Signals from the structure@horizon

losif Bena IPhT, CEA Saclay Nick has hopefully convinced you that there must exist STRUCTURE @ horizon scale

Avoid forming a horizon

- Collapsing shell forms horizon
 Oppenheimer and Snyder (1939)
- If curvature is low, no reason not to trust classical GR
- By the time shell becomes curved-enough for quantum effects to become important, horizon in causal past (60 hours for NGC 4889 BH)

Black hole entropy the structure must have

MICROSTATE GEOMETRIES whose construction we can trust

HOW DO WE GET FROM String Theory BH to Real World BH ?

HOW DOES STRUCTURE AFFECT HORIZON PHYSICS ?

Important feature

- Have the same size as the BH for any mass
 ↔ size grows with G_{Newton}
- Boson stars need different scalar fields of different masses to replace various BH's: One field for M, another for 30 M, etc
- String theory automatically produces fields whose mass decreases for larger BH

Non-perturbative physics

 They are the reason why microstate geometries have BH size for ANY BH mass

Simplest Black Hole: Strominger, Vafa D1 branes (strings), D5 branes, momentum P Momentum quanta

 $\delta P = 1/R$

one D1 brane, $2\pi R$

Simplest Black Hole:Strominger, VafaD1 branes (strings), D5 branes, momentum P

Microstate Counting

- Total momentum N_P / R carried by quanta of
- 1/ N₁N₅R
- Total = $N_1 N_5 N_P$ quanta
- Number of states \Leftrightarrow partitions of $N_1N_5N_P$
- How many states (partitions) ? $N_1N_5 N_P = 2 : (1,1) (2)$ $N_1N_5 N_P = 3 : (1,1,1) (2,1) (3)$ $N_1N_5 N_P = 5 : (1,1,1,1,1) (1,1,1,2) (1,1,3) (1,4) (5) (1,2,2) (2,3)$

 $N_1N_5N_P$ quanta: e^s states,

S micro = $2\pi (N_1 N_5 N_P)^{1/2} = S$ black hole !!!

Low-mass degrees of freedom

Given total energy budget: most entropy obtained by making brane-antibrane pairs:

 $S=2\pi (N_1^{1/2} + \underline{N}_1^{1/2})(N_2^{1/2} + \underline{N}_2^{1/2})(N_3^{1/2} + \underline{N}_3^{1/2})$

Horowitz, Maldacena, Strominger

Mass gap = $1/N_1N_2N_3$

Larger BH → lower mass-gap → larger size

Essentially same result as boson star whose scalar mass decreases with increasing BH size !

Easy (relatively...)

Supersymmetric Extremal Classical Stationary Hard

Non-supersymmetric Non-extremal Quantum Time-dependent

Universal features:

Yuge[™] amount of new degrees of freedom @ horizon Two new scales: size of bubbles distance from the horizon - E_{GAP}

Horizon viscosity Microstate mountains Distortion of Love numbers / Kerr multipoles

Horizon viscosity

Lots of low-mass-gap degrees of freedom: $e^{10^{90}}$ (entropy of BH @ center of galaxy = 10^{90})

- can cause dissipative effects (like for electron moving parallel to a conducting plate)

 any distortion of structure@horizon immediately dissipated by these degrees of freedom

 hard to get any reflection - unless one can convince these degrees of freedom not to get excited

Already taken into account by **perfectlyabsorbing boundary conditions** of GR BH ?

Why do people get reflection / echoes ? Ashfordi & friends

Solve wave equation in one particular microstate geometry

Beautiful gapped spectrum. Infalling wave reflected \rightarrow echoes

Ignoring huge number of low-energy excitations that move this geometry to the other geometries

Microstate mountains

- microstate geometries break spherical symmetry
 - similar to molecules breaking translational symmetry of fluid approx.
 - visible at the scale of the mean free path (shot noise)
- analogous to mountains on neutron stars
 - create jitters on infalling stuff

Questions:

- What is the scale where spherical symmetry is broken? (width of microstate mountains?)
- By how much ? (height of mountains ?)
- Can people who do signals from neutron stars implement them in their calculations?

Typical microstates may be very spherical ? Planck-size bumps?

Quantum - Classical confusion

Geometry

- Quantum Tunneling important
- Hilbert space dimension = e^{10^90}
- Microstate geometries = coherent states
 basis for Hilbert space (overcomplete) Glauber '63
- Typical state in Hilbert space will be quantum superposition of geometries → expectation values ~ e - S/2 ???
- Decoherence → one will get result from typical microstate Don Page, private communication

Multipole moments

- spinning ball of dust, liquid, solid shell, boson star
- Kerr BH with vacuum at horizon
- spinning STRUCTURE@horizon scale

Gravity waves from EMRI with non-aligned spins: Need 3 moments to rule out Kerr BH, 4 to rule out spinning boson star (Ryan '95)

What we **need**: Kerr microstate geometries

What we have: NHEK microstates (Heidmann '18)

Next steps: Glue NHEK to Kerr

go non-extremal

Multipole moments

Love numbers : response to tidal stress zero for BH Damour, Nagar '09 finite for other objects *log* dependence on scale above horizon Cardoso, Franzin, Maselli, Pani, Raposo '17

Computable once we have Kerr microstates

Fuzzball complementarity: unusual matter forming STRUCTURE @ horizon gives "classical horizon experience" to infalling observer. Same as vacuum. Mathur, Turton

What if String Theory does not describe real world ?

- Tant pis pour le monde réel 😞
- More seriously: structure@horizon must be there in any QG theory
- Must have **unusual** properties:
 - lighter-mass effective fields for increasing BH size
 - non-perturbative degrees of freedom
 - nontrivial 4D matter to stay@horizon (no Pixie dust)
 - huge entropy: quantum tunneling
- "top-down predictions" ignoring this physics = b.s.
- Universal features like low QGP viscosity predicted by AdS-CFT, measured at RHIC

What would help

- Solve second-order PDE's with >10 functions of 2 variables
 - (rod structure \rightarrow pentagon and more)
 - other spectral methods
- Essential for constructing systematically non-extremal BH microstates
- Signals for microstate mountains (same code as for neutron stars)
- Extra d.o.f. modify viscosity can one take that into account ?