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Why should you care about black hole microstates?
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Hawking radiation

Black holes polarize the vacuum
   ➞   Thermal “Hawking” radiation at infinity  
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Black holes evaporate into Hawking radiation over vast periods of time 
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⇒ Hawking Radiation is almost featureless:  
It encodes only the Bulk State Functions:  mass, 
angular momentum and charge of the black hole

Hawking Radiation originates from 
quantum fluctuations in a region just   
outside the event horizon

General Relativity + Quantum Mechanics 
    ⇒    Black holes, no matter how they form, evaporate into 
           the same (largely featureless) cloud of Hawking Radiation

In GR alone, Hawking Radiation Carries No Information
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The exterior structure of a black hole, and 
the Hawking radiation is unique

A star

Trash

Politicians

The Information Paradox: 
This process cannot be 
described by Unitary Evolution

One (1) state

Vast number of 
initial states
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A  ≈  7 × 1090 LPlanck2

S  =  ¼ A  ≈    1090

Number of microstates 
in black hole at Sgr A:

1090
e

Black hole uniqueness 
⇒  End state of Hawking   
     Radiation is unique

1090
e ≠   1

The information problem:
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corrections to radiation.
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Hawking evaporation is extremely slow:

What is this new horizon-scale structure?
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Almheiri, Marolf, Polchinski, Sully … Susskind … 

“It from Qubit” collaboration

̣ Modified Gravity

Hawking, Perry and Strominger + …. 

With the exception of Microstate Geometries (and related Fuzzballs), all of these 
approaches fail to create anything that has a remote chance of actually looking 
and behaving like a black hole .. .

Many of these approaches work by ignoring gravity entirely … 

̣ Others …. 

✦ Bose-Einstein Condensates 
✦ Gravastars
✦ “Mirrors”

Mazur and Mottola 
Dvali, Lüst, Gomez + …. 

̣ Loop Quantum Gravity
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Microstate Geometry Program
̣ Resolve singularities
̣ Remove horizons

Remain consistent with the triumphs of General Relativity 

LIGO / Caltech / MIT Illustration

Goals:

‣  Smooth, horizonless “solitonic” solutions to the bosonic sector of 
supergravity (the low-energy limit of string theory) with the same asymptotic 
structure as a given black hole or black ring

Singularity resolved; Horizon removed 

Microstate Geometries

̣ Exhibit microstate structure
̣ Fully and correctly incorporate 
   classical gravitational effects

Looks exactly like a classical black hole 
until arbitrarily close to horizon scale



Why wasn’t this done years ago?
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In General Relativity coupled to massless fields:
Time-independent solutions with time-independent matter 
necessarily have horizons   ⇒    They must have singularities  

Simplest versions (end-states of stars):  Time independent Solitons

“No solitons without horizons” 
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The Horowitz-Polchinski Correspondence Principle

The Second Problem:  Growth of Microstate Structure

There are similar problems for fine-tuned modified gravity: One might be able 
to stabilize a black hole of some mass, but it fails for different masses .. 

̣ The essential bottom lines:  
✦   Any proposed horizon-scale microstructure must grow in size ~ GNewton
✦   Microstate structure cannot be supported by perturbative states/techniques,    

  which necessarily shrink with GNewton 
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How do Microstate Geometries solve these problems?
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         A new phase of stringy matter emerges at the horizon scale

A Transition driven by the Chern-Simons interaction

No solitons without topological fluxes! Gibbons and Warner,  arXiv:1305.0957

In more than four space-time dimensions this is the only way to make solitons

(in more than 3 spatial dimensions)
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Can arrange that these structures grow in size with GNewton at exactly the 
same rate as the horizon of a black hole.    

D-branes:  

Fluctuating D-branes spread 
out with increasing GNewton

Back-reacted “Microstate Geometries” extend to horizon scale ⇒

In string theory there are solitonic structures whose scale grows with GNewton 

Cohomological Fluxes
Massless magnetic fluxes supported 
on non-trivial topology: Scale of 
cycles grows with  GNewton

σ

Tension  ~ (GNewton)-1

Can only solve the growth problem with such solitonic structures … 

Solitons grow bigger as the (perturbative) coupling grows stronger:
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macroscopic black hole at finite GNewton, gstring.  

✦ Count microstates using index theory
✦ Invoke protection of index states as GNewton, gstring are increased

What do these weak-coupling microstates become at strong coupling?

Two obvious ways to encode microstate structure:
̣ Supergravity fluctuations of the microstate geometries 
̣ Intrinsically string fluctuations of the microstate geometries

Together this is phase-space is more than sufficient to encode the complete 
microstate structure of (supersymmetric) black holes

Microstate geometries play an essential role because they are the only way to 
support such structure against gravitational collapse … 

Answer:  Microstate Geometries and their Excitations



Some New Black-Hole Physics

Smoothly capped microstate geometries 
necessarily lead to:
̣ a new “stringy phase of matter” 
̣ a much richer set of structures
̣ at least two new scales in black hole physics.

Schwarzschild black holes have singular 
space-times and depend on only two scales:  
Mass, M and the Planck scale, ℓP
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̣ Size,  λT,  of a typical cycle ⬌  Scale of phase transition

̣ Fluxes through cycles ⬌  Order parameters of new phase

̣ Energy Gap = zmax  × (L = Horizon scale)-1 defined by  zmax =  maximum    
 redshift between infinity and the topology at the bottom that resolves the black hole 

λT
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̣ Fluctuations around the background ⬌  microstate structure 

The new physical scales
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̣ a new “stringy phase of matter” 
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Mass, M and the Planck scale, ℓP
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to encode the vast number of microstates of a black hole

✦ Entropically viable as end-state of collapse
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Conclusions

✦ Resolves the information problem by making all the microstate 
structure accessible from outside 

̣ Microstate Geometries represent a new state of matter that emerges at the 
horizon scale and prevents the collapse from forming a horizon or a singularity

̣ Supergravity and stringy excitations of microstate geometries have the capacity 
to encode the vast number of microstates of a black hole

✦ Entropically viable as end-state of collapse
̣ Why not declare victory? 
✦ Almost all these results have only been established for supersymmetric black holes;  

Stationary, time independent-phenomena
✦ Strong arguments for near-supersymmetric 

✦ How these ideas extend to non-supersymmetric, astrophysical black holes.

̣ Current Research:

✦ Time-dependent phenomena:  Evaporation, Accretion, Scrambling, 
                                         Dynamics of Microstate Structure


