Black holes in the Cubic Galileon theory

Karim Van Aelst Work in collaboration with Eric Gourgoulhon, Philippe Grandclément, Christos Charmousis

Laboratoire de l'Univers et de ses Théories

Rencontre du GdR Ondes Gravitationnelles 31/01/19

Outline

Motivations

- Experimental tests
- Current observations
- Predictions of GR
- Modified gravity

2 Cubic Galileon

- Distinctive features
- Dynamics
- Hairy BH solutions

3 Problem

- Rotating black hole
- Equations and boundary conditions

4 Numerical treatment

- Spectral methods
- Static solution with increasing coupling
- Rotating solution with constant coupling
- Next steps

Experimental tests Current observations Predictions of GR Modified gravity

Experimental tests

• Experimental successes of General Relativity:

Light deflection

Gravitational waves

. . .

 \longrightarrow lack of strong field tests

Experimental tests Current observations Predictions of GR Modified gravity

Current observations

• Data from Sgr A* (4 \times 10 $^{6}M_{\odot}$ black hole at the center of the galaxy)

GRAVITY

High precision astrometry of the bodies orbitting Sgr A*

Event Horizon Telescope

Pictures of the surrondings of Sgr A*

Experimental tests Current observations Predictions of GR Modified gravity

Predictions of GR

Kerr black hole

Black hole with scalar hair¹

Boson star²

¹Vincent, Gourgoulhon, Herdeiro & Radu, Phys. Rev. D 94, 084045 (2016) using the libraries LORENE and KADATH and the ray-tracing code GYOTO ²Vincent, Meliani, Grandclément, Gourgoulhon & Straub, Class. Quantum Grav. 33, 105015 (2016)

Experimental tests Current observations Predictions of GR Modified gravity

Modified gravity

• What if the predictions do not agree with the observations ?

 \longrightarrow modify GR to account for observed deviations

³Hawking, Commun. Math. Phys. 25, 167 (1972)

- ⁴L. Hui and A. Nicolis, Phys. Rev. Lett. 110, 241104 (2013)
- ⁵T.P. Sotiriou and V. Faraoni, Phys. Rev. Lett. 108, 081103 (2012)

Experimental tests Current observations Predictions of GR Modified gravity

Modified gravity

• What if the predictions do not agree with the observations ?

 \longrightarrow modify GR to account for observed deviations

- Yet, no interest in modified theories with same BH as GR:
 - 1971: vacuum stationary BH of Brans-Dicke³

- 2013: vacuum BH with static, spherically symmetric metric and scalar field of covariant ${\sf Galileon}^4$

- 2014: asymptotically flat vacuum stationary BH of a large class of scalar-tensor theories $^{\rm 5}$

³Hawking, Commun. Math. Phys. 25, 167 (1972)

⁴L. Hui and A. Nicolis, Phys. Rev. Lett. 110, 241104 (2013)

⁵T.P. Sotiriou and V. Faraoni, Phys. Rev. Lett. 108, 081103 (2012)

Distinctive features Dynamics Hairy BH solutions

Distinctive features

• Admits static solutions different from Schwarzschild⁶

⁶Babichev, Charmousis, Lehébel & Moskalets, JCAP09(2016)011

Distinctive features Dynamics Hairy BH solutions

Distinctive features

• Admits static solutions different from Schwarzschild⁶

• Emerges in the decoupling limit of the "DGP" brane model (self-accelerating with screening)

⁶Babichev, Charmousis, Lehébel & Moskalets, JCAP09(2016)011

Distinctive features Dynamics Hairy BH solutions

Distinctive features

• Admits static solutions different from Schwarzschild⁶

• Emerges in the decoupling limit of the "DGP" brane model (self-accelerating with screening)

• Consistent with $c_{GW} = c$ (GW170817 + GRB170817A)

⁶Babichev, Charmousis, Lehébel & Moskalets, JCAP09(2016)011

Distinctive features Dynamics Hairy BH solutions

Dynamics

• Vacuum action (coupling constants ζ , η , γ):

$$S_{CG}\left[g,\phi\right] = \int \left[\zeta(R^{(g)} - 2\Lambda) - \eta \nabla_{\mu}\phi \nabla^{\mu}\phi + \gamma \nabla_{\mu}\phi \nabla^{\mu}\phi \Box \phi\right] \sqrt{|\det g|} d^{4}x$$

Distinctive features Dynamics Hairy BH solutions

Dynamics

• Vacuum action (coupling constants ζ , η , γ):

$$S_{CG}[g,\phi] = \int \left[\zeta (R^{(g)} - 2\Lambda) - \eta \nabla_{\mu} \phi \nabla^{\mu} \phi + \gamma \nabla_{\mu} \phi \nabla^{\mu} \phi \Box \phi \right] \sqrt{|\det g|} d^{4}x$$

• Metric equations (Einstein-like in spite of nonminimal coupling):

$$rac{\delta S_{CG}}{\delta g_{\mu
u}} = 0 \; \longrightarrow \; G_{\mu
u} + \Lambda g_{\mu
u} = T^{(\phi)}_{\mu
u}$$

Distinctive features Dynamics Hairy BH solutions

Dynamics

• Vacuum action (coupling constants ζ , η , γ):

$$S_{CG}[g,\phi] = \int \left[\zeta (R^{(g)} - 2\Lambda) - \eta \nabla_{\mu} \phi \nabla^{\mu} \phi + \gamma \nabla_{\mu} \phi \nabla^{\mu} \phi \Box \phi \right] \sqrt{|\det g|} d^{4}x$$

• Metric equations (Einstein-like in spite of nonminimal coupling):

$$rac{\delta S_{CG}}{\delta g_{\mu
u}} = 0 \ \longrightarrow \ G_{\mu
u} + \Lambda g_{\mu
u} = T^{(\phi)}_{\mu
u}$$

• Scalar equation (current conservation from shift symmetry $\phi \rightarrow \phi + c$):

$$\frac{\delta S_{CG}}{\delta \phi} = 0 \longrightarrow \nabla_{\mu} J^{\mu} = 0$$

Distinctive features Dynamics Hairy BH solutions

Hairy BH solutions

• Recall no-scalar-hair theorem: different theory \Rightarrow different black holes:

for the Cubic Galileon, $\phi = \phi(r) \Rightarrow g$ is Schwarzschild

⁷Babichev, Charmousis, Lehébel & Moskalets, JCAP09(2016)011

Distinctive features Dynamics Hairy BH solutions

Hairy BH solutions

• Recall no-scalar-hair theorem: different theory $\not \Rightarrow$ different black holes:

for the Cubic Galileon, $\phi = \phi(r) \Rightarrow g$ is Schwarzschild

 \longrightarrow Introduce a linear time dependence⁷: $\phi = qt + \Psi(r)$

 \rightarrow Preserves spacetime symmetries

 \rightarrow Interesting cosmological dynamics

 \rightarrow Yields BH different from GR ones

⁷Babichev, Charmousis, Lehébel & Moskalets, JCAP09(2016)011

Rotating black hole Equations and boundary conditions

Rotating black hole

• (t, ϕ) -orthogonality ("circularity"): $g_{tr} = g_{t\theta} = g_{\phi r} = g_{\phi \theta} = g_{r\theta} = 0$

$$\implies g_{\mu\nu}(r,\theta) = \begin{pmatrix} -N^2 + B^2 \omega^2 r^2 \sin^2 \theta & 0 & 0 & -\omega B^2 r^2 \sin^2 \theta \\ 0 & A^2 & 0 & 0 \\ 0 & 0 & A^2 r^2 & 0 \\ -\omega B^2 r^2 \sin^2 \theta & 0 & 0 & B^2 r^2 \sin^2 \theta \end{pmatrix}$$

⁸B. Kleihaus, J. Kunz, and E. Radu, Rotating Black Holes in Dilatonic Einstein-Gauss-Bonnet Theory, Phys. Rev. Lett. 106, 151104 (2011)

Rotating black hole Equations and boundary conditions

Rotating black hole

• (t, ϕ) -orthogonality ("circularity"): $g_{tr} = g_{t\theta} = g_{\phi r} = g_{\phi \theta} = g_{r\theta} = 0$

$$\implies g_{\mu\nu}(r,\theta) = \begin{pmatrix} -N^2 + B^2 \omega^2 r^2 \sin^2 \theta & 0 & 0 & -\omega B^2 r^2 \sin^2 \theta \\ 0 & A^2 & 0 & 0 \\ 0 & 0 & A^2 r^2 & 0 \\ -\omega B^2 r^2 \sin^2 \theta & 0 & 0 & B^2 r^2 \sin^2 \theta \end{pmatrix}$$

 \longrightarrow Relevant for rotating stars with no meridional flow

 \rightarrow Adapted to rotating BH, e.g. in dilatonic Einstein-Gauss-Bonnet⁸

⁸B. Kleihaus, J. Kunz, and E. Radu, Rotating Black Holes in Dilatonic Einstein-Gauss-Bonnet Theory, Phys. Rev. Lett. 106, 151104 (2011)

Rotating black hole Equations and boundary conditions

Equations and boundary conditions

• Inject circular metric and scalar ansatz into five (recombined) equations of motion:

$$\begin{array}{ll} \Delta_3 N = \mathcal{S}_N ; & \Delta_2 [NA] = \mathcal{S}_A ; \\ \Delta_2 [NBr \sin \theta] = \mathcal{S}_B ; & \Delta_3 [\omega r \sin \theta] = \mathcal{S}_\omega ; \\ \nabla_\mu J^\mu = 0 \end{array}$$

Equations and boundary conditions

• Inject circular metric and scalar ansatz into five (recombined) equations of motion:

$$\begin{split} \Delta_3 N &= \mathcal{S}_N ; & \Delta_2 [NA] = \mathcal{S}_A ; \\ \Delta_2 [NBr \sin \theta] &= \mathcal{S}_B ; & \Delta_3 [\omega r \sin \theta] = \mathcal{S}_\omega ; \\ \nabla_\mu J^\mu &= 0 \end{split}$$

- Set boundary conditions:
 - asymptotic flatness: $N_\infty=A_\infty=B_\infty=1$; $\omega_\infty=0$; $\partial_ heta\Psi_\infty=0$
 - vanishing lapse: $N_{\mathcal{H}} = 0$ (causes degeneracy)
 - vanishing expansion: $\theta_{\mathcal{H}}^{(I)} = 0$
 - rotating horizon: $\omega_{\mathcal{H}}=\Omega_{\mathcal{H}}$
 - finite norm of scalar gradient $(\partial \phi)^2_{\mathcal{H}}$

- no conical singularity:
$$A_{\mid_\Delta} = B_{\mid_\Delta}$$

 Motivations
 Spectral methods

 Cubic Galileon
 Static solution with increasing coupling Problem

 Numerical treatment
 Next steps

Spectral methods

• Discretization: consider the truncated decompositions onto standard basis functions

e.g.
$$A(r,\theta) = \sum_{i=0}^{N_r} \sum_{j=0}^{N_{\theta}} \tilde{A}_{ij} T_i(r) \cos(2j\theta)$$

⁹Grandclément, J. Comput. Phys. 229, 3334 (2010), http://kadath.obspm.fr/

 Motivations
 Spectral methods

 Cubic Galileon Problem
 Static solution with increasing coupling Rotating solution with constant coupling

 Numerical treatment
 Next steps

Spectral methods

• Discretization: consider the truncated decompositions onto standard basis functions

e.g.
$$A(r,\theta) = \sum_{i=0}^{N_r} \sum_{j=0}^{N_{\theta}} \tilde{A}_{ij} T_i(r) \cos(2j\theta)$$

 \longrightarrow Exponential convergence of the series for smooth functions

 \longrightarrow Transforms any system of PDE's into a nonlinear algebraic system, solved with Newton-Raphson algorithm implemented in $\rm KADATH~library^9$

⁹Grandclément, J. Comput. Phys. 229, 3334 (2010), http://kadath.obspm.fr/

Spectral methods Static solution with increasing coupling Rotating solution with constant coupling Next steps

Static solutions with increasing nonminimal coupling

Spectral methods Static solution with increasing coupling Rotating solution with constant coupling Next steps

Static solutions with increasing nonminimal coupling

Spectral methods Static solution with increasing coupling Rotating solution with constant coupling Next steps

Static solutions with increasing nonminimal coupling

 Motivations
 Spectral methods

 Cubic Galileon
 Static solution with increasing coupling

 Problem
 Rotating solution with constant coupling

 Numerical treatment
 Next steps

Spectral methods Static solution with increasing coupling Rotating solution with constant coupling Next steps

Motivations Spectral methods Cubic Galileon Static solution with increasing coupling Problem Rotating solution with constant coupling Numerical treatment Next steps

Motivations Spectral methods Cubic Galileon Static solution with increasing coupling Problem Rotating solution with constant coupling Numerical treatment Next steps

Spectral methods Static solution with increasing coupling Rotating solution with constant coupling Next steps

Spectral methods Static solution with increasing coupling Rotating solution with constant coupling Next steps

Motivations Spectral methods Cubic Galileon Static solution with increasing coupling Problem Rotating solution with constant coupling Numerical treatment Next steps

 Motivations
 Spectral methods

 Cubic Galileon
 Static solution with increasing coupling

 Problem
 Rotating solution with constant coupling

 Numerical treatment
 Next steps

Next steps

- Determine the causal type of scalar gradient
- Search for an ergoregion
- Reach rapidly rotating branch
- Extract global quantities
- Try other boundary conditions for the scalar (on the norm of the current, or at infinity)
- Integrate null and timelike geodesics

- \bullet Observations of $Sgr\,A^{*}$ provide new tests of GR in the strong field regime
- \bullet The Cubic Galileon is a well motivated modified theory that could account for deviations from GR
- Ongoing numerical computations of rotating BH should allow to predict the deviations from GR (e.g. from the integration of null geodesics)