

• Click "…", and then "Copy member ID" - this is
your unique Slack ID for the workspace, which
can then be used to tag yourself in posts

http://obelics-school.slack.com

ASTERICS-OBELICS 2019 (V. Moss, @cosmicpudding)

Let’s get started!
• Github base repo (see README file):  

https://github.com/cosmicpudding/skyviewbot

• I’ve left specific sections for you to fill in from
the skeleton code (e.g. add argparse) - read the
comments to find out what to do!

• Feel free to take the code in whichever
direction you want, and improve it in any way
you see fit! e.g. more plot options, more
elaborate Slack messages, error handling, etc

• You have 60 minutes to complete this exercise,
and the best image post* will win a prize!

* verified based on modified skyviewbot repo, so please fork+push your changes!

https://github.com/cosmicpudding/skyviewbot

