Constraining dipolar radiation and modifications to dispersion relation with LISA GdR: Fundamental Physics

Alexandre TOUBIANA

APC (Paris)

January 31th 2019

With: S. Babak (APC), E. Barausse (IAP) and S. Marsat (APC)

- GR is extremely well tested in solar system scale and observations of binary pulsars and GW are in excellent agreement with GR but important issues remain (Dark Matter, Dark Energy, Quantum Gravity...)
- Many alternative theories of gravity but very hard to compute the full prediction of these theories concerning GW

- GR is extremely well tested in solar system scale and observations of binary pulsars and GW are in excellent agreement with GR but important issues remain (Dark Matter, Dark Energy, Quantum Gravity...)
- Many alternative theories of gravity but very hard to compute the full prediction of these theories concerning GW

 \Rightarrow Theory agnostic analysis based on parametrized modifications to GR

- Goal: Place constraints on phenomenological modifications to GW generation and propagation
- Method: Multiband analysis in a bayesian framework

Generation: dipolar emission

 In some theories BH can have extra hair and have a charge, eventually leading to dipolar radiation in BH binaries (scalar tensor theories with non trivial boundary conditions, EdGB, massive gravity?)

Generation: dipolar emission

 In some theories BH can have extra hair and have a charge, eventually leading to dipolar radiation in BH binaries (scalar tensor theories with non trivial boundary conditions, EdGB, massive gravity?)

•
$$\dot{E} = \dot{E}_{GR}(1 + Bv^{-2})$$

•
$$B \propto (s_1 - s_2)^2$$
, s_i : charge of the body i

Generation: dipolar emission

 In some theories BH can have extra hair and have a charge, eventually leading to dipolar radiation in BH binaries (scalar tensor theories with non trivial boundary conditions, EdGB, massive gravity?)

•
$$\dot{E} = \dot{E}_{GR}(1 + Bv^{-2})$$

• $B \propto (s_1 - s_2)^2$, s_i : charge of the body i

121

Propagation: modification of dispersion relation

• In some theories the graviton verifies a modified dispersion relation:

Propagation: modification of dispersion relation

• In some theories the graviton verifies a modified dispersion relation:

•
$$E^2 = p^2 + A_\alpha p^\alpha$$

• $\alpha = 0$ in massive gravity, $\alpha_1 = 4$ and $\alpha_2 = 6$ in Hořava gravity

Propagation: modification of dispersion relation

• In some theories the graviton verifies a modified dispersion relation:

•
$$E^2 = p^2 + A_\alpha p^\alpha$$

• $\alpha = 0$ in massive gravity, $\alpha_1 = 4$ and $\alpha_2 = 6$ in Hořava gravity

Figure: Comparison between waveforms with a superluminal graviton (green) and GR (blue). The waveforms have been aligned at the merger.

Parametrized post-Einsteinian framework

•
$$h_{ppE} = h_{GR} e^{i\beta(\pi \mathcal{M}f)^b}$$

æ

•
$$h_{ppE} = h_{GR} e^{i\beta(\pi \mathcal{M}f)^b}$$

• For dipolar radiation: b = -1 and $\beta \propto B$

•
$$h_{ppE} = h_{GR} e^{i\beta(\pi \mathcal{M}f)^b}$$

- For dipolar radiation: b = -1 and $eta \propto B$
- For dispersion relation: b = lpha 1 and $eta \propto {\sf A}_lpha$

Stellar Origin Black Holes

Figure: Multiband GW astronomy with Stellar Origin Black Holes (A. Sesana, PRL 2016)

• $\simeq 10^2$ expected to be detected in a 5 years LISA mission with SNR > 8 and merge in 10 years in LIGO/VIRGO band (A. Sesana, PRL 2016)

• Study mock system adapted from catalogue by A. Sesana: spin but non precession

- Study mock system adapted from catalogue by A. Sesana: spin but non precession
- 11 GR parameters: $(m_1, m_2, a_1, a_2, f_0, D_L, \lambda, \beta, \iota, \psi, \phi_0)$

- Study mock system adapted from catalogue by A. Sesana: spin but non precession
- 11 GR parameters: $(m_1, m_2, a_1, a_2, f_0, D_L, \lambda, \beta, \iota, \psi, \phi_0)$
- Observe inspiral with LISA for 5 years: $SNR_{LISA} = 18$

- Study mock system adapted from catalogue by A. Sesana: spin but non precession
- 11 GR parameters: $(m_1, m_2, a_1, a_2, f_0, D_L, \lambda, \beta, \iota, \psi, \phi_0)$
- Observe inspiral with LISA for 5 years: $SNR_{LISA} = 18$
- Observe the merger 4 years after with 3rd generation of ground based detectors (Cosmic Explorer, Einstein Telescope): SNR_{ALIGO+} = 120

- Study mock system adapted from catalogue by A. Sesana: spin but non precession
- 11 GR parameters: $(m_1, m_2, a_1, a_2, f_0, D_L, \lambda, \beta, \iota, \psi, \phi_0)$
- Observe inspiral with LISA for 5 years: $SNR_{LISA} = 18$
- Observe the merger 4 years after with 3rd generation of ground based detectors (Cosmic Explorer, Einstein Telescope): SNR_{ALIGO+} = 120
 - $\Rightarrow \mathsf{Not} \mathsf{ done} \mathsf{ yet}$

- Study mock system adapted from catalogue by A. Sesana: spin but non precession
- 11 GR parameters: $(m_1, m_2, a_1, a_2, f_0, D_L, \lambda, \beta, \iota, \psi, \phi_0)$
- Observe inspiral with LISA for 5 years: $SNR_{LISA} = 18$
- Observe the merger 4 years after with 3rd generation of ground based detectors (Cosmic Explorer, Einstein Telescope): SNR_{ALIGO+} = 120
 - \Rightarrow Not done yet
- Simulate data in boths bands using PhenomD for the waveform

• Bayes theorem: $p(\theta|d, \mathcal{H}) = \frac{p(d|\theta, \mathcal{H})p(\theta|\mathcal{H})}{p(d|\mathcal{H})}$

문 ▶ 문

 Sample the posterior using Markov Chain Monte Carlo and nested sampling

- Bayes theorem: $p(\theta|d, \mathcal{H}) = \frac{p(d|\theta, \mathcal{H})p(\theta|\mathcal{H})}{p(d|\mathcal{H})}$
- Sample the posterior using Markov Chain Monte Carlo and nested sampling
- Compute evidences and bayes ratios: $\mathcal{B} = \frac{p(d|GR)}{p(d|MG)}$ to perform model selection

Run bayesian analysis only with GR parameters on GR signal in LISA

Variable	True value	Recovered value with 90% confidence level interval	
$m_1~(M_\odot)$	50.63	$54.39^{+19.6}_{-9.9}$	
$m_2~({ m M}_\odot)$	24.84	$23.11^{+4.5}_{-5.1}$	
aı	0.054	$-0.048^{+0.54}_{-0.31}$	
a ₂	0.0239	$-0.0056\substack{+0.85\\-0.86}$	
D_L (Mpc)	259	230^{+49}_{-55}	
Sky position	(10°, 201°)	(10°, 201°), $\Omega=0.4~{ m deg}^2$	

Constraints on dipolar emission

Figure: Allowed region for dipolar amplitude obtained with different measures (90% confidence level)

B> B

Constraints on modifications with LISA

Actual Constrains	BH-LMXB:	LIGO/VIRGO:
	$< 4 imes 10^{-2}$	$< 8 imes 10^{-23}$
	Binary pulsars:	Solar System:
	$< 2 imes 10^{-9}$	$< 7 imes 10^{-23}$

Constraints on modifications with LISA

	В	m _g
Dipolar Emission	< 4 $ imes$ 10 ⁻¹¹	

$$\begin{array}{c|c} \mbox{Actual Constrains} \\ \mbox{Actual Constrains} \\ \mbox{Actual Constrains} \\ \mbox{Binary pulsars:} \\ \mbox{<} 2 \times 10^{-9} \\ \mbox{Solar System:} \\ \mbox{<} 7 \times 10^{-23} \end{array}$$

	В	m _g
Dipolar Emission	< 4 $ imes$ 10 ⁻¹¹	
Massive Graviton		$< 8 imes 10^{-25}$

	BH-LMXB:	LIGO/VIRGO:
	$<$ 4 $ imes$ 10 $^{-2}$	$< 8 imes 10^{-23}$
Actual Constrains	Binary pulsars:	Solar System:
	$< 2 imes 10^{-9}$	$< 7 imes 10^{-23}$

	В	m _g
Dipolar Emission	< 4 $ imes$ 10 ⁻¹¹	
Massive Graviton		$< 8 imes 10^{-25}$
Dipolar Emission and Massive Graviton	$< 3 imes 10^{-10}$	$< 1 imes 10^{-24}$
Actual Constrains	BH-LMXB: $< 4 \times 10^{-2}$	LIGO/VIRGO: < 8 × 10 ⁻²³
	Binary pulsars: $< 2 \times 10^{-9}$	Solar System: $< 7 \times 10^{-23}$

Detection of modifications with LISA

Work in progress

Generate signal in LISA with dipolar emisison: $B = 1 \times 10^{-6}$

Figure: $10^6 B = 0.99 \pm 0.019$

- Intrinsic parameters of the source are strongly correlated and can be very degenerate
- Additionally, modifications to GR are also correlated to these parameters

- Intrinsic parameters of the source are strongly correlated and can be very degenerate
- Additionally, modifications to GR are also correlated to these parameters
- Makes the detection of modifications harder
- Analysis based on Fisher matrix might not be reliable

Summary and perspectives

• We have analyzed how observations of Stellar Origin Binary Black Holes with LISA could help constraining parametrized modifications to GR

Summary and perspectives

• We have analyzed how observations of Stellar Origin Binary Black Holes with LISA could help constraining parametrized modifications to GR

Main results:

- Actual bounds could be improved by orders of magnitude
- We expect to be able to detect modificatons lower than actual constrains if those exist

Summary and perspectives

• We have analyzed how observations of Stellar Origin Binary Black Holes with LISA could help constraining parametrized modifications to GR

Main results:

- Actual bounds could be improved by orders of magnitude
- We expect to be able to detect modificatons lower than actual constrains if those exist

Next:

- Combining observations from LISA and 3rd generation of ground based detectors should improve parameter estimation and constraints on modifications to GR
- Compute evidences for different systems