

Kick-Off Meeting February 7-8, 2019

The LSST project

Modified Paul-Baker optical formula D = 8.4 m (6.7m effective) f/d = 1.23

350 t mobile structure

Étendue = surface X field of view \rightarrow LSST: 319 m².deg²

3.2 Gpixels – 0.2" / pixel 189 CCD (4k x 4k) deep depleted

Summit Site at Cerro Pachón

The size of the LSST challenge

- 2.75 106 visits (x2 snaps x189 CCD x16 Mpixels)
- 20 TB / 24h including calibrations
- 60 PB raw data / year
- Final dataset: 500 PB total
- Peak computing power: 1.8 PFlops

50% of the processing done in France:

- Full copy of the data in France
 - Catalogs
 - Raw images
 - + some science derived products

LSST Data Products

- A stream of ~10 million time-domain events per night, detected and transmitted to event distribution networks within 60 seconds of observation.
- A catalog of orbits for ~6 million bodies in the Solar System.
- A catalog of ~37 billion objects (20B galaxies, 17B stars), ~7 trillion observations ("sources"), and ~30 trillion measurements ("forced sources"), produced annually, accessible through online databases.
- Deep co-added images.
- Services and computing resources at the Data Access Centers to enable user-specified custom processing and analysis.
- Software and APIs enabling development of analysis codes.

The database: a key component

The challenge is to design an SQL database system able to store trillions of objects while keeping a the access time at a reasonable value

Qserv: developed at SLAC – Design optimized for astronomical queries

Massively parallel – distributed – shared nothing – **relational database**

Final relelease : ~15 PB

Qserv@CC-IN2P3

CC-IN2P3 has a partnership with Dell Setup Qserv test bench

- 50 servers (2 test benches x 25 servers)
- 400 cores
- 0.5 PB disk storage

Data Access Centers (DACs)

In LSST: officially 2 DACs in Chile and at NCSA

- Sized to provide data access to ~7500 potential users
- Currently evaluating the possibility to have a few (3-4) International DAC
 - The European LSST community is getting organized

In France there will be an LSST DAC

- At minimum to serve the French LSST community
- May be extended to the European / Worldwide partners

The Firefly Web Science User Interface (Wu et al, 2016; ADASS)

Dark Energy Science Collaboration Data Challenge

DESC will produce thousands of such images + the corresponding catalogs

Nice datasets to test catalog production pipelines and science interface

Plans

- Ingest DESC DC2 data into Qserv
 - Test usability on realistic science use cases
- Deploy Data Access Center / Science Platform components
 - Test usability on realistic science use cases
- Investigate how to connect the Science platform with HTC and (remote) HPC resources
- Investigate how to interconnect / inter-operate LSST catalogs with other datasets