

M. BENALI & G. QUEMENER

UNIVERSITÉ CAEN NORMANDIE LPC Caen

Workshop MORA 28-29 mars 2019

Summary

- Introduction
- Optimization steps & ELECTROBEM
- Result of MORATrap optimization
- MORATrap Vs LPCTrap
- Systematic Study
- Conclusion

Introduction: Paul Trap

•In Paul trap, ions are confined by a quadrupolar RadioFrequency (RF) potential

$$\Delta \mathbf{V} = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

-A ring and 2 endcaps of hyperboloid shape

-Apply an oscillating voltage between the electrodes

-The resulting potential is :

$$V(x, y, z, t) = (U_{DC} + V_{AC} \cos \omega t) \frac{x^2 + y^2 + 2z^2}{2r_0^2}$$

Transparant Paul trap: LPCTrap

LPCTrap: precise measurement of the β -v angular correlation coefficient in the β decay of radioactif ions

- transparency to $\boldsymbol{\beta}$ decay products
- efficient injection of the ion packets

- R1R2: RF voltage is applied to central rings (R1 and R2) to create a quadrupolar potential in trap center

- R3R4: polarized at a precise tension (during the injection and extraction phase)

- R5R6: polarized at a precise tension to correct the trap potential

Optimization steps & ELECTROBEM

Spherical harmonic

Laplace's equation in spherical coordinate , in the absence of charge :

$$\Delta V(\rho, \theta, \varphi) = 0$$

The general solution of Laplace's equation in spherical coordinate :

$$\mathbf{V}(\rho,\theta,\varphi) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left(\frac{\rho}{\rho_0}\right)^n P_n^m(\cos\theta) \left(A_{nm}\cos(m\varphi) - B_{nm}\sin(m\varphi)\right)$$

Potential due to :

- electrodes voltage
- geometry of electrodes

Spherical harmonic & ELECTROBEM

In axi-symmetric systems (m = 0), the solution of Laplace's equation :

$$V(\rho,\theta,\varphi) \xrightarrow{\text{Axial symmetry}} V(\rho,\theta) = \sum_{n=0}^{\infty} A_n \left(\frac{\rho}{\rho_0}\right) P_n(\cos\theta) \quad ; \ \rho \leq \rho_0$$

Optimize our trap in order to:

reduce the harmonic of order higher than 2 (increase trapping time)

> maximize the ions cloud radius (maximize the number of trapped ions)

> optimize detector acceptance (increase the acceptance compared to LPCTrap)

Spherical harmonic & ELECTROBEM

In axi-symmetric systems (m = 0), the solution of Laplace's equation :

$$\mathbf{V}(\rho,\theta) = \sum_{n=0}^{\infty} A_n \left(\frac{\rho}{\rho_0}\right) P_n(\cos\theta) \quad ; \ \rho \leq \rho_0$$

To optimize the geometry of trap:

1. Calculate potential on a circle :

• of center (z=0, ρ =0) • and radius $\rho \le \rho_0$

Spherical harmonic & ELECTROBEM

In axi-symmetric systems (m = 0), the solution of Laplace's equation :

$$\mathbf{V}(\rho,\theta) = \sum_{n=0}^{\infty} A_n \left(\frac{\rho}{\rho_0}\right) P_n(\cos\theta) \quad ; \ \rho \leq \rho_0$$

To optimize our trap:

- 2. Extract real harmonic coefficient A_n on a circle of maximum radius $\rho \le \rho_0$
- 3. Solve our equation $\frac{V^* V_2}{V_2} = \frac{\sum_{n>2} \left(\frac{\rho}{\rho_0}\right)^n |\mathcal{A}_n|}{\left(\frac{\rho}{\rho_0}\right)^2 |\mathcal{A}_2|} \le 2\%$ By minimizing (Minuit) Our fitness function : $\frac{1}{|\mathcal{A}_2| r'(\vec{p})} \qquad r' = \left(\frac{\rho}{\rho_0}\right)^2$

maximize quadratic potential well maximize radius of our cloud

 \vec{p} = optimization parameters

Several parameters can be used, depends on the geometry of electrodes:

• Axial distance from the center of the trap Zmin

- Axial distance from the center of the trap Zmin
- Radial distance ρ from the center of the trap

- Axial distance from the center of the trap Zmin
- \bullet Radial distance ρ from the center of the trap
- Electrode deviation angles θ

ELECTROBEM simulation

15

Result of MORATrap optimization

MORATrap: Optimization Result

Optimized Electrodes + Einzel Lens

MORATrap: Optimization Result

Free parameters:

• fixed the parameters related to the electrode R5R6

• Minimisation with 6 parameters related to electrodes :

-R3R4: Zmin, p, thickness

-R1R2: Zmin, thickness

- And deviation angle

R [mm] 50 R6 R5 45 40 35 30 R3 **R4** 25 20 15 10 R2 5 $\mathbf{O}^{\texttt{E}}$ -70-60-50-40-30-20-10 0 20 10 30 60 70 40 50 Z [mm]

Electrodes profile

MORATrap: Optimization Result (Harmonic & potential)

MORATrap: Optimization Result (dimensions)

Electrodes profile

Electrodes dimensions

М	R ₁₂	R ₃₄	R ₅₆
Zmin (mm)	13.41	6.0	13.
Inner radius (mm)	8.0	15.56	39.29
Outer radius (mm)	9.67	18.53	43.79
thickness (mm)	2.17	3.94	4.5
Potentiels (V)	+/-60 (RF)	0.	0

Angles an redius at 2%

Radial angle	18 deg
Axial angle	27.69 deg
Radius at 2%	7.39 mm

MORATrap Vs LPCTrap

LPCTrap: ELECTROBEM simulation

Electrodes profile

ուսուրուսուրուսուրուսուրուսուրուսորուրուրորուրորուրորուրորուրորուրուրությունը

Axial angle = 21 deg Radial angle = 18 deg Radius at 2 % = 4.39 mm

LPCTrap: ELECTROBEM simulation

(Harmonics and potential)

Potentials on ring pairs: V12=60 V, V34=0; V 56=12 V; V (Einzel Lens) =0V

order n

MORATrap Vs LPCTrap

MORATrap

order n

Radial angle	18 deg
Axial angle	27.69 deg
Radius at 2%	7.39 mm
A2	8.57
A4	0.000027
A6	0.16

LPCTrap

order n

Radial angle	18 deg			
Axial angle	21 deg			
Radius at 2%	4. 39 mm			
A2	6.98			
A4	0.37			
A6	0.11			

(to reduce A6)

Many forms of conical, cylindrical electrodes and different shape of section in front of the ions cloud are tested to reduce the harmonic A6:

1) Cassini Oval

2) Spline Curves

Move the electrodes R2, R4, R6 separately, along the Z axis +/-100, +/-50,+/-20, +/-10 μ m (The blue line shows the reference value)

Move the electrodes R2, R4, R6 separately, **along the Z axis** +/-100, +/-50,+/-20, +/-10 μ m (The blue line shows the reference value)

Move the <code>radius</code> of the electrodes R1R2, R2R3 , R4R5: +/-100, +/-50,+/-20, +/-10 μ m

Move the radius of the electrodes R1R2, R2R3 , R4R5: +/-100, +/-50,+/-20, +/-10 μ m

- Sensitivity is of the order of >50 μ m for the electrode R1R2
- \bullet Sensitivity is much lower for the electrode R3R4 and R5R6 (100 $\mu m)$

Conclusion

The optimized geometry of MORATrap (compared to LPCTrap):

- ✓ axial solid angle increased
- ✓ Important radius at 2% (7.39 mm)
- \checkmark reduce better the harmonic of order higher than 2
- ✓ trapping efficiency increased (>58% Vs 20% LPCTrap) : B.M. Retailleau

Presentation

What's next ?

- Switch to the 3D version of ELECTROBEM:
- calculate the potential on a sphere at the center of trap (has been done, and

checked against the potential in AxyELECTROBEM)

-a systematic study will be done (electrode rotation, torsion)

Thank you for your attention

Fitness Function

$$\Phi(\rho,\theta) = \sum_{n=0}^{\infty} \mathcal{A}_n \left(\frac{\rho}{\rho_0}\right)^n P_n(\cos\theta)$$

$$\frac{\sum_{n>2} \left(\frac{\rho}{\rho_0}\right)^n |\mathcal{A}_n|}{\left(\frac{\rho}{\rho_0}\right)^2 |\mathcal{A}_2|} \leq 2\% \implies |\frac{\mathcal{A}_0}{\mathcal{A}_2}|r'^4 + \dots + |\frac{\mathcal{A}_4}{\mathcal{A}_2}|r' - 0.02 = 0 \text{ Où: } r' = \left(\frac{\rho}{\rho_0}\right)^2$$
$$\frac{1}{|\mathcal{A}_2|r'(\vec{p})}$$

LPCTrap consists of three rings with dimensions:

Rings name	A ₁₂	A ₃₄	A ₅₆
Zmin (mm)	8.8	5.	6.5
Inner radius (mm)	6.	10.5	15.5
Outer radius (mm)	8.	14.5	18.5
Length (mm)	6.2	9	6.5
Potentials (V)	+/-60 (RF)	0.	12.

33