Black Hole Microstructure

"Tests de la relativité générale et théories alternatives" Nick Warner, January 31, 2019

Research supported supported in part by ERC Grant number: 787320 - QBH Structure DOE grant DE- SC0011687

Original photo credit: LIGO/Caltech

Why should you care about black hole microstates?

The Black-Hole Information Paradox

Bekenstein-Hawking entropy:

$$S = \frac{k_B c^3}{4 \, G \, \hbar} \, A = \frac{1}{4} \, \frac{A}{\ell_P^2}$$

~ k Log(Number of microstates of black hole)

The Black-Hole Information Paradox

Bekenstein-Hawking entropy:

$$S = \frac{k_B c^3}{4 G \hbar} A = \frac{1}{4} \frac{A}{\ell_P^2}$$

~ k Log(Number of microstates of black hole)

Black-hole uniqueness:

Bulk state functions (Mass (M), Charge (Q), Angular momentum (J)) uniquely specify the metric/solution outside the horizon

 \Rightarrow Number of microstates measurable from outside = 1 \Rightarrow S = 0

The Black-Hole Information Paradox

Bekenstein-Hawking entropy: S

$$S = \frac{k_B c^3}{4 G \hbar} A = \frac{1}{4} \frac{A}{\ell_P^2}$$

~ k Log(Number of microstates of black hole)

Black-hole uniqueness:Bulk state functions (Mass (M), Charge (Q), Angular momentum (J))uniquely specify the metric/solution outside the horizon \Rightarrow Number of microstates measurable from outside = 1 \Rightarrow S = 0

Hawking radiation

Black holes polarize the vacuum Thermal "Hawking" radiation at infinity $T = \frac{\kappa}{2\pi} = \frac{\hbar c^3}{8\pi G k_B M}$

Black holes evaporate into Hawking radiation over vast periods of time

Hawking Radiation originates from quantum fluctuations in a region just outside the event horizon

Hawking Radiation originates from quantum fluctuations in a region just outside the event horizon

Hawking Radiation originates from quantum fluctuations in a region just outside the event horizon

⇒ Hawking Radiation is almost featureless: It encodes only the Bulk State Functions: mass, angular momentum and charge of the black hole

Hawking Radiation originates from quantum fluctuations in a region just outside the event horizon

⇒ Hawking Radiation is almost featureless: It encodes only the Bulk State Functions: mass, angular momentum and charge of the black hole

General Relativity + Quantum Mechanics

⇒ Black holes, no matter how they form, evaporate into the same (largely featureless) cloud of Hawking Radiation

Politicians

Politicians

Politicians

Vast number of initial states

<u>Trash</u>

Politicians

Vast number of initial states

<u>The Information Paradox:</u> This process cannot be described by Unitary Evolution

The exterior structure of a black hole, and the *Hawking radiation* is unique

One (1) state

Sgr A: Black hole at the core of Milky Way

Mass $\approx 4 \times 10^6 M_{\odot}$

 \odot

S

 \odot

 \odot

ъ

 \circ

Sgr A*

Sgr A: Black hole at the core of Milky Way

Mass $\approx 4 \times 10^6 M_{\odot}$ $A \approx 7 \times 10^{90} \text{ L}_{\text{Planck}}^2$ $S = \frac{1}{4} A \approx 10^{90}$

Number of microstates in black hole at Sgr A:

10⁹⁰

Chandra Observatory X-ray image

O

 $oldsymbol{O}$

ð

P

 \odot

O

Sgr A*

Mass $\approx 4 \times 10^6 M_{\odot}$ $A \approx 7 \times 10^{90} \text{ L}_{\text{Planck}}^2$ $S = \frac{1}{4} A \approx 10^{90}$

Number of microstates in black hole at Sgr A:

Black hole uniqueness \Rightarrow End state of Hawking Radiation is *unique*

The information problem:

Chandra Observatory X-ray image

0

0

O

0

000

0

0

0

0

0

0

0

0

00

Ø

P

0

0

0

Sgr A*

0

0 0

An old conceit: Can be fixed by very slow leakage of information

Hawking evaporation is extremely slow:

$$\label{eq:tevap} \begin{array}{ll} t_{evap} \end{array} = \begin{array}{ll} \frac{5120\,\pi\,G^2\,M_\odot^3}{\hbar\,c^4} \end{array} \approx \begin{array}{ll} 6.6\times10^{74}s \end{array} \approx \begin{array}{ll} 2.1\times10^{67}years \end{array}$$
 (for a one solar mass black hole)

Information can leak out very slowly via tiny quantum gravity/string ((*Riemann*)ⁿ) corrections to radiation.

An old conceit: Can be fixed by very slow leakage of information

Hawking evaporation is extremely slow:

$$\frac{t_{evap}}{\hbar c^4} = \frac{5120 \pi G^2 M_{\odot}^3}{\hbar c^4} \approx 6.6 \times 10^{74} s \approx 2.1 \times 10^{67} years$$
(for a one solar mass black hole)

Information can leak out very slowly via tiny quantum gravity/string ((Riemann)ⁿ) corrections to radiation.

<u>Mathur (2009)</u>: No!

Mathur, arXiv:0909.1038

Strong subadditivity of quantum information

⇒ Corrections cannot be small for information recovery

 \Rightarrow There must be O(1) to the physics at the horizon scale.

An old conceit: Can be fixed by very slow leakage of information

Hawking evaporation is extremely slow:

$$\frac{t_{evap}}{\hbar c^4} = \frac{5120 \pi G^2 M_{\odot}^3}{\hbar c^4} \approx 6.6 \times 10^{74} s \approx 2.1 \times 10^{67} years$$
 (for a one solar mass black hole)

Information can leak out very slowly via tiny quantum gravity/string ((*Riemann*)ⁿ) corrections to radiation.

<u>Mathur (2009)</u>: No!

Mathur, arXiv:0909.1038

Strong subadditivity of quantum information

- ⇒ Corrections cannot be small for information recovery
- \Rightarrow There must be O(1) to the physics at the horizon scale.

What is this new horizon-scale structure?

Many proposals/Research Efforts

- ★ Fuzzballs
- ★ Microstate Geometries Bena, Guisto, Russo, Martinec, Shigemori, Turton, Warner +
 - Almheiri, Marolf, Polchinski, Sully ... Susskind ...
- ★ Quantum Black Boxes "It from Qubit" collaboration
 - Hawking, Perry and Strominger +
- ★ ER=EPR Webs of Wormholes
- ★ (Quantum) "Pixie Dust"
- Bose-Einstein Condensates

Maldacena, Susskind...

Dvali, Lüst, Gomez + **Mazur and Mottola**

- Gravastars
- "Mirrors"

- ★ Modified Gravity
- ★ Loop Quantum Gravity
- ★ Others

★ Firewalls

BMS Hair

Mathur +

Many proposals/Research Efforts

- ★ Fuzzballs
 Mathur +
- + Microstate Geometries Bena, Guisto, Russo, Martinec, Shigemori, Turton, Warner +

Almheiri, Marolf, Polchinski, Sully ... Susskind ...

★ Quantum Black Boxes "It from Qubit" collaboration

Hawking, Perry and Strominger +

- ★ ER=EPR Webs of Wormholes
- ★ (Quantum) "Pixie Dust"
- Bose-Einstein Condensates

Maldacena, Susskind...

Dvali, Lüst, Gomez + Mazur and Mottola

- + Gravastars
- "Mirrors"

- ★ Modified Gravity
- ★ Loop Quantum Gravity
- ★ Others

★ Firewalls

HBMS Hair

With the exception of Microstate Geometries (and related Fuzzballs), all of these approaches fail to create anything that has a remote chance of actually looking and behaving like a black hole ...

Many of these approaches work by ignoring gravity entirely ...

Microstate Geometry Program

- <u>Goals:</u> **★** Resolve singularities
 - ★ Remove horizons
 - ★ Exhibit microstate structure
 - ★ Fully and correctly incorporate classical gravitational effects

Microstate Geometry Program

- <u>Goals:</u> **★** Resolve singularities
 - ★ Remove horizons
 - ★ Exhibit microstate structure
 - ★ Fully and correctly incorporate classical gravitational effects

Remain consistent with the triumphs of General Relativity

Microstate Geometry Program

- <u>Goals:</u> **★** Resolve singularities
 - ★ Remove horizons
 - ★ Exhibit microstate structure
 - ★ Fully and correctly incorporate classical gravitational effects

Remain consistent with the triumphs of General Relativity

Microstate Geometries

Smooth, horizonless "solitonic" solutions to the bosonic sector of supergravity (the low-energy limit of string theory) with the same asymptotic structure as a given black hole or black ring

Singularity resolved; Horizon removed

Looks exactly like a classical black hole until arbitrarily close to horizon scale

Why wasn't this done years ago?

Is there anything that is "stiff enough" to support matter when it is almost a black hole? Is there a mechanism for GR in 3+1 dimensions to support horizon-scale microstructure?

Is there anything that is "stiff enough" to support matter when it is almost a black hole? Is there a mechanism for GR in 3+1 dimensions to support horizon-scale microstructure? **No!**

Massive matter:

- In such matter Speed of sound > Speed of light
- ★ Buchdahl's Theorem: Central pressure/density infinite unless R_{matter} > 9/4 M
- ★ Singularity/Uniqueness/"No hair" theorems of black holes

Is there anything that is "stiff enough" to support matter when it is almost a black hole? Is there a mechanism for GR in 3+1 dimensions to support horizon-scale microstructure? **No!**

Massive matter:

- In such matter Speed of sound > Speed of light
- * Buchdahl's Theorem: Central pressure/density infinite unless R_{matter} > 9/4 M
- ★ Singularity/Uniqueness/"No hair" theorems of black holes

Massless matter:

* Intuition: Can only be trapped by horizons ...

Is there anything that is "stiff enough" to support matter when it is almost a black hole? Is there a mechanism for GR in 3+1 dimensions to support horizon-scale microstructure? **No!**

Massive matter:

- In such matter Speed of sound > Speed of light
- * Buchdahl's Theorem: Central pressure/density infinite unless R_{matter} > 9/4 M
- ★ Singularity/Uniqueness/"No hair" theorems of black holes

Massless matter:

- ★ Intuition: Can only be trapped by horizons ...
- ★ Can this be saved by the non-linearities GR? Could there be **solitons** = Smooth, classical lumps supported by strong non-linearities?

Simplest versions (end-states of stars): Time independent Solitons

Is there anything that is "stiff enough" to support matter when it is almost a black hole? Is there a mechanism for GR in 3+1 dimensions to support horizon-scale microstructure? **No!**

Massive matter:

- In such matter Speed of sound > Speed of light
- * Buchdahl's Theorem: Central pressure/density infinite unless R_{matter} > 9/4 M
- ★ Singularity/Uniqueness/"No hair" theorems of black holes

Massless matter:

- ★ Intuition: Can only be trapped by horizons ...
- ★ Can this be saved by the non-linearities GR? Could there be solitons = Smooth, classical lumps supported by strong non-linearities?

Simplest versions (end-states of stars): Time independent Solitons

In General Relativity coupled to massless fields:

Time-independent solutions with time-independent matter necessarily have horizons \Rightarrow They must have singularities

"No solitons without horizons"

The (almost) insurmountable difficulties of horizon-scale microstructure

The First Problem: A Black-Hole Correspondence Limit

Whatever structure you use to replace a black hole, close to the horizon scale, there must be a correspondence limit in which classical GR re-emerges as the effective theory and the object must actually look and behave like an astrophysical black hole ...

The First Problem: A Black-Hole Correspondence Limit

Whatever structure you use to replace a black hole, close to the horizon scale, there must be a correspondence limit in which classical GR re-emerges as the effective theory and the object must actually look and behave like an astrophysical black hole ...

Is there a (semi-)classical mechanism to support the structure against infall/ collapse in the light-crossing time of the black hole ...

The First Problem: A Black-Hole Correspondence Limit

Whatever structure you use to replace a black hole, close to the horizon scale, there must be a correspondence limit in which classical GR re-emerges as the effective theory and the object must actually look and behave like an astrophysical black hole ...

Is there a (semi-)classical mechanism to support the structure against infall/ collapse in the light-crossing time of the black hole ...

The problem with *Firewalls, quantum black boxes, BMS hair, Mirrors, Quantum "Pixie Dust"* is that they have *no such support mechanism,* except wishful thinking ...

The First Problem: A Black-Hole Correspondence Limit

Whatever structure you use to replace a black hole, close to the horizon scale, there must be a correspondence limit in which classical GR re-emerges as the effective theory and the object must actually look and behave like an astrophysical black hole ...

Is there a (semi-)classical mechanism to support the structure against infall/ collapse in the light-crossing time of the black hole ...

The problem with *Firewalls, quantum black boxes, BMS hair, Mirrors, Quantum "Pixie Dust"* is that they have *no such support mechanism,* except wishful thinking ...

FIRST LAW OF FIREWALL DYNAMICS:

You can't ignore classical gravity!

You can't ignore classical gravity!

Set $G_{Newton} = 0$ and understand the microstate structure of material that will form a black hole at finite G_{Newton} ...

e.g. String theory: Strominger and Vafa: hep-th/9601029

Set $G_{Newton} = 0$ and understand the microstate structure of material that will form a black hole at finite G_{Newton} ...

e.g. String theory: Strominger and Vafa: hep-th/9601029

Increase G_{Newton}, (or string coupling, g_s)

★ Perturbative matter/microstate structures shrink

+ Horizon areas grow: $R_S = \frac{2 G_{Newton} M}{c^2}$

Set $G_{Newton} = 0$ and understand the microstate structure of material that will form a black hole at finite G_{Newton} ...

e.g. String theory: Strominger and Vafa: hep-th/9601029

Increase G_{Newton}, (or string coupling, g_s)

★ Perturbative matter/microstate structures shrink

+ Horizon areas grow: $R_S = \frac{2 G_{Newton} M}{c^2}$

The Horowitz-Polchinski Correspondence Principle

As G_{Newton} or **g**_s increases, whatever microstates you have found disappear behind a horizon: (Almost) all proposed microstate structures fail in this way

Set $G_{Newton} = 0$ and understand the microstate structure of material that will form a black hole at finite G_{Newton} ...

e.g. String theory: Strominger and Vafa: hep-th/9601029

Increase G_{Newton}, (or string coupling, g_s)

★ Perturbative matter/microstate structures *shrink*

+ Horizon areas grow: $R_S = \frac{2 G_{Newton} M}{c^2}$

The Horowitz-Polchinski Correspondence Principle

As G_{Newton} or **g**_s increases, whatever microstates you have found disappear behind a horizon: (Almost) all proposed microstate structures fail in this way

There are similar problems for fine-tuned modified gravity: One might be able to stabilize a black hole of some mass, but it fails for different masses ..

Set $G_{Newton} = 0$ and understand the microstate structure of material that will form a black hole at finite G_{Newton} ...

e.g. String theory: Strominger and Vafa: hep-th/9601029

Increase G_{Newton}, (or string coupling, g_s)

★ Perturbative matter/microstate structures *shrink*

+ Horizon areas grow: $R_S = \frac{2 G_{Newton} M}{c^2}$

The Horowitz-Polchinski Correspondence Principle

As G_{Newton} or **g**_s increases, whatever microstates you have found disappear behind a horizon: (Almost) all proposed microstate structures fail in this way

There are similar problems for fine-tuned modified gravity: One might be able to stabilize a black hole of some mass, but it fails for different masses ..

★ The essential bottom lines:

- + Any proposed horizon-scale microstructure must grow in size $\sim G_{Newton}$
- Microstate structure cannot be supported by perturbative states/techniques, which necessarily shrink with G_{Newton}

It is not good enough to exhibit a small family of microstate structures, or produce a few fine-tuned examples ...

It is not good enough to exhibit a small family of microstate structures, or produce a few fine-tuned examples ...

To capture the dynamics of evolution, microstructure must capture/sample the entire phase-space:

Some fine-tuned, "atypical" microstate

Vast Families of "typical" entropically favored microstate

It is not good enough to exhibit a small family of microstate structures, or produce a few fine-tuned examples ...

To capture the dynamics of evolution, microstructure must capture/sample the entire phase-space:

It is not good enough to exhibit a small family of microstate structures, or produce a few fine-tuned examples ...

To capture the dynamics of evolution, microstructure must capture/sample the entire phase-space:

It is not good enough to exhibit a small family of microstate structures, or produce a few fine-tuned examples ...

To capture the dynamics of evolution, microstructure must capture/sample the entire phase-space:

For the formation of black-hole microstate structures to be entropically favored their phase-space must be sufficiently large

 $N = e^{S} \sim e^{10^{90}}$

black-hole microstate structures

It is not good enough to exhibit a small family of microstate structures, or produce a few fine-tuned examples ...

To capture the dynamics of evolution, microstructure must capture/sample the entire phase-space:

For the formation of black-hole microstate structures to be entropically favored their phase-space must be sufficiently large

 $N = e^{S} \sim e^{10^{90}}$

How do Microstate Geometries solve these problems?

A Transition driven by the Chern-Simons interaction

Microstate Geometries: smooth and horizonless in more than 3+1 dimensions

- **★** Geometry is supported against gravity by cohomological magnetic fluxes
- ★ Scale of the microstructure ~ horizon scale
- ★ A classic example of a phase/geometric transition in string theory: A new phase of stringy matter emerges at the horizon scale

A Transition driven by the Chern-Simons interaction

Microstate Geometries: smooth and horizonless in more than 3+1 dimensions

- **★** Geometry is supported against gravity by cohomological magnetic fluxes
- ★ Scale of the microstructure ~ horizon scale
- ★ A classic example of a phase/geometric transition in string theory: A new phase of stringy matter emerges at the horizon scale

No solitons without horizons?

A Transition driven by the Chern-Simons interaction

Microstate Geometries: smooth and horizonless in more than 3+1 dimensions

- **★** Geometry is supported against gravity by cohomological magnetic fluxes
- ★ Scale of the microstructure ~ horizon scale
- ★ A classic example of a phase/geometric transition in string theory: A new phase of stringy matter emerges at the horizon scale

No solitons without horizons? Gibbons and Warner, arXiv:1305.0957 In more than four space-time dimensions this is the only way to make solitons

A Transition driven by the Chern-Simons interaction

Microstate Geometries: smooth and horizonless in more than 3+1 dimensions

- **★** Geometry is supported against gravity by cohomological magnetic fluxes
- ★ Scale of the microstructure ~ horizon scale
- ★ A classic example of a phase/geometric transition in string theory: A new phase of stringy matter emerges at the horizon scale

No solitons without topological fluxes! Gibbons and Warner, arXiv:1305.0957 In more than four space-time dimensions this is the only way to make solitons

In string theory there are solitonic structures whose scale grows with G_{Newton}

In string theory there are solitonic structures whose scale grows with G_{Newton}

D-branes:

Tension ~ (G_{Newton})⁻¹ Fluctuating D-branes spread out with increasing G_{Newton}

In string theory there are solitonic structures whose scale grows with G_{Newton}

D-branes:

Tension ~ (G_{Newton})⁻¹ Fluctuating D-branes spread out with increasing G_{Newton}

Cohomological Fluxes

Massless magnetic fluxes supported on non-trivial topology: Scale of cycles grows with G_{Newton}

In string theory there are solitonic structures whose scale grows with G_{Newton}

D-branes:

Tension ~ (G_{Newton})⁻¹ Fluctuating D-branes spread out with increasing G_{Newton}

Cohomological Fluxes

Massless magnetic fluxes supported on non-trivial topology: Scale of cycles grows with G_{Newton}

Solitons grow bigger as the (perturbative) coupling grows stronger:

Can arrange that these structures grow in size with G_{Newton} at exactly the same rate as the horizon of a black hole.

⇒ Back-reacted "Microstate Geometries" extend to horizon scale

In string theory there are solitonic structures whose scale grows with G_{Newton}

D-branes:

Tension ~ (G_{Newton})⁻¹ Fluctuating D-branes spread out with increasing G_{Newton}

Cohomological Fluxes

Massless magnetic fluxes supported on non-trivial topology: Scale of cycles grows with G_{Newton}

Solitons grow bigger as the (perturbative) coupling grows stronger:

Can arrange that these structures grow in size with G_{Newton} at exactly the same rate as the horizon of a black hole.

⇒ Back-reacted "Microstate Geometries" extend to horizon scale

Can only solve the growth problem with such solitonic structures ...

Strominger and Vafa: Supersymmetric black holes in string theory hep-th/9601029

- Take G_{Newton}, g_{string} = 0 and study configurations that gives rise to macroscopic black hole at finite G_{Newton}, g_{string}.
- Count microstates using index theory
- Invoke protection of index states as G_{Newton}, g_{string} are increased

Strominger and Vafa: Supersymmetric black holes in string theory hep-th/9601029

- Take G_{Newton}, g_{string} = 0 and study configurations that gives rise to macroscopic black hole at finite G_{Newton}, g_{string}.
- Count microstates using index theory
- Invoke protection of index states as G_{Newton}, g_{string} are increased

What do these weak-coupling microstates become at strong coupling?

Strominger and Vafa: Supersymmetric black holes in string theory hep-th/9601029

- Take G_{Newton}, g_{string} = 0 and study configurations that gives rise to macroscopic black hole at finite G_{Newton}, g_{string}.
- Count microstates using index theory
- Invoke protection of index states as G_{Newton}, g_{string} are increased

What do these weak-coupling microstates become at strong coupling?

Answer: Microstate Geometries and their Excitations

Strominger and Vafa: Supersymmetric black holes in string theory hep-th/9601029

- Take G_{Newton}, g_{string} = 0 and study configurations that gives rise to macroscopic black hole at finite G_{Newton}, g_{string}.
- Count microstates using index theory
- Invoke protection of index states as G_{Newton}, g_{string} are increased

What do these weak-coupling microstates become at strong coupling?

Answer: Microstate Geometries and their Excitations

Two obvious ways to encode microstate structure:

- * Supergravity fluctuations of the microstate geometries
- ★ Intrinsically string fluctuations of the microstate geometries

Together this is phase-space is more than sufficient to encode the complete microstate structure of (supersymmetric) black holes

Strominger and Vafa: Supersymmetric black holes in string theory hep-th/9601029

- Take G_{Newton}, g_{string} = 0 and study configurations that gives rise to macroscopic black hole at finite G_{Newton}, g_{string}.
- Count microstates using index theory
- Invoke protection of index states as G_{Newton}, g_{string} are increased

What do these weak-coupling microstates become at strong coupling?

Answer: Microstate Geometries and their Excitations

Two obvious ways to encode microstate structure:

- * Supergravity fluctuations of the microstate geometries
- ★ Intrinsically string fluctuations of the microstate geometries

Together this is phase-space is more than sufficient to encode the complete microstate structure of (supersymmetric) black holes

Microstate geometries play an essential role because they are the *only way* to support such structure against gravitational collapse ...

Some New Black-Hole Physics

Schwarzschild black holes have singular space-times and depend on only two scales: Mass, M and the Planck scale, ℓ_P

Smoothly capped *microstate geometries* necessarily lead to:

- ★ a new "stringy phase of matter"
- \star a much richer set of structures
- ★ at least two *new* scales in black hole physics.

Some New Black-Hole Physics

Schwarzschild black holes have singular space-times and depend on only two scales: Mass, M and the Planck scale, ℓ_P

Smoothly capped *microstate geometries* necessarily lead to:

- ★ a new "stringy phase of matter"
- \star a much richer set of structures
- ★ at least two *new* scales in black hole physics.

★ Fluxes through cycles ↔ Order parameters of new phase

★ Fluctuations around the background ↔ microstate structure

Some New Black-Hole Physics

Schwarzschild black holes have singular space-times and depend on only two scales: Mass, M and the Planck scale, *e*P

Smoothly capped *microstate geometries* necessarily lead to:

- ★ a new "stringy phase of matter"
- \star a much richer set of structures
- ★ at least two *new* scales in black hole physics.

★ Fluxes through cycles ↔ Order parameters of new phase
★ Fluctuations around the background ↔ microstate structure

The new physical scales

- ★ Size, λ_T , of a typical cycle \leftrightarrow Scale of phase transition
- ★ Energy Gap = z_{max} × (L = Horizon scale)⁻¹ defined by z_{max} = maximum redshift between infinity and the topology at the bottom that resolves the black hole

Conclusions

- ★ Microstate Geometries are the only viable, fully-back-reacted mechanism for supporting horizon-scale microstructure
- ★ Microstate Geometries represent a new state of matter that emerges at the horizon scale and prevents the collapse from forming a horizon or a singularity
 - Resolves the information problem by making all the microstate structure accessible from outside
- Supergravity and stringy excitations of microstate geometries have the capacity to encode the vast number of microstates of a black hole
 - Entropically viable as end-state of collapse

Conclusions

- ★ Microstate Geometries are the only viable, fully-back-reacted mechanism for supporting horizon-scale microstructure
- ★ Microstate Geometries represent a new state of matter that emerges at the horizon scale and prevents the collapse from forming a horizon or a singularity
 - Resolves the information problem by making all the microstate structure accessible from outside
- ★ Supergravity and stringy excitations of microstate geometries have the capacity to encode the vast number of microstates of a black hole
 - Entropically viable as end-state of collapse
- ★ Why not declare victory?
 - Almost all these results have only been established for supersymmetric black holes; Stationary, time independent-phenomena
 - + Strong arguments for near-supersymmetric

Conclusions

- ★ Microstate Geometries are the only viable, fully-back-reacted mechanism for supporting horizon-scale microstructure
- ★ Microstate Geometries represent a new state of matter that emerges at the horizon scale and prevents the collapse from forming a horizon or a singularity
 - Resolves the information problem by making all the microstate structure accessible from outside
- ★ Supergravity and stringy excitations of microstate geometries have the capacity to encode the vast number of microstates of a black hole
 - + Entropically viable as end-state of collapse
- ★ Why not declare victory?
 - Almost all these results have only been established for supersymmetric black holes; Stationary, time independent-phenomena
- Strong arguments for near-supersymmetric
- ★ Current Research:
 - + How these ideas extend to non-supersymmetric, astrophysical black holes.
 - Time-dependent phenomena: Evaporation, Accretion, Scrambling,

Dynamics of Microstate Structure