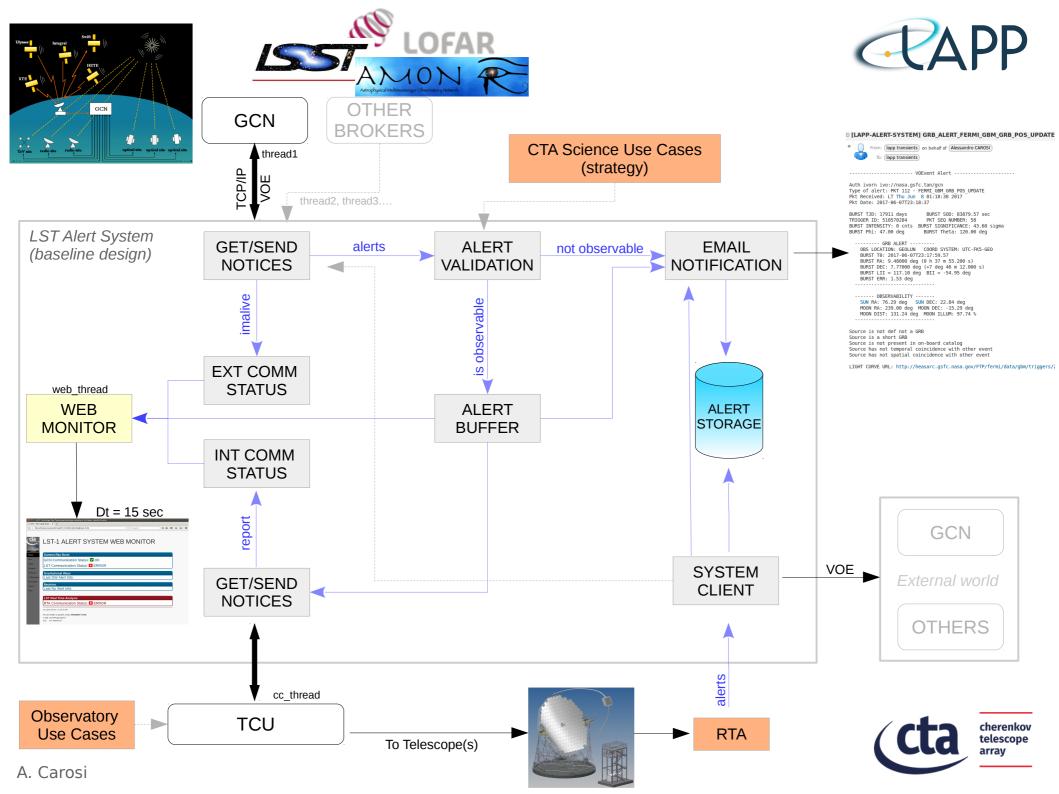


CTA/LST Alert System

Alessandro Carosi & LAPP team: Thierry Le Flour

Jean-Luc Panazol Armand Fiasson Quentin Piel

CAPP


OTHERS

- Developing of the Alert System for the LST-1 prototype for:
 - External communication handling
 - → comm. protocols, connection(s) with brokers...
 - Alerts handling
 - → receiving, parsing, archiving alerts from external facilities
 - Visibility/filtering
 - → visibility evaluation, obs constrains...
 - Internal communication handling
 - → communication with TCU/CC/scheduler, RTA...

- → Communication protocol: VOEvent v2 (xml) (only 1 broker until now: GCN)
- → Multi-thread modular design -(C/C++(+libxml2) & Python)

receiving (different protocols possible: currently VOEvents) **VOEvent processing** E-mail Web Monitor - XML parsing Obs. Plots - filtering/visibility - human readable comm. Telescope(s) cc-communication **RTA** Alert System

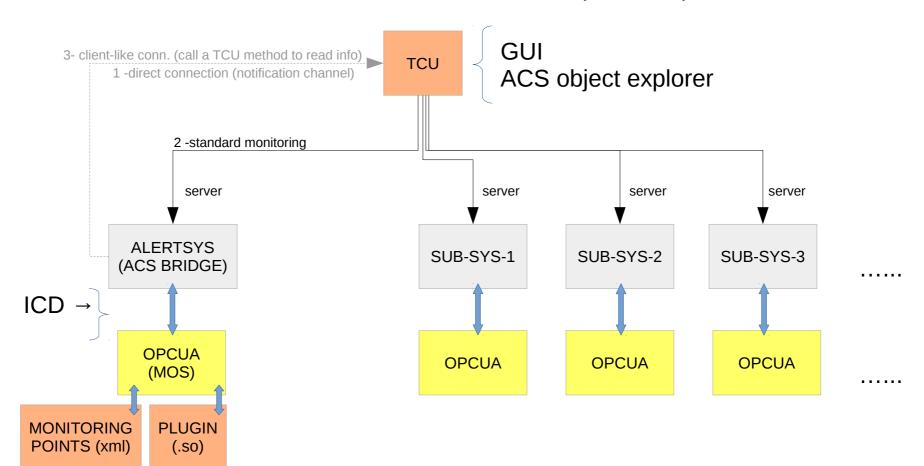
GCN


```
init()
                                                                   create email alert()
                  establish server cnn()
                                               {C}
                                                                   send email alert()
 {C}
                  build ima response()
                                                                   send server disconnected email()
                                                   EMAIL
     GET
                  build voe response()
                                                                   send daily status()
                                                NOTIFICATION
  NOTICES
                  parsing_voevent()
                  interpreters()
                                                                   web thread()
                  check imalive()
{C}
                                                 {C}
                                                                   make web()
                  check gcn_comm()
 EXT COMM
                                                                   make_status_web()
                  set comm status()
                                                     WEB
   STATUS
                                                  MONITOR
                                                                                "Low-level" code (C/C++)
                                                                                "High-level" code (Python)
                   check multiple alerts()
                                                 {Python}
{Python}
                   check visibility()
                   obs windows()
   ALERT
                                                 GW MODULE
                   Ranking()?
 VALIDATION
                   update alert coordinates()
                                                                   F. Schussler+2 students contribution
```

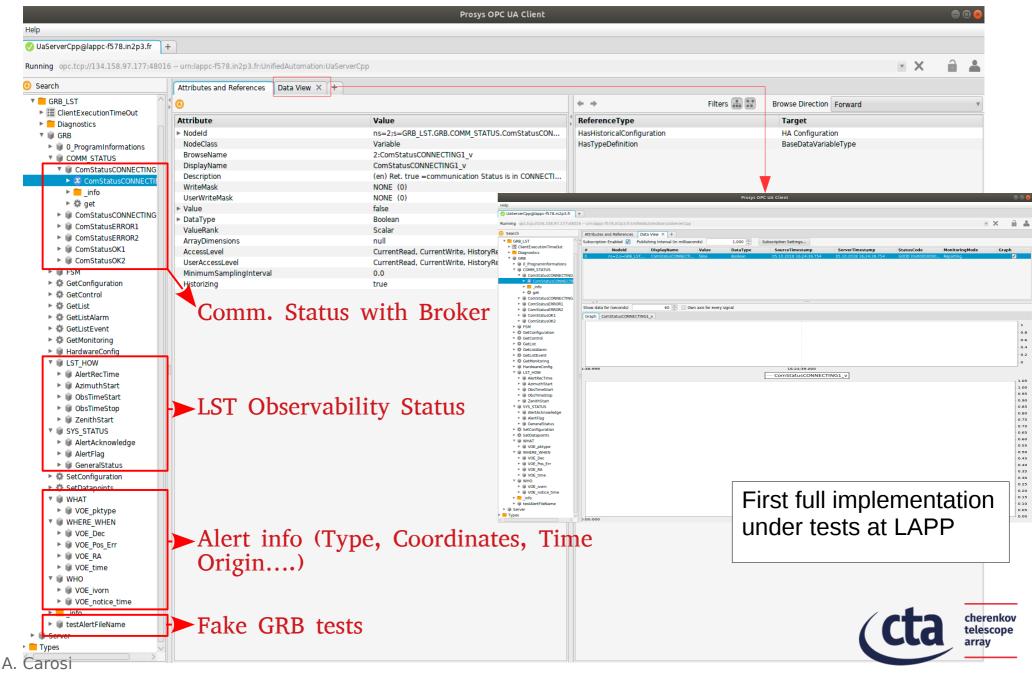
- → VOEvent protocol V2 (xml) only 1 broker until now (GCN)
- → Multi-thread modular design (C/C++(+libxml2) & Python)

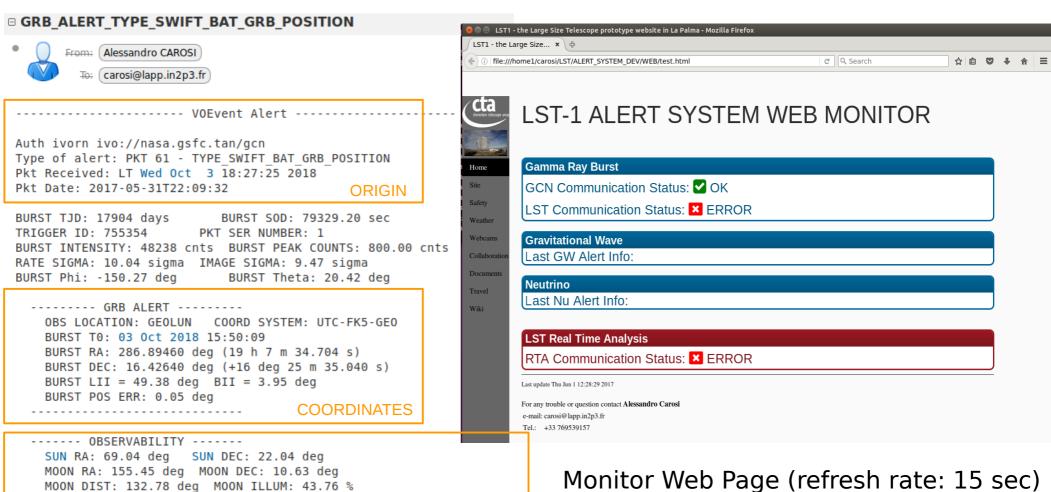
we identified 3 possible solutions to spread these info to telescope:

--> using a notification channel from the ACS bridge component to TCU so that the occurrence of an alert is sent as soon as the alert system has validated it. Afterword, the TCU retrieves the full alert info by calling a method in the AS bridge. (AS Active)



--> using 'standard' monitoring by TCU. The TCU makes a polling on 'alert flag' parameter retrieving the info when they are modified. (AS passive)


-->AS ACS bridge is a client for TCU. Thus TCU will be called from the AS and the TCU must has a method to handle these calls and retrieve all the info (AS active)



 Internal interfaces defined and communication with OPCUA under test (work with J-L. Panazol and T. Le Flour)

Obs. Time Start (UTC): 03 Oct 2018 15:50:09 (MJD 58394.659829)

Source is a GRB
Source is not def not a GRB
Source is not present in on-board catalog
Source has not temporal coincidence with other event
Source has not spatial coincidence with other event

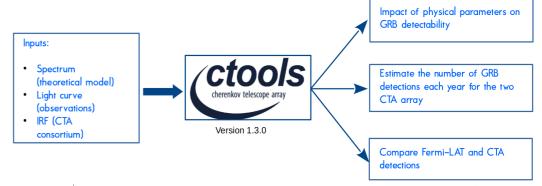
Source IS observable

OTHER ACTIVITIES CTA

- Participation to the activities of the MWL working group:
- Author with S. Covino & A. Stamerra (INAF) of "Critical assessments of optical support needs for CTA science" for the GRB science case Final version presented by S. Markoff at the CTA collaboration meeting in Berlin (2018/09)
- Transient Working Group: CTA consortium paper on GRB:
- Theoretical approach for GRB detection rate starting from a physically-modeled GRB population (work done together with Q. Piel & T. Gasparetto)
- Transient Working Group: CTA consortium paper on Gravitational Waves:
- Responsible of one of the task (T3 CTA simulation)
 for the GW consortium paper (with T. Gasparetto)

Critical assessment of optical support needs for CTA science: the GRB case

GRBs are key project for CTA


- 5/yr/site (swift/SVOM) + 10/yr/site (GBM) → ~12 GRB/yr/site (overlap)
- 2 h/event → ~ 25 h/yr/site (prompt follow-up)
- Detection: ~1/yr/site → +10-15/h/site
- Late time follow-up on specific event: ~1/yr/site → 10/h/site

~ 50 h/yr/site

Table 1: Summary of GRB follow-up strategy and observing time for one array site. Numbers are equal for North and South sites.

Strategy	Expected event	Exposure per	Exposure per	Telescope type
	rate (yr^{-1})	follow-up (hr)	year (hr yr^{-1})	
Prompt follow-up of accessible alerts	~12	2	25	LST only
Extended follow-up for detections	0.5 - 1.5	10-15	10-15	LST+MST+SST
Late-time follow-up of LAT GRBs	~ 1	10	10	LST+MST+SST
not accessible promptly				

* From "transient key science project", Inoue+2014

	Task	Deliverables	Status	Timeline	Group/reference person
-1	Simulation of GW events from	Database of BNS mergers and GW signals with LIGO-Virgo in Adv-phase	DB of BNS ready for release	September 2018	INAF-SNS: B. Patricelli, Stamerra
BNS mergers	Add KAGRA	massive simulation	end 2018?	(CTA-external: M. Razzano, G. Cella	
simulation- estimation of VHE emission	 phenomenological model on-axis sGRB templates on light-curves and spectra 	Add EBL	September 2018	Columbia group with T. Di Girolam Trieste group: F. Longo	
	Rescaling for off-axis emissionafterglow/delayed emission (literature)	literature dig	October 2018	INAF-SNS group: B. Patricelli , Stamer S. Inoue	
ТЗ	CTA simulation	Simulated CTA events from: LC and spectra from T1 and T2; EBL IRF (threshold, full, divergent)	code partially develop. need EBL; diverg. IRF	December 2018: EBL implementat Divergent IRF:~1y	Saclay group: Schüssler, Lefaucher Columbia, Trieste, INAF-SNS, group: Annecy group: A. Carosi
T4	Optimisation of observing strategies	 set of observational constraints optimised tiling sequence Joint GW-CTA detection rates, coverages 	code developed needs input T2-T3	mass simulations: beginn2019	Saclay (F. Schüssler) group INAF-SNS group Bologna group: G. Stratta
	T1	12 13	T4	GW-CTA rates	paper draft