Max Planck Institute for Gravitational Physics, Potsdam

Detecting colliding black
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Talk layout

+ Introduction and motivation

* What are we looking for (signal assumptions)?
* What does the data look like (noise assumptions)?

* How do we search for compact binary mergers in our
data?

+ Unmodelled searches as backup



T'he gravitational-wave spectrum
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Focus here: Compact binary mergers

Credit: LIGO.org



http://LIGO.org

The current searches for colliding compact mergers

Templated search codes

* PyCBC (pycbc.org)

+ MBTA
« GstLAL (https:/ /1scsoft.docs.ligo.org / gstlal /)

Non-templated search codes

+ Cwb
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Searching for colliding black holes:
What do we know about the signal?



Modelling colliding black holes

« Einstein’s equations from the 1910s exactly describe the
dynamics of two black holes merging, and the
gravitational-wave signal that would be emitted.

+ However, it is not possible to analytically solve these
equations.



Modelling colliding black holes

Approximate analytical solutions

* Perturbative approaches can be
used.

7/
0’0

Effective-one-body approach is
one example of this

* Loses accuracy as the two
black holes come close to
merger

Buonanno and Damour Phys.Rev. D59 (1999) 084006
Buonanno et al., Phys.Rev. D80 (2009) 084043
Pretorius, Phys.Rev.Lett. 95 (2005) 121101
Campanelli et al., Phys.Rev.Lett. 96 (2006) 111101
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Numerical solutions

Einstein’s equations can be
solved directly using numerical
evolution methods

Very computationally
expensive — cannot be used to
model many orbits

Can model the collision

Some inaccuracy from
numerical approach



Wavetorms
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http://ligo.org

(Compact binary parameters
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Effects of the components’ angular momenta
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Signal model - The equations

1

h(t) = D (F1(©)hy(t) + Fx(©)hy(t))

D: Distance,s O Ori nttnfdtct with respect to source

h.,. —’Lh ZZHlm lm9¢)

=2 m——
6 , @ : sky location of observer with respect to source, Yim: spherical harmonics

Hl,m — Al,m (t) €i®l’m‘ (%)

Amplitude and phase carries dependance on the “intrinsic” parameters of the source
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Signal model - Take home points

* Developing and improving compact binary signal
modelling is a large field of research, which has made
very rapid progress

“ Current waveform models are good enough for most
purposes

“ There are still areas for improvement (e.g. high-mass
ratio signals, misaligned spins, extremal spins, exotic
objects or non-GR waveforms)
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Searching for colliding black holes:
What do we know about the noise?



LIGO/Virgo noise: Complex noise curve
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LIGO/Virgo noise: Non-stationary
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Frequency [HZz]

LIGO/Virgo noise: Non-Gaussian
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LIGO/Virgo noise: Summary

* The noise curves are complex, with many lines over a
broadband sensitivity

« LIGO sensitivity is highly non-stationary (less so for
Virgo)

« Instrumental artefacts regularly appear in the data
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Searching for colliding black holes:

How do we actually search for them?



Detection problem

But signals will be buried

We know what we’re looking for , ,
in the detector noise
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Plots and data courtesy of the GW open-science center: https: / / www.gw-openscience.org
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Detection problem

But signals will be buried

We know what we’re looking for in the detector noise
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Matched filtering

« Optimal if looking for a signal in stationary, Gaussian noise
with known PSD

oty = [~ fg

“ﬁ

Wainstein and Zubakov “Extraction of signals from noise”, 1962
Allen et al. Phys.Rev. D85 (2012) 122006
Babak, ... ,IH, et al. Phys.Rev. D87 (2013) 024033 23



Matched filtering

(s|h) :4%/000 S (S)

~

n(f

Gravitational-wave strain

x 10719

o
[S]

6

8
Time (s)

0 12 14 16

af

24

Gravitational-wave strain

1.5 x10~19

1072

)

(1/VHz

sity

Strain Noise Spectral Den

1[]—23

107 B\ B S A

10722

Frequency (Hz)




Matched filtering
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Dealing with a large parameter space

* Signals depend on at least 15 parameters

* Matched-filtering over a 15-D grid of waveforms is not
computationally teasible

“ Must reduce size of parameter space

26



Reducing parameter space - ASSUMPTIONS!

* Assume that there is no precession of the orbital plane
+ Assume that both bodies are black holes
« Restrict to the dominant mode of the signal

“ QOrientation and location parameters now enter as
overall constant amplitude, time or phase shifts

~

A(f) = A(Z)ME/Sf7/8
exp [i20(Z, f) + 200 (V) + 27 ft.]

27



Maximization

- [ 0y

Maximise over orientation l, and location parameters

o= | [ 050

As a function of l: the coalescence time

(S|h) (tc) = /OOO g(:gi}(i[()f) 6—2’27Tftcdf
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The “template bank™
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Cokelaer, Phys.Rev. D76 (2007) 102004
IH et al, Phys.Rev. D80 (2009) 104014
[H et al, Phys.Rev. D86 (2012) 084017 27

No trick to deal with the possible
values of the masses and angular
momenta of the components: A large
set of filter waveforms must be used,
which we call a template bank

The template bank is chosen such that
even for signals lying between the
templates, we lose no more than 3% of
the optimal matched-filter SNR.



Non Gaussianites

+ This method would work well if the data were Gaussian.

“ Significance could be computed analytically

“* N wavetorm filters, but not all independent

+ However data is not Gaussian, non-Gaussian artefacts

also produce large values of SNR

* Need to be able to distinguish such artefacts from real
signals

30



Our first binary neutron-star observation
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Out first binary neutron-star observation
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An ad-hoc chi-squared test
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Frequency (Hz2)

Another chi-squared test
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Ranking statistic - combining everything
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Calculating a significance (how many sigmas?)

Zero-lag
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Calculating a significance (how many sigmas?)
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Non-stationarity

« Basic idea to cope with non-stationarity is to keep re-
measuring the power-spectral density

* Don’t want signals in the data to appear in the
measured power-spectral density!

« Use Welch’s method every 512s

« If the noise curve changes on timescales less than 512s it
will impact sensitivity, but will not affect the validity of
a significance measurement.

40



Number of events
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How do we validate the analysis?

Simulate lots
of signals!
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Weakly modelled search techniques

* We don’t only rely on matched-filtering

* QOur search makes a number of assumptions
* Maybe our waveform models are wrong?

“ Maybe general relativity is wrong?

* Maybe we have astrophysical sources that were not
expected, or are not easily modelled (supernovae)?
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Basic idea of “burst” searches

Create g-transform spectrograms of data at all times

Look for features standing out from the noise

Look for consistent morphology in both observatories
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What's it all for?

Masses In the Stellar Graveyard

In Solar Masses

EM Neutron Stars
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Conclusion

* Gravitational-wave astronomy continues to establish itself as a
major new field in astronomy

* We can, for the first time, observe black holes directly.

« Current searches rely on matched-filtering, with ad-hoc statistics
to account for non-Gaussianities

* Also use unmodelled searches to catch the unexpected

« Still much development needed, especially as we move towards
more sensitive instruments, with broader sensitive curves

* Broader sensitive curves = Way more filter waveforms needed
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Post-detection: Measurement of parameters

* Computed using Bayesian
Likelihood (requires prior
assumptions)

Pl&ils) = 2 Plsle)

Bilgoe 2

— Overall
— IMRPhenom
— EOBNR

35

* Markov-chain Monte-Carlo
techniques employed to 20
evaluate this over a large

t 30 35 40 45 50
parameter space g /\f
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Signal model - Summary

+ Computing the phase and amplitude of each of the modes
can be computationally expensive

« Trying to speed this up is the focus of much development

+ Basic idea is to define a reduced-basis representation of the
waveform, combined with fits to how the various bases
need to be combined as the parameters of the signal
changes

+ Often been done “by hand” in the past, but recently been
demonstrated also using machine-learning techniques

Piirrer, CQG. 31 (2014), 195010
Canizares et al., PRL. 114 (2015), 071104
Smith et al., PRD 94 (2016) no.4, 044031 50



Observing gravitational-waves

LIGO Hanford, WA Virgo, Cascina, Italy
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A global network
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Broad sky sensitivity

* Sensitivity to most points on

the sky

* Best sensitivity to sources
overhead (or underhead)
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* But difficult to know where in
the sky a source came from!

Rept.Prog.Phys. 72 (2009) 076901
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