

3rd ASTERICS-OBELICS International School

8-12 April 2019, Annecy, France.

H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).

Machine Learning Tutorial IV - Beyond textbook ML

3rd ASTERICS-OBELICS International School 8-12 April 2019, Annecy - France

Emille E. O. Ishida

Laboratoire de Physique de Clermont - Université Clermont-Auvergne Clermont Ferrand. France

Summary

I. Quick recap of the weekwith a few interesting additions

II. Representativeness matters

III. Adaptive Learning Techniques

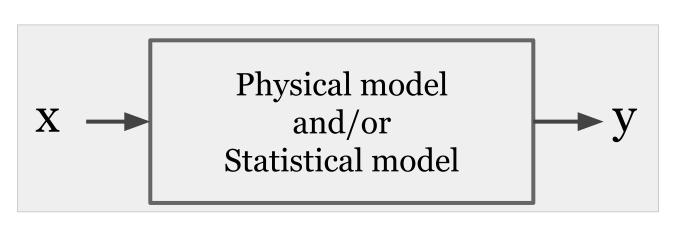
IV. The human factor

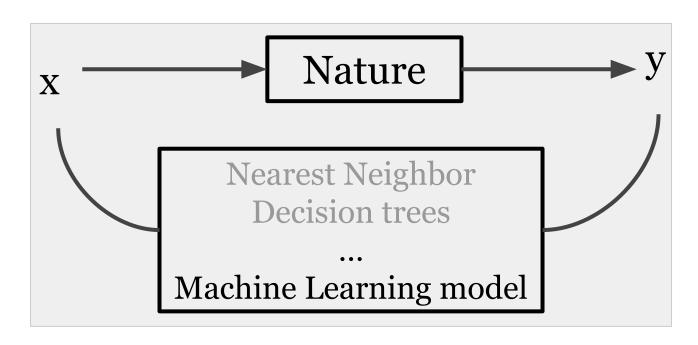
Hypothesis:

X Nature Y

Traditiona l data modeling:

Algorithmic modeling:





Breiman, L., Statistical Modeling: The Two Cultures, Stat. Sci, Volume 16 (2001)

Supervised ML model

data **training**, target

 χ set of all samples, x

Y set of possible labels, y

 h_{train} learner: $y_{est;i} = h_{train}(x_i)$

L Loss function

Representativene
ss matters!

Data generation model:

$$X_i \sim P_X$$

 $f \rightarrow$ true labeling function, $y_i = f(x_i)$

$$L_{data,f}(h) \equiv P_{x\sim data}(h_{train}(x) \neq f(x))$$

Shai and Shai, Understanding ML: From Theory to Algorithms, 2014, CUP

Supervised ML model

data **training**, target

Machine Learning algorithm

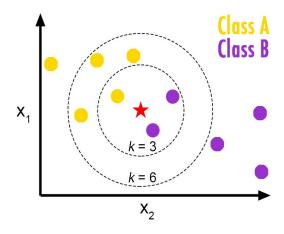
learner: $y_{est;i} = h_{train}(x_i)$

Data generation model:

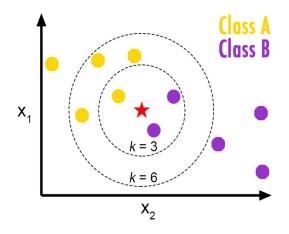
f true labeling function, $y_i = f(x_i)$ $L_{data,f}(h) \equiv P_{x\sim data}(h_{train}(x) \neq f(x))$

Shai and Shai, Understanding ML: From Theory to Algorithms, 2014, CUP

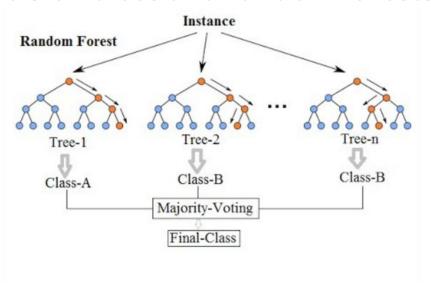
K Nearest Neighbor



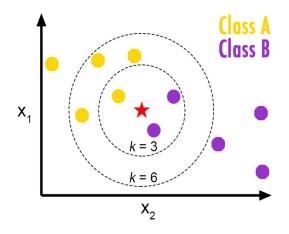
K Nearest Neighbor



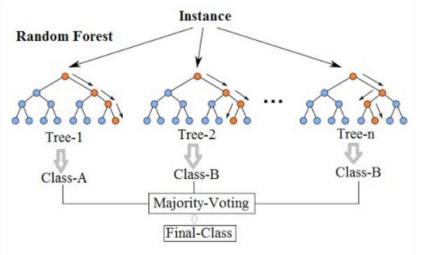
Decision trees and random forests



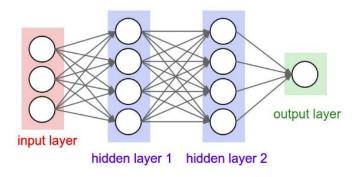
K Nearest Neighbor



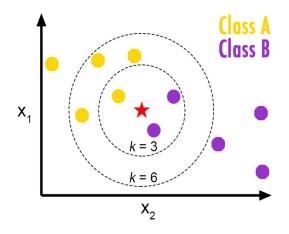
Decision trees and random forests



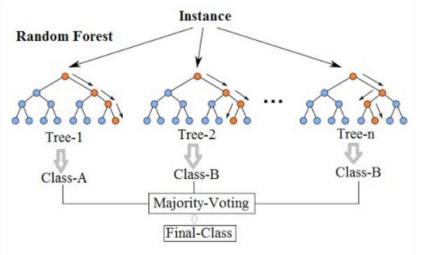
Neural networks and deep learning



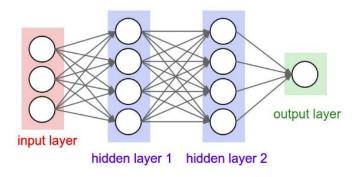
K Nearest Neighbor



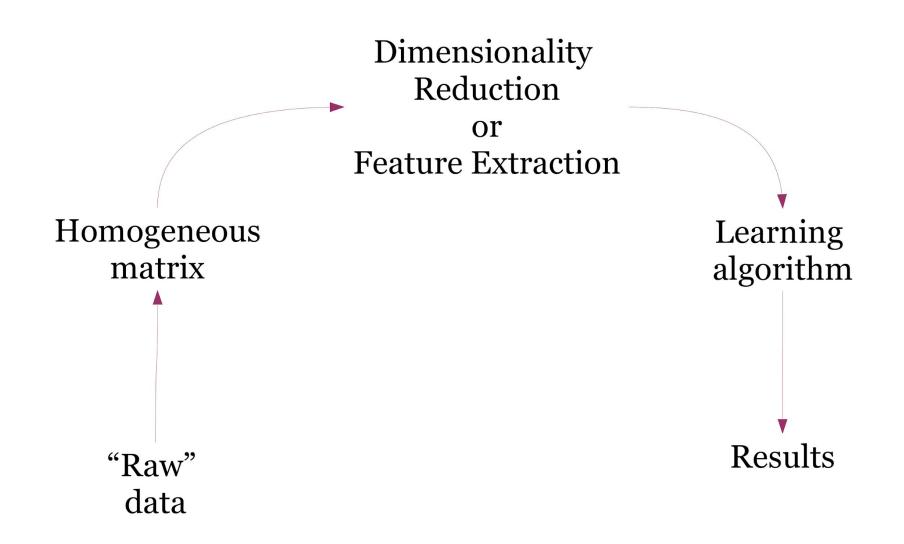
Decision trees and random forests



Neural networks and deep learning

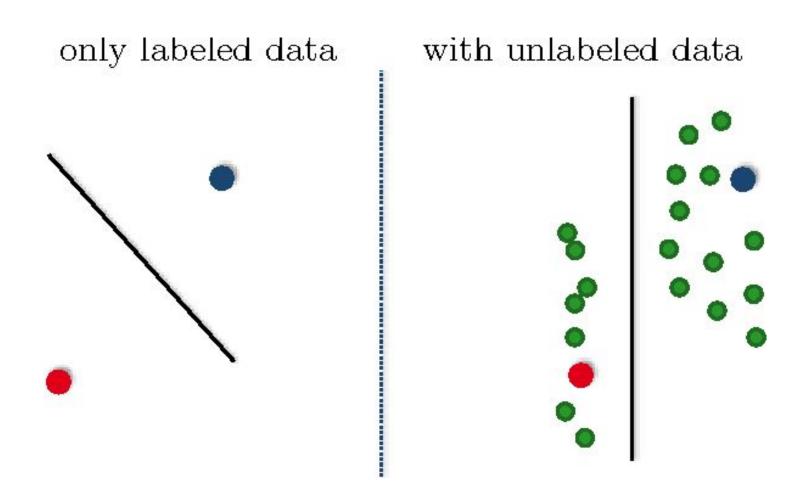


Feature extraction



Semi-supervised learning

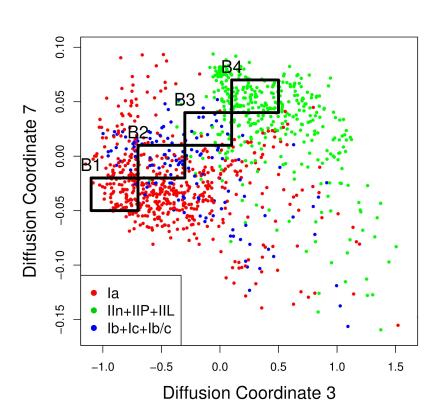
Getting partial information from the unlabelled sample



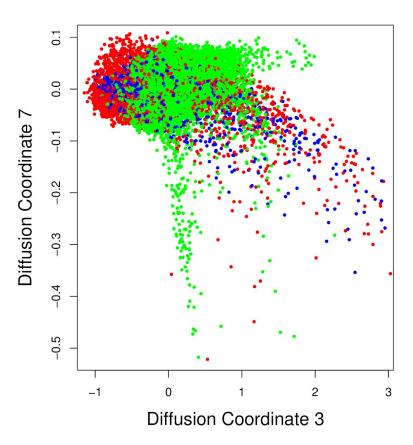
Semi-supervised learning

For Supernova Photometric Classification

Spectroscopic only (training)



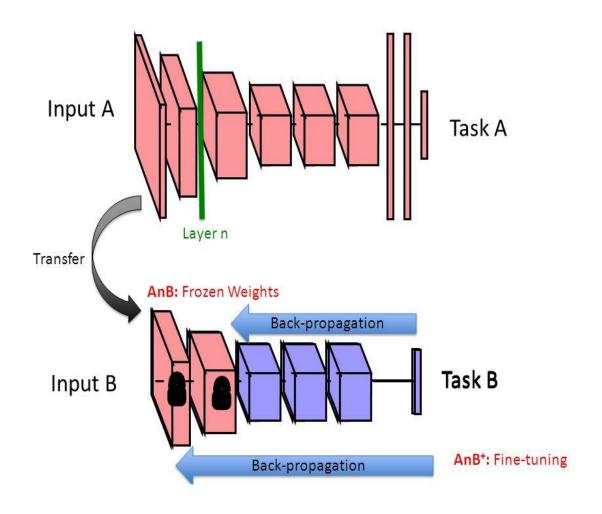
All available data



Richards et al., 2011, MNRAS

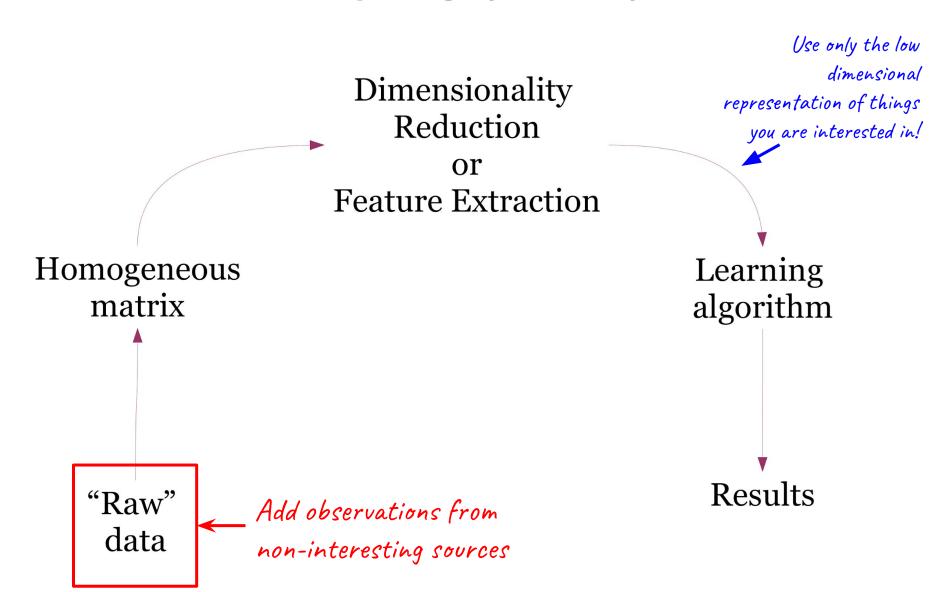
Transfer Learning

Borrowing information from somewhere else



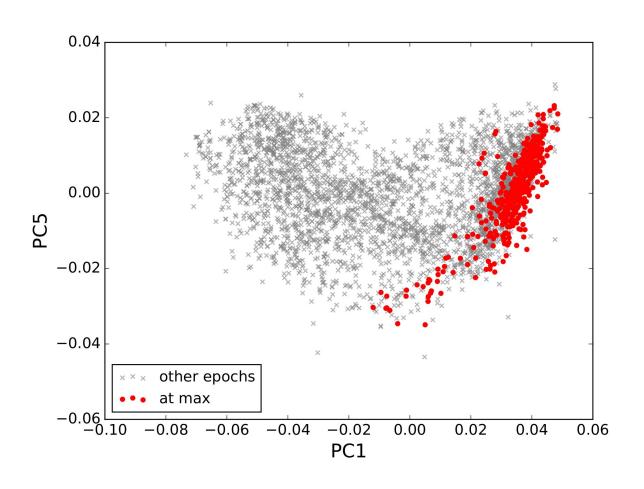
Transfer Learning

Exploiting information from various data sets



Transfer Learning

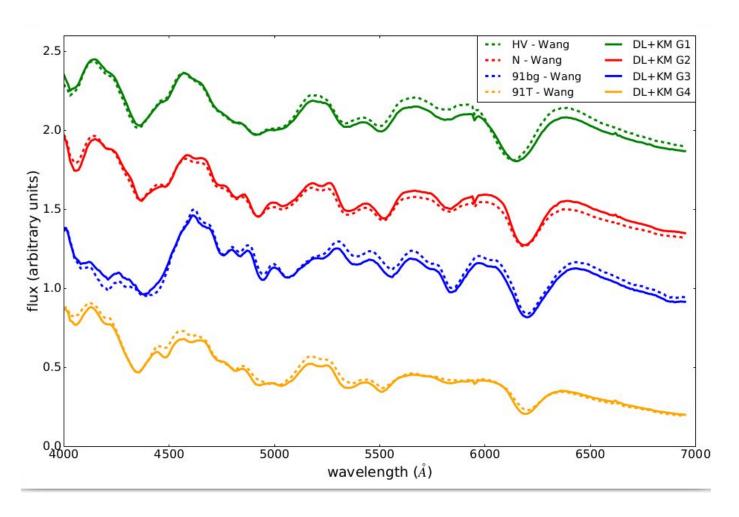
In Astronomy



Sasdelli, **Ishida** et al., 2016, MNRAS, 461, Issue 2, p.2044, from **CRP** #2

Unsupervised Clustering

In Astronomy



Sasdelli, **Ishida** et al., 2016, MNRAS, 461, Issue 2, p.2044, from **CRP** #2

Neural Network

In astronomy: photometric redshift estimation

Input layer \rightarrow Hidden layer \rightarrow Output layer $m_1 \longrightarrow 1$ $m_2 \longrightarrow 2$ $m_3 \longrightarrow 3$ $m_4 \longrightarrow 4$ $m_5 \longrightarrow 5$ $m_6 \longrightarrow 6$ $m_6 \longrightarrow 6$

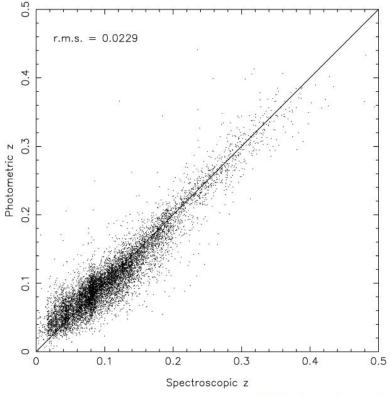
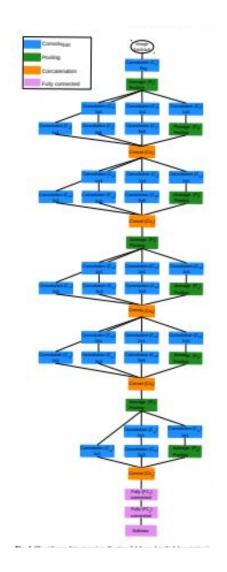
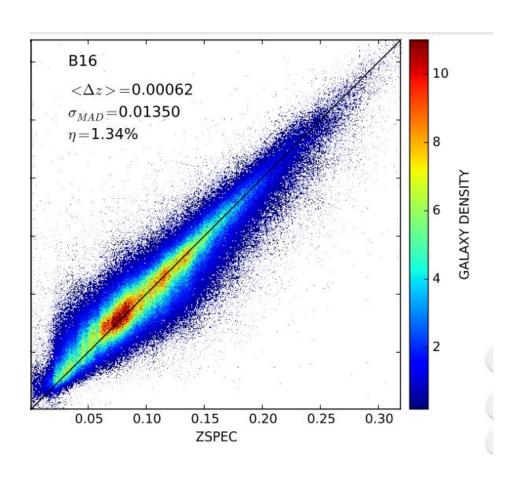


FIG. 2.— Spectroscopic vs. photometric redshifts for ANNz applied to 10,000 galaxies randomly selected from the SDSS EDR.

Neural Network

In astronomy: photometric redshift estimation





Symbolic Regression

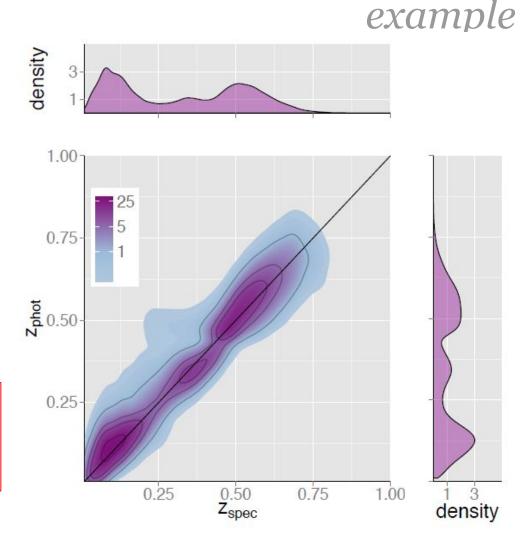
Supervised Learning: an extreme regression

Mathematical atoms:

- 1 Random construction of an analytical expression
- 2 find the best parameters
- 3 if result is better than previous keep it, otherwise discard it

Final expression:

$$z_{\text{phot}} = \frac{0.4436r - 8.261}{24.4 + (g - r)^2 (g - i)^2 (r - i)^2 - g} + 0.5152(r - i).$$



Pre-COIN paper:

Krone-Martins, Ishida & de Souza, MNRASL 443 (2014)

All of the above relies on representativeness...

This is a very strong assumption

All of the above relies on representativeness...

How often does this hypothesis hold in astronomy?

All of the above relies on representativeness...

How often does this hypothesis hold in astronomy?

What happens when it breaks?

Notebook: Regression2.ipynb

We need recommendation systems

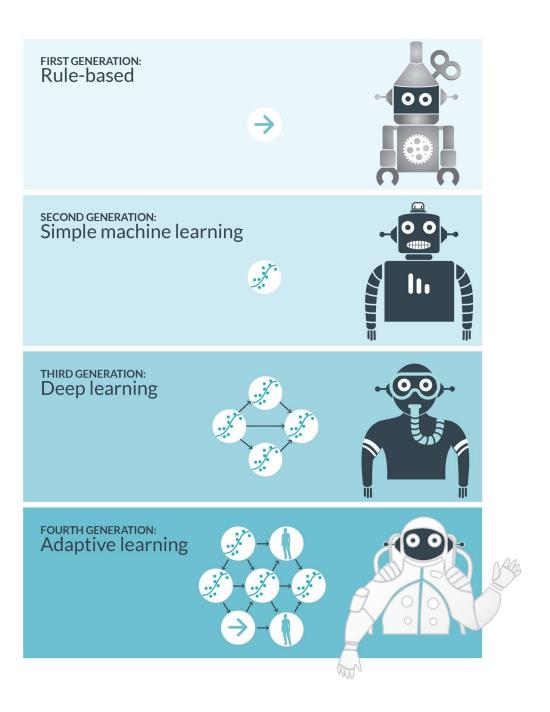
How to construct optimal training samples?

How to construct optimal training samples?

How to construct optimal training samples?

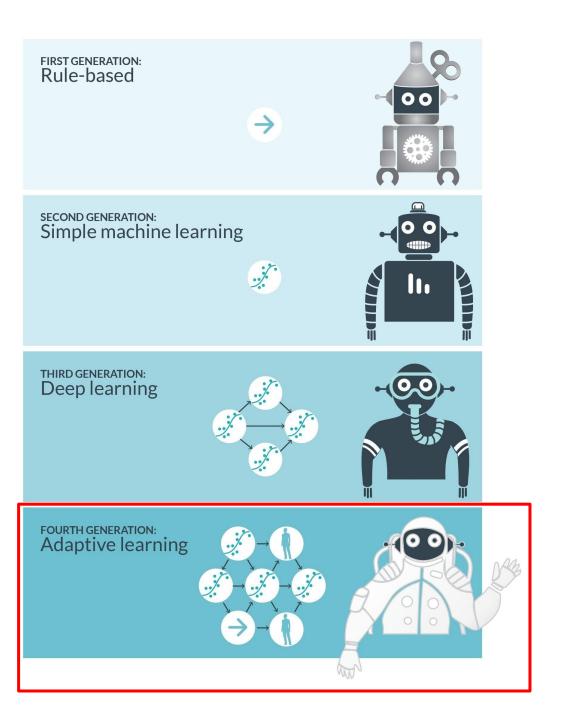
How to construct optimal training samples?

Can machines learn **better**, with **fewer** labelled examples, if they are carefully chosen?



Machines need to evolve...

so they need to adapt!

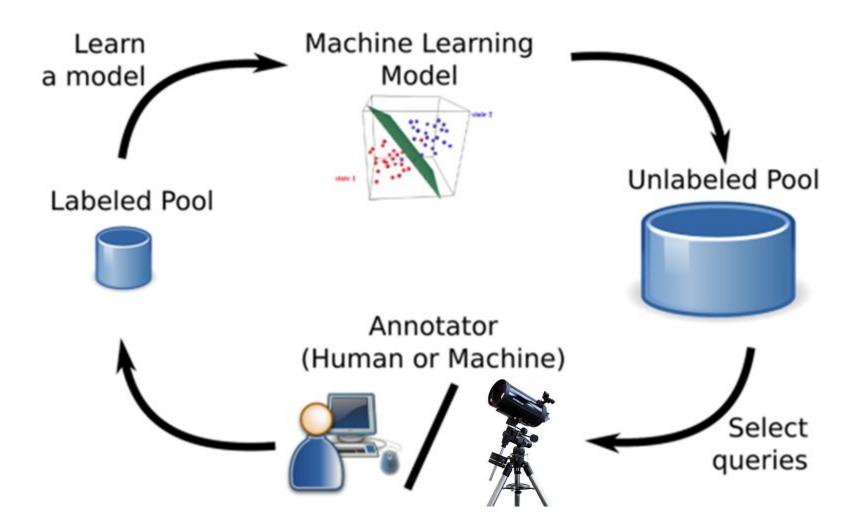


Machines need to evolve...

so they need to adapt!

Active Learning

Optimal classification, minimum training



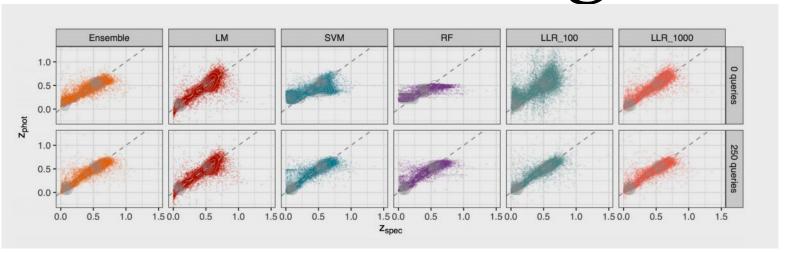
Optimal Experiment Design

In Statistics literature

$$PQ_{data,f}(x) \propto P_{x\sim data}(h_{train}(x) \neq f(x) | previous results)$$

- Pool based
- Generative
- Sequential

Active Learning for



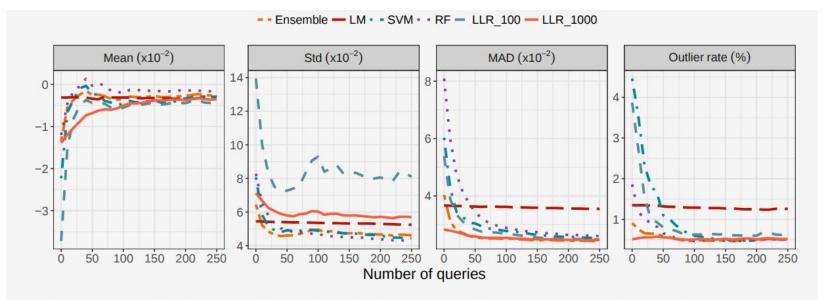
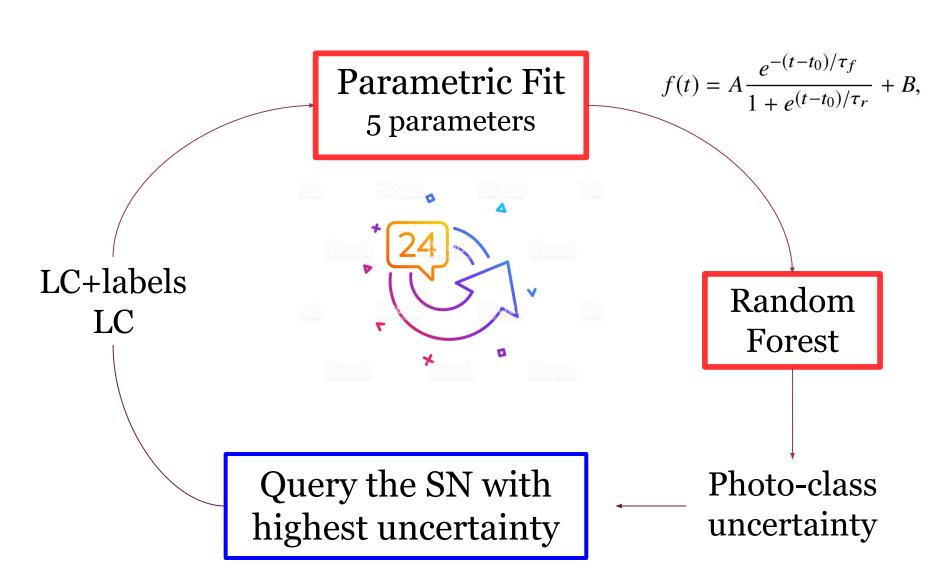


Figure 4. An assessment of the performance of the ensemble model and its constituent models using active learning. Performance diagnostics are shown as a function of the number of queries.

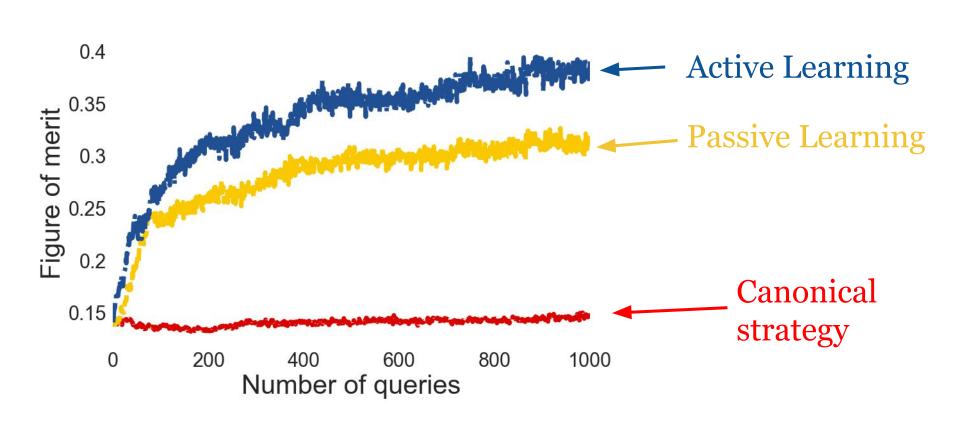
AL for Supernova classification

A strategy



AL for SN classification

Static results

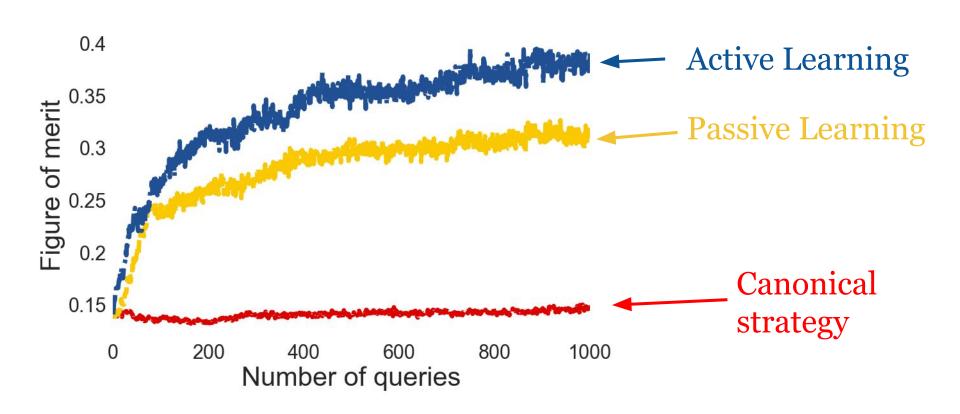


From COIN Residence Program #4, **Ishida** et al., 2019, MNRAS, 483 (1), 2–18

AL for SN classification

Static results

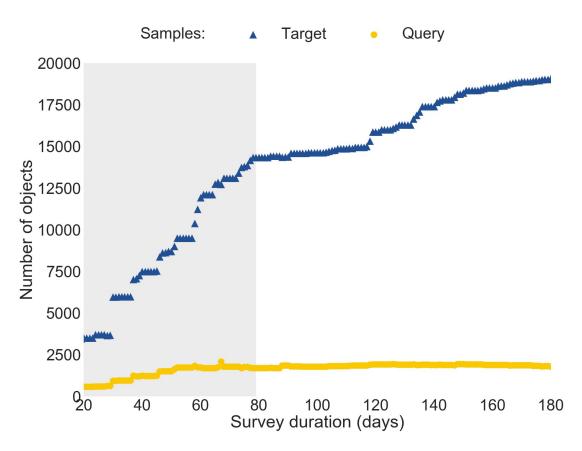
What astronomical aspect make this setting non-realistic?



From COIN Residence Program #4, **Ishida** et al., 2019, MNRAS, 483 (1), 2–18

SN are transients

Window of opportunity



- 1. Feature extraction done daily with available observed epochs until then.
- 2. Query sample is also re-defined daily:objects with **r-mag < 24**

Does this solve the problem completely?

No, it is just the best you can do!

Does this solve the problem completely?

No, it is just the best you can do!

Is this the only way of doing it?

No!, it is only one exciting possibility

Summary

"How do we optimize machine learning results for astronomical purposes?"

Adaptive
Learning
designed for astronomical data

We will have to adapt!

We are getting there...

Community code development

Community code development

Data challenges

Community code development

Data challenges

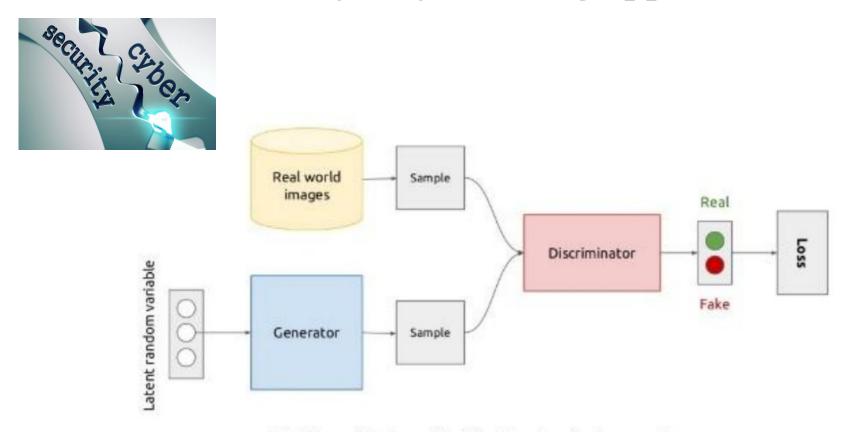
Good things happen when brains are connected properly...

Cosmostatistics Initiative

https://cosmostatistics-initiative.org/

Extra slides

The benefits of a worthy opponent



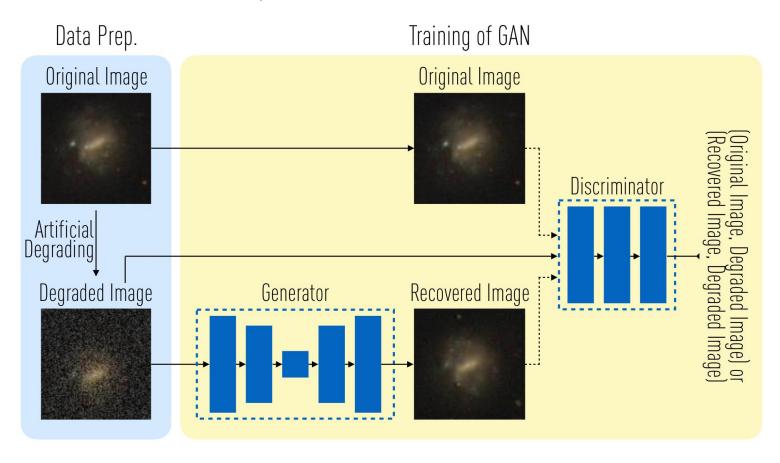
http://www.slideshare.net/xavigiro/deep-learning-for-computervision-generative-models-and-adversarial-training-upc-2016

https://mascherari.press/introduction-to-adversarial-machine-learning/

The benefits of a worthy opponent

K. Schawinski et al, 2017

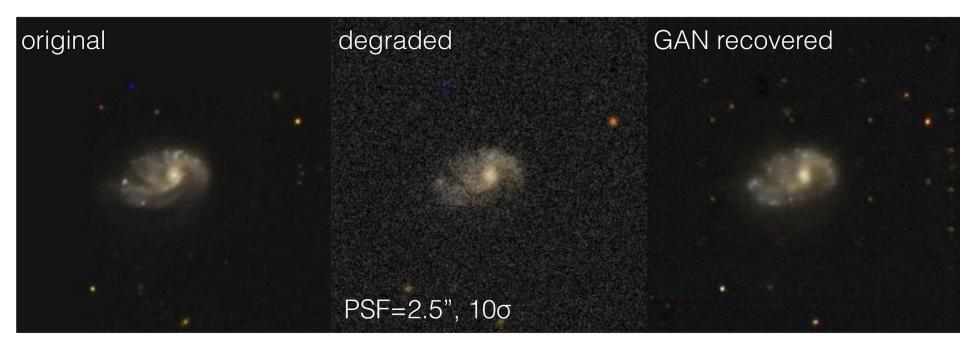
In Astronomy



The benefits of a worthy opponent

K. Schawinski et al, 2017

In Astronomy

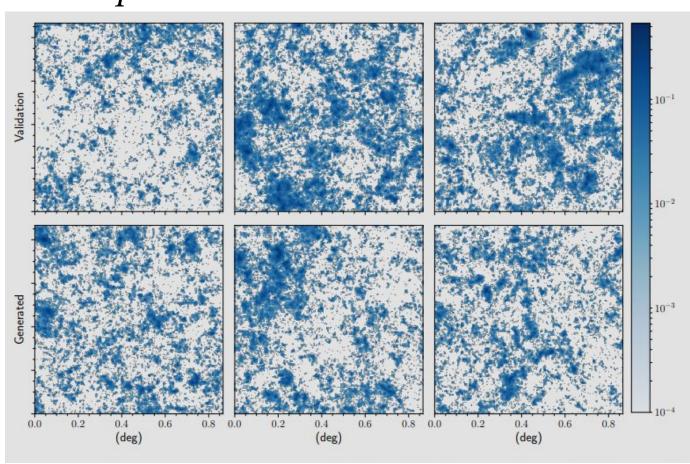


The benefits of a worthy opponent

Mustafa et al, 2017 - CosmoGAN Generating cheap WL maps In Cosmology

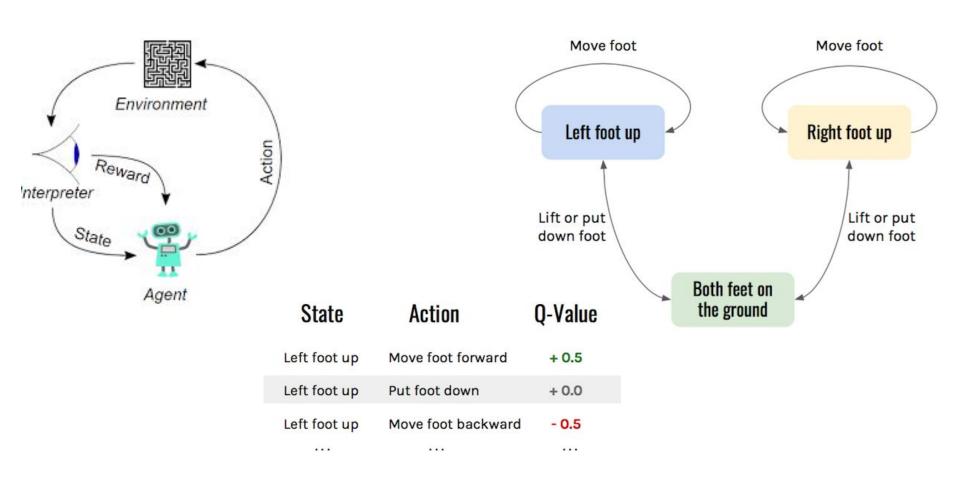
Original

Generated

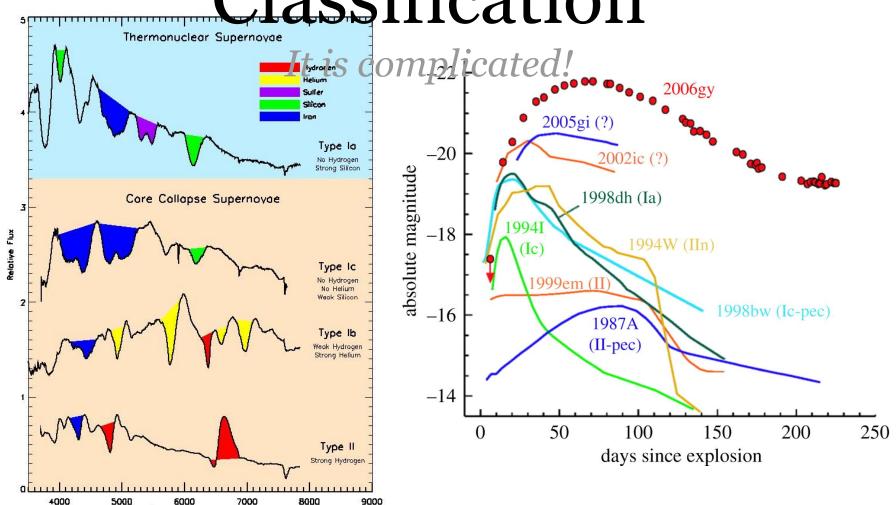


Reinforcement Learning

The importance of feedback

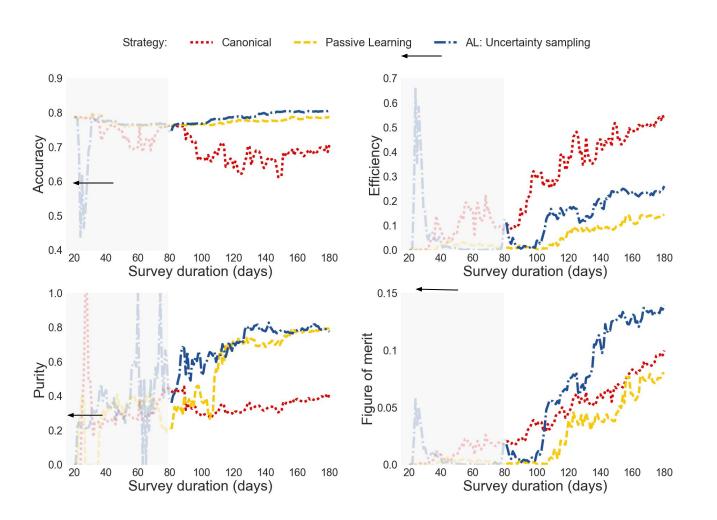


SN Photometric Classification



Wavelength (Angstroms)

No initial training

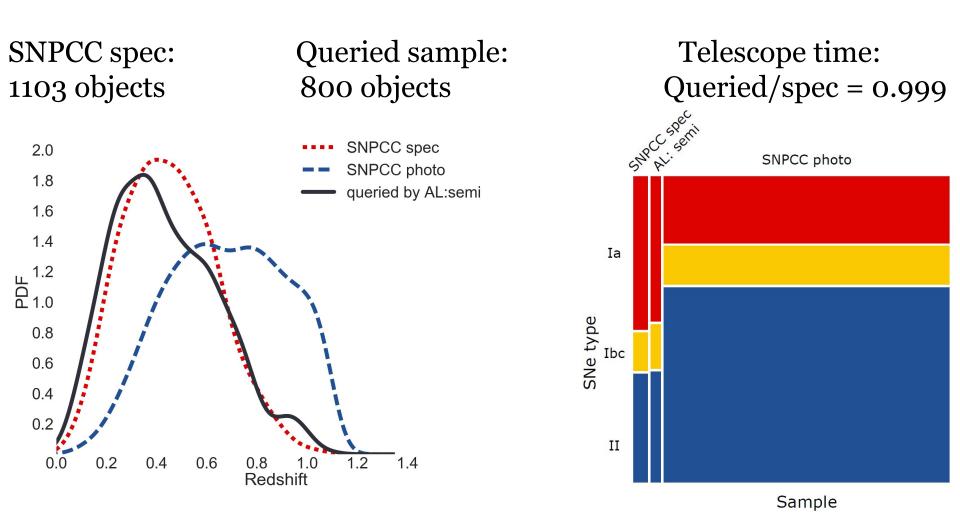


The arrow shows traditional Full light-curve results with full SNPCC spec

From COIN Residence Program #4, Ishida et al., 2019, MNRAS, 483 (1), 2-18

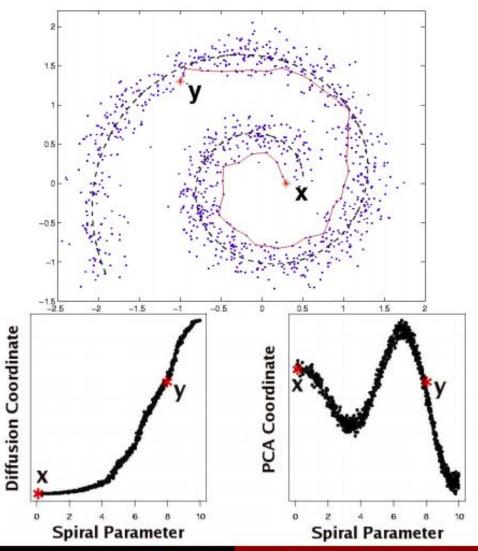
The queried sample

Partial LC, no training, time domain, batch

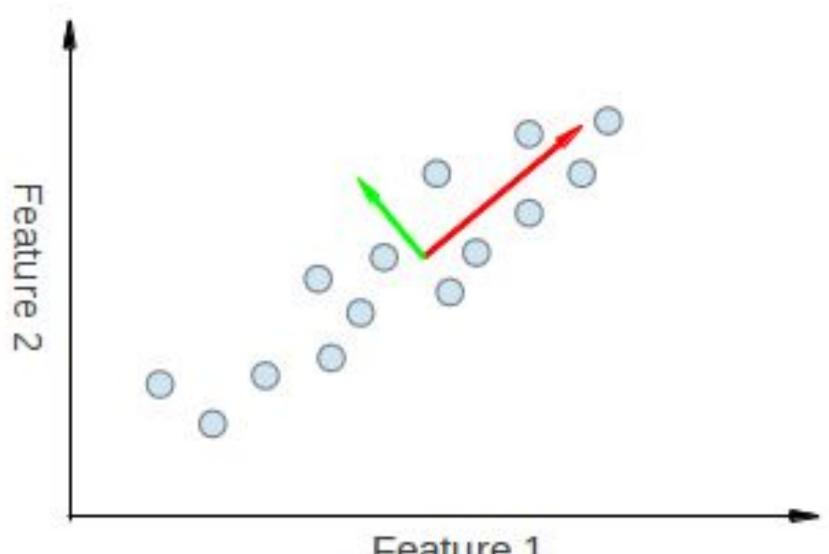


From COIN Residence Program #4, Ishida et al., 2019, MNRAS, 483 (1), 2-18

Diffusion Map: Spiral Example



Principal Component Analysis



Feature 1

Acknowledgement

 H2020-Astronomy ESFRI and Research Infrastructure Cluster (Grant Agreement number: 653477).