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Experimental tests

• Experimental successes of General Relativity:

Light deflection

Shapiro delay

...
Gravitational waves

−→ lack of strong field tests
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Current observations

• Data from Sgr A* (4× 106M� black hole at the center of the galaxy)

GRAVITY

High precision
astrometry of the

bodies orbitting Sgr A*

Event Horizon
Telescope

Pictures of the
surrondings of Sgr A*
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Predictions of GR

1Vincent, Gourgoulhon, Herdeiro & Radu, Phys. Rev. D 94, 084045 (2016)
using the libraries LORENE and Kadath and the ray-tracing code Gyoto

2Vincent, Meliani, Grandclément, Gourgoulhon & Straub, Class. Quantum Grav.
33, 105015 (2016)

Kerr black hole

Black hole
with scalar hair1

Boson star2
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Modified gravity

• What if the predictions do not agree with the observations ?

−→ modify GR to account for observed deviations

• Yet, no interest in modified theories with same BH as GR:

- 1971: vacuum stationary BH of Brans-Dicke3

- 2013: vacuum BH with static, spherically symmetric metric and
scalar field of covariant Galileon4

- 2014: asymptotically flat vacuum stationary BH of a large class of
scalar-tensor theories5

3Hawking, Commun. Math. Phys. 25, 167 (1972)
4L. Hui and A. Nicolis, Phys. Rev. Lett. 110, 241104 (2013)
5T.P. Sotiriou and V. Faraoni, Phys. Rev. Lett. 108, 081103 (2012)
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Distinctive features

• Admits static solutions different from Schwarzschild6

• Emerges in the decoupling limit of the “DGP” brane model
(self-accelerating with screening)

• Consistent with cGW = c (GW170817 + GRB170817A)

6Babichev, Charmousis, Lehébel & Moskalets, JCAP09(2016)011
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Dynamics

• Vacuum action (coupling constants ζ, η, γ):

SCG [g , φ] =

∫ [
ζ(R(g) − 2Λ)− η∇µφ∇µφ+ γ∇µφ∇µφ�φ

]√
|det g |d4x

• Metric equations (Einstein-like in spite of nonminimal coupling):

δSCG
δgµν

= 0 −→ Gµν + Λgµν = T (φ)
µν

• Scalar equation (current conservation from shift symmetry φ→ φ+ c):

δSCG
δφ

= 0 −→ ∇µJµ = 0
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Hairy BH solutions

• Recall no-scalar-hair theorem: different theory ; different black holes:

for the Cubic Galileon, φ = φ(r) ⇒ g is Schwarzschild

−→ Introduce a linear time dependence7: φ = qt + Ψ(r)

→ Preserves spacetime symmetries

→ Interesting cosmological dynamics

→ Yields BH different from GR ones

7Babichev, Charmousis, Lehébel & Moskalets, JCAP09(2016)011
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Rotating black hole

• (t, φ)-orthogonality (“circularity”): gtr = gtθ = gφr = gφθ = grθ = 0

=⇒ gµν(r , θ) =


−N2 + B2ω2r2 sin2 θ 0 0 −ωB2r2 sin2 θ

0 A2 0 0
0 0 A2r2 0

−ωB2r2 sin2 θ 0 0 B2r2 sin2 θ



−→ Relevant for rotating stars with no meridional flow

−→ Adapted to rotating BH, e.g . in dilatonic Einstein-Gauss-Bonnet8

8B. Kleihaus, J. Kunz, and E. Radu, Rotating Black Holes in Dilatonic
Einstein-Gauss-Bonnet Theory, Phys. Rev. Lett. 106, 151104 (2011)
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Equations and boundary conditions

• Inject circular metric and scalar ansatz into five (recombined) equations
of motion:

∆3N = SN ; ∆2[NA] = SA ;

∆2[NBr sin θ] = SB ; ∆3[ωr sin θ] = Sω ;

∇µJµ = 0

• Set boundary conditions:
- asymptotic flatness: N∞ = A∞ = B∞ = 1 ; ω∞ = 0 ; ∂θΨ∞ = 0
- vanishing lapse: NH = 0 (causes degeneracy)

- vanishing expansion: θ(l)
H = 0

- rotating horizon: ωH = ΩH

- finite norm of scalar gradient (∂φ)2
H

- no conical singularity: A|∆ = B|∆
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Spectral methods

• Discretization: consider the truncated decompositions onto standard
basis functions

e.g . A(r , θ) =

Nr∑
i=0

Nθ∑
j=0

ÃijTi (r) cos(2jθ)

−→ Exponential convergence of the series for smooth functions

−→ Transforms any system of PDE’s into a nonlinear algebraic system,
solved with Newton-Raphson algorithm implemented in Kadath library9

9Grandclément, J. Comput. Phys. 229, 3334 (2010), http://kadath.obspm.fr/

http://kadath.obspm.fr/
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Static solutions with increasing nonminimal coupling

Radial profile of lapse N (varying α1α2 = q3r0
γ
ζ )
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Static solutions with increasing nonminimal coupling

Radial profile of N∂rΨ (varying α1α2 = q3r0
γ
ζ )
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Rotating solutions with constant coupling

Radial profile of ω (varying Ω̄H = rHΩH)
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Rotating solutions with constant coupling

Radial profile of A (varying Ω̄H = rHΩH)
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Rotating solutions with constant coupling

Zoom on radial profile of A (varying Ω̄H = rHΩH)
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Rotating solutions with constant coupling

Angular profile of A at horizon (varying Ω̄H = rHΩH)
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Rotating solutions with constant coupling

Radial profile of Z (varying Ω̄H = rHΩH)
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Rotating solutions with constant coupling

Zoom on radial profile of Z (varying Ω̄H = rHΩH)
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Rotating solutions with constant coupling

Angular profile of Z at horizon (varying Ω̄H = rHΩH)



Motivations
Cubic Galileon

Problem
Numerical treatment

Spectral methods
Static solution with increasing coupling
Rotating solution with constant coupling
Next steps

Next steps

• Determine the causal type of scalar gradient

• Search for an ergoregion

• Reach rapidly rotating branch

• Extract global quantities

• Try other boundary conditions for the scalar (on the norm of the
current, or at infinity)

• Integrate null and timelike geodesics
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Summary

• Observations of Sgr A* provide new tests of GR in the strong field
regime

• The Cubic Galileon is a well motivated modified theory that could
account for deviations from GR

• Ongoing numerical computations of rotating BH should allow to predict
the deviations from GR (e.g . from the integration of null geodesics)
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